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Abstract

Most models of decision-making in neuroscience assuménfamite horizon,

which yields an optimal solution that integrates evidence up to a fixed decision
threshold; however, under most experimental as well as naturalistic behavioral
settings, the decision has to be made before some finite deadline, which is often
experienced as a stochastic quantity, either due to variable external constraints or
internal timing uncertainty. In this work, we formulate this problem as sequential
hypothesis testing under a stochastic horizon. We use dynamic programming tools
to show that, for a large class of deadline distributions, the Bayes-optimal solution
requires integrating evidence up to a threshold that declines monotonically over
time. We use numerical simulations to illustrate the optimal policy in the special
cases of a fixed deadline and one that is drawn from a gamma distribution.

1 Introduction

Major strides have been made in understanding the detailed dynamics of decision making in sim-
ple two-alternative forced choice (2AFC) tasks, at both the behavioral and neural levels. Using a
combination of probabilistic and dynamic programming tools, it has been shown that when the de-
cision horizon is infinitei(e. no deadline), the optimal policy is to accumulate sensory evidence for
one alternative versus the other until a fixed threshold, and report the corresponding hypothesis [1].
Under similar experimental conditions, it appears that humans and animals accumulate information
and make perceptual decisions in a manner close to this optimal strategy [2—4], and that nheurons
in the posterior parietal cortex exhibit response dynamics similar to that prescribed by the optimal
algorithm [6]. However, in most 2AFC experiments, as well as in more natural behavior, the de-
cision has to be made before some finite deadline. This corresponds to a finite-horizon sequential
decision problem. Moreover, there is variability associated with that deadline either due to external
variability associated with the deadline imposition itself, or due to internal timing uncertainty about
how much total time is allowed and how much time has already elapsed. In either case, with respect
to the observer'mternaltimer, the deadline can be viewed as a stochastic quantity.

In this work, we analyze the optimal strategy and its dynamics for decision-making under the pres-
sure of a stochastic deadline. We show through analytical and numerical analysis that the optimal
policy is a monotonically declining decision threshold over time. A similar result for determinis-

tic deadlines was shown in [5]. Declining decision thresholds have been used in [7] to model the
speed vs. accuracy tradeoff, and also in the context of sequential hypothesis testing ( [8]). We first
present a formal model of the problem, as well as the main theoretical results (Sec. 2). We then use
numerical simulations to examine the optimal policy in some specific examples (Sec. 3).

2 Decision-making under a Stochastic Deadline

We assume that on each trial, a sequence of i.i.d inputs are obsetved; =3, . . .. With probability
p?, all the inputs for the trial are generated from a probability dengityand, with probability



1 —pY, they are generated from an alternate probability derfgity et § be index of the generating
distribution. The objective is to decide whetlteis 0 or 1 quickly and accurately, while also under
the pressure of a stochastic decision deadline.

We definex! £ (z',22,..., 2?) to be the vector of observations made by timeThis vector of

observations gives information about the generating dedsi§efiningp! = P{d =1 | x'}, we
observe thap'*! may be obtained iteratively fropf via Bayes’ rule,

ptfl (fl;t+1)
P ) + (1= p') fo(a+)”

Let D be a deadline drawn fromkanowndistribution that is independent of the observatighsWe

will assume that the deadlin® is observed immediately and effectively terminates the trial. Let
c¢> 0 be the cost associated with each unit time of decision delay/and be the cost associated
with exceeding the deadline, where bethndd are normalized against the (unit) cost of making
an incorrect decision. We choode> .5 so thatd is never smaller than the expected penalty for
guessing af. This avoids situations in which we prefer to exceed the deadline.

P =Plo=1] X} = &)

A decision-policyr is a sequence of mappings, one for each timom the observations so far

to the set of possible actions: stop and choése 0; stop and choos@ = 1; or continue sam-

pling. We definer,; to be the time when the decision is made to stop sampling under decision-policy
m, andd, to be the hypothesis chosen at this time — both are random variables dependent on the
sequence of observations. More formatly,= 7° 7!, ..., wherer?(x*) — {0,1,continué,

and 7, £ min(D,inf{t € N : 7'(x!) € {0,1}}), 6 £ 7™ (x"). We may also define

or = inf{t € N : 7t(x!) € {0,1}} to be the time when the policy would choose to stop sam-
pling if the deadline were to fail to occur. Thep = min(D, o).

