Sequential Hypothesis Testing under Stochastic Deadlines

Part of Advances in Neural Information Processing Systems 20 (NIPS 2007)

Bibtex Metadata Paper

Authors

Peter Frazier, Angela J. Yu

Abstract

Most models of decision-making in neuroscience assume an infinite horizon, which yields an optimal solution that integrates evidence up to a fixed decision threshold; however, under most experimental as well as naturalistic behavioral settings, the decision has to be made before some finite deadline, which is often experienced as a stochastic quantity, either due to variable external constraints or internal timing uncertainty. In this work, we formulate this problem as sequential hypothesis testing under a stochastic horizon. We use dynamic programming tools to show that, for a large class of deadline distributions, the Bayes-optimal solution requires integrating evidence up to a threshold that declines monotonically over time. We use numerical simulations to illustrate the optimal policy in the special cases of a fixed deadline and one that is drawn from a gamma distribution.