Our loss function is defined to Wér, 6;0, D) = 1(s20y1{r<p} + cT + d1{.>p;. The goalis to
find a decision-policyr which minimizes the total expected loss

Lz 2 (I(tx,07:0,D))g,p.x = P(6x # 0,7 < D) + ¢(7) + dP(D < 77). 2)

2.1 Dynamic Programming

A decision policy is characterized by hawandé are generated as a function of the data observed
so far. Thus, finding the optimal decision-policy is equivalent to finding the random variables

4 that minimize(l(r, §; 0, D)). The optimal policy decides whether or not to stop based on whether
p! is inside a seC* C [0,1] or not. Our goal is to show that" is a continuous interval, that

Cttl C C*, and that for large enough C* is empty. That is, the optimal policy is to iteratively
computep’ based on incoming data, and to decide for the respective hypothesis as soon as it hits
either a high { = 1) or low (0 = 0) threshold. Furthermore, the two thresholds decay toward each
other over time and eventually meet.

We will use tools from dynamic programming to analyze this problem. Our approach is illustrated
in Fig. 2.1. The red line denotes the cost of stopping at tirae a function of the current belief

pt = p. The blue line denotes the cost of continuing at least one more time step, as a function of
pt. The black line denotes the cost of continuing at least two more time steps, as a fungtion of
Because the cost of continuing is concavefiflLemma 1), and larger than stopping fére {0, 1}

(Lemma 4), the continuation region is an interval delimited by where the costs of continuing and
stopping intersect (blue dashed lines). Moreover, because the cost of continuing two more timesteps
is always larger than that of continuing one more for a given amount of belief (Lemmas 2 and 3),
that “window” of continuation narrows over time (Main Theorem). This method of proof parallels
that of optimality for the classic sequential probability ratio test in [10].

Before proving the lemmas and the theorem, we first introduce some additional definitions. The
value functionV : N x [0, 1] — R, specifies the minimal cost (incurred by the optimal policy) at
timet, given that the deadline has not yet occurred, #idtave been observed, and that the current
cumulative evidence fof = 1 is p*: V(¢,p?) £ inf >, s(I(7,6;0,D) | D > t,p')s.px. The cost
associated with continuing at timeknown as the)-factor for continuingand denoted by, takes
the form

Q(t,p") = itn+f1 5<l(7,6;9,D) | D>t,p" px 3)

T2
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Figure 1: Comparison of the co8k(t, p) of stopping at time (red); the cost)(t, p) of continuing

at timet (blue solid line); and)(t + 1, p) — ¢ (black solid line), which is the cost of continuing at
timet + 1 minus an adjustmer (¢ + 1, p) — Q(¢,p) = c. The continuation regio6 is the interval
between the intersections of the solid blue and red lines, marked by the blue dotted lines, and the
continuation regiorC**! is the interval between the intersections of the solid black and red lines,
marked by the black dotted lines. Note tigatt + 1,p) — ¢ > Q(t,p), soC* containsC*+1.

Note that, in general, bot (¢, p') and Q(¢, p*) may be difficult to compute due to the need to
optimize over infinitely many decision policies. Conversely, the cost associated with stopping at
time ¢, known as th&)-factor for stoppingand denoted by, is easily computed as

Qt,p") = 5£%f1<l(t, 8;0,D) | D >t,p")g.px =min{p’, 1 —p'} +ct, 4)

)

where the infimum is obtained by choosifg 0 if p* <.5 and choosing =1 otherwise.

An optimal stopping rule is to stop the first time the expected cost of continuing exceeds that of
stopping, and to choose= 0 or § = 1 to minimize the probability of error given the accumulated
evidence (see [10]). Thatis;* = inf{t > 0 : Q(¢,p') < Q(t,p")} andd* = 1ipre>1/2y-

We define the continuation region at timéoy C* £ {p’ € [0,1] : Q(¢,p") > Q(t,p")} so that

7" = inf{t > 0 : p' ¢ C'}. Although we have obtained an expression for the optimal policy in
terms ofQ (¢, p) andQ(¢, p), computingQ(t, p) is difficult in general.

Lemmal. The functiorp — Q(t, p') is concave with respect td for eacht € N.

Proof. We may restrict the infimum in Eq. 3 to be over only thesand s depeding onD and
the future observations;,; = {z**! 2**2 ...}, This is due to two facts. First, the expectation
is conditioned onp?, which contains all the information abofitavailable in the past observations
x!, and makes it unnecessary for the optimal policy to depens’cexcept throughpt. Second,
dependence agpf in the optimal policy may be made implicit by allowing the infimum to be attained
by differentr and§ for different values ofp* but removing explicit dependence gh from the
individual policies over which the infimum is taken. Withandd chosen from this restricted set
of policies, we note that the distribution of the future observatigns is entirely determined bg
and so we havél(r,6;0,D) | 0,p")p x,., = (I(7,0;0,D) | 0) p x,.,. Summing over the possible
values off, we may then write:

(U(1,6:0,D) | P)o.pxr = Y (U(1,6:0,D) |0 =k)px, . PO =k | p'}
ke{0,1}
= (U(1,6;0,D) | 0=0)px,,, (1 = p') + {U(7,6;0,D) | 0=1)p x,,, D"
Eq. (3) can then be rewritten as:
Q(t,p") = T>itn+fw<l(7,§;9,D) |0=0)px,.,(1—p")+((r,60,D) | 0=1)p x,.,P",
where this infimum is again understood to be taken over this set of policies depending only upon

observations after time Since neithefi(r, §;0, D) | # =0) nor (I(7,d;0,D) | § =1) depend on
pt, this is the infimum of a collection of linear functions)ih, and hence is concave i ([9]). O



We now need a lemma describing how expected cost depends distifilsution of the deadline. Let
D’ be a deadline whose distribution is different than thabofLet 7* be the policy that is optimal
given that the deadline has distributiéh and denote .+ by o*. Then define

V'(t,p") £ (min(p” ,1—p” )l(ge<pry +cmin(o™, D) + dligespy | ', D' > tho.px
so thatV’ gives the expected cost of taking the stopping timievhich is optimal for deadliné
and applying it to the situation with deadlid&’. Similarly, letQ’(, p*) and@'(t,pt) denote the
corresponding expected costs undérnd D’ given that we continue or stop, respectively, at time
t givenp! andD’ > t. Note tha’@l(t,pt) = Q(t,p") = min(p’, 1 — p') + ct. These definitions
are the basis for the following lemma, which essentially shows that replacing the dedithih
a less urgent deadlin®’ lowers cost. This lemma is needed for Lemma 3 below.

Lemma 2 If D' is suchthatP{D’ >¢t+1 | D' >t} > P{D >¢+1 | D >t} forall ¢, then
V'(t,p) < V(t,p) andQ'(t, p) < Q(t, p) forall t andp.

Proof. First let us show that if we havié’(t + 1,p’) < V(¢ + 1,p’) for some fixed and allp’, then
we also have)'(t,p) < Q(t, p) for that same and allp. This is the case because, if we fixhen

Qt,p') = (d+c(t + 1)) P{D=t+1| D>t} + (V(t + 1,p'*) | p) o1 P{D>t+1| D>t}
=d+ct+1)+(VQE+1,pH) —(d+ct+1) | p)pn:P{D>t+1| D>t}
>d+ct+1)+ (V(E+1,p") = (d+c(t+1)) | p")p1 P{D' >t+1| D' >t}

>d+ct+ 1)+ (V' (E+1,p") = ([d+ct+1) | p)wnP{D' >t+1| D' >t} = Q'(t,p).

In the first inequality we have used two facts: tHaft + 1,p!*1) < Q(t + 1,ptt!) =
min(p'tt 1 — p*) + ¢t + 1) < d + ¢(t + 1) (which is true becausé > .5); and that
P{D>t+1]| D>t} <P{D'>t¢t+1| D' >t}. Inthe second inequality we have used our
assumption that’’ (¢ + 1,p") < V(¢ + 1,p’) forall p'.

Now consider a finite horizon version of the problem wheteis only optimal among stopping
times bounded above by a finite integérWe will show the lemma for this case, and the lemma for
the infinite horizon version of the problem follows by taking the limitlas- oco.

We induct backwards oh Sinceo* is required to stop &', we haveV (T, p?) = Q(T,pT) =
Q'(T,pT) = V'(T,pT). Now for the induction step. Fiy andt < T. If o* chooses to stop

att whenp! = p, thenV(t,p) = Q(t,p) = Q (t,p) = V'(t,p). If o* continues instead, then
V(t,p) = Q(t,p) > Q' (t,p) = V'(t, p) by the induction hypothesi&]

Note the requirement that> 1/2 in the previous lemma. If this requirement is not met, then if

is such that/ < min(p, 1 — p’) then we may prefer to get timed out rather than chaose0 or

§ = 1 and suffer the expected penaltymafn(p?, 1 — p?) for choosing incorrectly. In this situation,

since the conditional probabili{D = t+1 | D > t} that we will time out in the next time period

grows as time moves forward, the continuation region may expand with time rather than contract.
Under most circumstances, however, it seems reasonable to assume the deadline cost to be at least
as large as that of making an error.

We now state Lemma 3, which shows that the cost of delaying by one time period is as least as large
as the continuation costbut may be larger because the delay causes the deadline to approach more
rapidly.

Lemma3. Foreacht € Nandp € (0,1),Q(t — 1,p"1=p) < Q(t,p'=p) — c.

Proof. Fix t. Leto* £ inf{s > ¢t + 1 : p* ¢ C*} so thatmin(c*, D) attains the infimum for
Q(t,p'). Also defines’ £ inf{s > t: p* ¢ C**1} andr’ £ min(D, o’). Sincer’ is within the set

over which the infimum definin@(t — 1, p) is taken,

Q(t —1,p) < (min(p™ ;1 —p" Vpepy +er’ +dlipspy | D>t —1,p7 = p)p,

= (min(p”,,l —p"/)l{a/<D} + cmin(D,o’) + dligi>py | D >t — 1,pi~t = D)D %,

= <min(p”*, 1—pa*)1{0_*71<D} + cmin(D, o* _1) + dl{a*flzD} | D >t_1apt = p>D,Xt+1a

where the last step is justified by the stationarity of the observation process, which implies that the
joint distribution of (p®) s>+, p° , ando* conditioned orpt = p is the same as the joint distribution



of (p° Vs>, p° , ando’ + 1 conditioned o' ~! = p. Let D’ = D + 1 and we have

Q/(tap) = <min(p0*a 1_pg*)1{0*<D/} + cmin(D/, J*) + dl{d*ZD/} | D’ >t7pt = p>D’,Xt+1a

soQ(t — 1,p) < Q'(t,p) — c. Finally, asD’ satisfies the requirements of Lemma@@t, p) <
Q(t,p). O

Lemma4. ForteN,Q(t,0)=Q(t,1)=c(t+1)+dP{D=t+1|D >t}.
Proof. On the evenp’ =0, we have thaP{# =0} = 1 and the policy attaining the infimumin (3) is
T*=t+1,§*=0. Thus,Q(t,0) becomes

Q(t,0) = (l(r*,0%0,D) | D > 7f,p"‘:0>D7xt+1 = ((17,6":0,D) | D > t,0=0)p x,.,
= (dlyyi>py +c(t+1) | D >t,0=0)px,,, =c(t+1)+dP{D=t+1| D > t}.

Similarly, on the evenp?’ =1, we have thaP{#=1} = 1 and the policy attaining the infimum in (3)
isT*=t+1,0*=1. Thus,Q(t,1) = c(t+1)+ dP{D<t+1| D > t}.O

We are now ready for the main theorem, which shows €fais either empty or an interval, and
thatC**! C C*. To illustrate our proof technique, we pl@t, p), Q(t,p), andQ(t + 1,p) — c as
functions ofp in Figure 2.1. As noted, the continuation regiohis the set op such that) (¢, p) <
Q(t,p), To show thatC"* is either empty or an interval, we note th@tt, p) is a concave function
in p (Lemma 1) whose value at the endpoipts- 0, 1 are greater than the corresponding values of
Q(t,p) (Lemma 4). Such a concave function may only intergg@t p), which is a constant plus
min(p, 1 — p), either twice or not at all. When it intersects twice, we have the situation pictured in
Figure 2.1, in whichC? is a non-empty interval, and when it does not interg&cis empty.

To show thatC**! C C* we note that the difference betwe@iit + 1, p) andQ(t, p) is the constant
c. Thus, to show that*, the set wheré)(t, p) containsQ(t, p), is larger tharC**!, the set where

Q(t + 1,p) is larger tharQ (¢ + 1, p), it is enough to show that the difference betwégn + 1, p)
andQ(t, p) is at least as large as the adjustmenthich we have done in Lemma 3.

Theorem. At each timet € N, the optimal continuation regiod' is either empty or a closed
interval, andC*+! C C*.

Proof. Fix t € N. We begin by showing that’**! C C*. If C**! is empty then the statement
follows trivially, so consider the case whéf*! # (). Choosep € C**1. Then

Thus,p € Ct, implying C**! C C*.

Now suppose that® is non-empty and we will show it must be a closed interval. d‘e& inf C*
andb? = sup C*. SinceC! is a non-empty subset @, 1], we havea®, b’ € [0, 1]. Furthermore,
a® > 0 becaus&)(t,p) > c(t +1)+dP{D =t+ 1| D > t} > ct = Q(¢,0) for all p, and
the continuity ofQ(t, -) implies thatQ(t,p) > Q(t,p) > 0 for p in some open interval arourtd
Similarly, b < 1. Thus,a’, b* € (0,1).

We will show first thatja’, 1/2] C C*. If a* > 1/2 then this is trivially true, so consider the case
thata! < 1/2. SinceQ(t,-) is concave on the open interv@l, 1), it must also be continuous
there. This and the continuity @ imply thatQ(¢,a') = Q(t,a'). Also, Q(t,0) > Q(t,0) by
Lemma 4. Thus! > 0 and we may take a left-derivative@t For any= € (0,a'), a’ — ¢ ¢ C* so
Q(a® — ¢) > Q(a’ — €). This implies together witl) (¢, a’) = Q(¢, a?) that
o~ Q(t7 at) - Q(t7 at - E) @(t at) - @(ta at B E)
9

t,a’) = lim < lim
55 Qta!) = Jim, ‘ < lim,

_ 05
- a_pQ(taa )

SinceQ(t, -) is concave by Lemma 1 ar@@(t, -) is linear on[0, 1/2], we have for any’ € [a?,1/2],

0 , o~
i <
8pQ(tp) <o
SinceQ(t, -) is concave, it is differentiable except at countably many points, so fop anju’, 1/2],
t P 87 / / a) t P ai_ / / ral
Q) = Qta) + [ o) <Qua) + [ Q) a = Q)

a a

Q(ta") < %@(t,aﬂ - g—;m,m.
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Thereforep € C*, and, more generallyg’,1/2] C C*. By a similar argumenfl/2,b'] C C".
Finally, C* C [a%,b!] C [a?,1/2] U [1/2,b!] C C* and we must havé = [a!, bt]. O

We also include the following proposition, which shows tHabiis finite with probability1l then
the continuation region must eventually narrow to nothing.

Proposition. If P{D < oo} = 1 then there exists @ < oo such thatC” = (.

Proof. First consider the case whéhnis bounded, s®?{D < T + 1} = 1 for some timel’ < co.
Then,Q(T,p”) = d + ¢(T + 1), while Q(T,p") = ¢T + min(p”,1 — pT) < T + 1/2. Thus
Q(T,pT) — Q(T,p") >d+c—1/2 > 0,andCT = 0.

Now consider the case whé@{ D > t} > 0 for everyt. By neglecting the error probability and
including only continuation and deadline costs, we ob@(t p') > dP{D =t+1|D >t}+c(t+1).
Bounding the error probability by/2 we obtainQ (¢, p*) < ct + 1/2. Thus,Q(t, p') — Q(t, pt) >
c+dP{D=t+1|D >t}—1/2. SinceP{D < oo} = 1, limy_oc+dP{D=1¢+1| D>
t}—1/2=c+d—1/2 > 0, and there exists & such that + dP{D=t+1| D>t} —1/2 > 0 for
everyt > T. This implies that, fot > T andp’ € [0,1], Q(t,p*) — Q(t,p*) > 0 andC? = (. O

3 Computational simulations

We conducted a series of simulations in which we computed the continuation region and distribu-
tions of response time and accuracy for the optimal policy for several choices of the pararaaters

d, and for the distribution of the deadlirie. We chose the observation to be a Bernoulli random
variable under botlfy and f; for everyt = 1,2, ... with different values fogy = P{x;=1]6}. In

our simulations we chosg = .45 andg; =.55.

We computed optimal policies for two different forms of deadline distribution: first for a determin-
istic deadline fixed to some known constant; and second for a gamma distributed deadline. The
gamma distribution with parameteks> 0 and3 > 0 has density(3* /T'(k))z*~te=#* for z >0,
whereT'(-) is the gamma function. The parametérand 3, called theshapeandrate parameters
respectively, are completely determined by choosing the mean and the standard deviation of the dis-
tribution since the gamma distribution has mégiw and variance: /3. A fixed deadlinel’ may
actually be seen as a limiting case of a gamma-distributed deadline by taking dad® to infinity

such that: /8 = T is fixed.

We used the table-look-up form of the backward dynamic programming algorithm (see, e.g., [11])
to compute the optimal Q-factors. We obtained approximations of the value function and Q-factors
at a finite set of equally spaced discrete pofitsl/N, ..., (N — 1)/N, 1} in the intervall0, 1]. In

our simulations we chos¥ =999. We establish a final tim&' that is large enough th&{D < T'}

is nearlyl, and thusP{r* < T} is also nearlyl. In our simulations we chos& = 60. We
approximated the value functidn(7T’, p”) at this final time byQ (7, p”). Then we calculated value
functions and Q-factors for previous times recursively according to Bellman'’s equation:

Q(t7p) = <V(t + 17pt+1) | pt = p>pt+1; V(t7p) = mln(@(t,p), Q(t7p))

This expectation relatin@(¢,-) to V(¢ + 1, -) may be written explicitly using our hypotheses and
Eqg. 1 to define a functiog so thatp!*t! = ¢(p, x’“). In our case this function is defined by

g9(p',1) £ (p'qr)/ (' ot (l—p ")0) andg(p 0) £ (p'(1 - @))/(p (1 —a)+(1=p")(1—q0)).
Thenwenotethaﬂ»{x =1[p} =Pzt =1|0=1}p' +P{z'Tt=1]|0=0}(1-p") =
p'qr + (1 — p*)qo, and S|m|IarIy]P>{az:t+1 =0|p'}=p"(1—q)+ (1 —p")(1—qo). Then

Qt,p") = (c(t+1)+d)P{D<t+1| D>t} +P{D > t+1| D>t}
V(t+1,9(0" 1)) (P'ar+(1 = p"ao) +V (t+1,9(p",0)) (' (1 — q1)+(1 — p")(1 — q0))] -

We computed continuation region¥ from these Q-factors, and then used Monte Carlo simulation

with 10 samples for each problem setting to estiniagé = 0 | 7 = t} andP{r = ¢} as functions

of t. The results of these computational simulations are shown in Figure 3. We see in Fig. 3A that
the decision boundaries for a fixed deadline (solid blue) are smoothly narrowing toward the midline.
Clearly, at the last opportunity for responding before the deadline, the optimal policy would always
generate a response (and therefore the thresholds merge), since we assumed that the cost of penalty
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Figure 2: Plots of the continuation regiéf (blue), and the probability of a correct respofffé =

0 | = =t} (red). The default settings were= .001, d = 2, mear{D) = 40, std D) = 1, and
qo=1—qg1=.45. In each plot we varied one of them while keeping the others fixed. In (A) we varied
the standard deviation of D, in (B) the mean of D, in (C) the value ahd in (D) the value of.

is greater than the expected cost of making an etfor:.5 (since the optimal policy is to choose the
hypothesis with probability- .5, the expected probability of error is always.5). At the time step
before, the optimal policy would only continue if one more data point is going to improve the belief
state enough to offset the extra time castherefore, the optimal policy only continues for a small
“window” around.5 even though it has the opportunity to observe one more data point. At earlier
times, the window “widens” following similar logic. When uncertainty about the deadline increases
(larger stdD); shown in dashed and dash-dotted blue lines), the optimal thresholds are squeezed
toward each other and to the left, the intuition being that the threat of encountering the deadline
spreads earlier and earlier into the trial. The red lines denote the average accuracy for different
stopping times obtained from a million Monte Carlo simulations of the observation-decision process.
They closely follow the decision thresholds (since the threshold is on the posterior prohab)ility

but are slightly larger, becaug& must exceed the threshold, apidmoves in discrete increments

due to the discrete Bernoulli process.

The effect of decreasing the mean deadline is to shift the decision boundaries left-ward, as shown in
Fig. 3B. The effect of increasing the cost of timés to squeeze the boundaries toward the midline
(Fig. 3C —this result is analogous to that seen in the classical sequential probability ratio test for the
infinite-horizon case. The effect of increasitds to squeeze the thresholds to the left (Fig. 3D),

and the rate of shifting is on the orderlof(d) because the tail of the gamma distribution is falling

off nearly exponentially.

4 Discussion

In this work, we formalized the problem of sequential hypothesis testing (of two alternatives) under
the pressure of a stochastically sampled deadline, and characterized the optimal policy. For a large
class of deadline distributions (including gamma, normal, exponential, delta), we showed that the
optimal policy is to report a hypothesis as soon as the posterior belief hits one of a pair of mono-
tonically declining thresholds (toward the midline). This generalizes the classical infinite horizon
case in the limit when the deadline goes to infinity, and the optimal policy reverts to a pair of fixed
thresholds as in the sequential probability ratio test [1]. We showed that the decision policy becomes
more conservative (thresholds pushed outward and to the right) when there’s less uncertainty about



the deadline, when the mean of the deadline is larger, whelinge temporal cost is larger, and
when the deadline cost is smaller.

In the theoretical analysis, we assumed thatas the property th&{D >t+u | D > t} is non-
increasing irt for eachu >0 over the set of such that?{ D >t} > 0. This assumption implies that,

if the deadline has not occurred already, then the likelihood that it will happen soon grows larger
and larger, as time passes. The assumption is violated by multi-modal distributions, for which there
is a large probability the deadline will occur at some early point in time, but if the deadline does not
occur by that point in time then will not occur until some much later time. This assumption is met
by a fixed deadline (stdf)— 0), and also includes the classical infinite-horizon cd3e{ co) as a
special case (and the optimal policy reverts to the sequential probability ratio test). This assumption
is also met by any distribution with a log-concave density becaysB{D > t+u | D >t} =
logP{D >t+u} — logP{D >t} = F(t+u) — F(t), whereF(t) £ log P{D > t}. If the density of

D is log-concave, theft" is concave ( [9]), and the incremeR{¢+w)— F(t) is non-increasing im.

Many common distributions have log-concave densities, including the exponential distribution, the
gamma distribution, the normal distribution, and the uniform distribution on an interval.

We used gamma distributions for the deadline in the numerical stimulations. There are several em-
pirical properties about timing uncertainty in humans and animals that make the gamma distribution
particularly suitable. First, realizations from the gamma distribution are always non-negative, which
is consistent with the assumption that a subject never thinks a deadline has passed before the ex-
periment has started. Second, if we fix the rate paranietéerd vary the shapk, then we obtain a
collection of deadline distributions with different means whose variance and mean are in a fixed ra-
tio, which is consistent with experimental observations [12]. Third, for large valueshaf gamma
distribution is approximately normal, which is also consistent with experimental observations [12].
Finally, a gamma distributed random variable with mgamay be written as the sum éf= 3
independent exponential random variables with meg®, so if the brain were able to construct

an exponential-distributed timer whose megi® were on the order of milliseconds, then it could
construct a very accurate gamma-distributed timer for intervals of several seconds by resetting this
exponential timek times and responding after tikéh alarm. This has interesting ramifications for

how sophisticated timers for relatively long intervals can be constructed from neurons that exhibit
dynamics on the order of milliseconds.

This work makes several interesting empirical predictions. Subjects who have more internal un-
certainty, and therefore larger variance in their perceived deadline stochasticity, should respond to
stimuli earlier and with lower accuracy. Similarly, the model makes quantitative predictions about
the subject’s performance when the experimenter explicitly manipulates the mean deadline, and the
relative costs of error, time, and deadline.
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