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Abstract

Most models of decision-making in neuroscience assume aninfinite horizon,
which yields an optimal solution that integrates evidence up to a fixed decision
threshold; however, under most experimental as well as naturalistic behavioral
settings, the decision has to be made before some finite deadline, which is often
experienced as a stochastic quantity, either due to variable external constraints or
internal timing uncertainty. In this work, we formulate this problem as sequential
hypothesis testing under a stochastic horizon. We use dynamic programming tools
to show that, for a large class of deadline distributions, the Bayes-optimal solution
requires integrating evidence up to a threshold that declines monotonically over
time. We use numerical simulations to illustrate the optimal policy in the special
cases of a fixed deadline and one that is drawn from a gamma distribution.

1 Introduction
Major strides have been made in understanding the detailed dynamics of decision making in sim-
ple two-alternative forced choice (2AFC) tasks, at both the behavioral and neural levels. Using a
combination of probabilistic and dynamic programming tools, it has been shown that when the de-
cision horizon is infinite (i.e. no deadline), the optimal policy is to accumulate sensory evidence for
one alternative versus the other until a fixed threshold, and report the corresponding hypothesis [1].
Under similar experimental conditions, it appears that humans and animals accumulate information
and make perceptual decisions in a manner close to this optimal strategy [2–4], and that neurons
in the posterior parietal cortex exhibit response dynamics similar to that prescribed by the optimal
algorithm [6]. However, in most 2AFC experiments, as well as in more natural behavior, the de-
cision has to be made before some finite deadline. This corresponds to a finite-horizon sequential
decision problem. Moreover, there is variability associated with that deadline either due to external
variability associated with the deadline imposition itself, or due to internal timing uncertainty about
how much total time is allowed and how much time has already elapsed. In either case, with respect
to the observer’sinternal timer, the deadline can be viewed as a stochastic quantity.

In this work, we analyze the optimal strategy and its dynamics for decision-making under the pres-
sure of a stochastic deadline. We show through analytical and numerical analysis that the optimal
policy is a monotonically declining decision threshold over time. A similar result for determinis-
tic deadlines was shown in [5]. Declining decision thresholds have been used in [7] to model the
speed vs. accuracy tradeoff, and also in the context of sequential hypothesis testing ( [8]). We first
present a formal model of the problem, as well as the main theoretical results (Sec. 2). We then use
numerical simulations to examine the optimal policy in some specific examples (Sec. 3).

2 Decision-making under a Stochastic Deadline
We assume that on each trial, a sequence of i.i.d inputs are observed:x1, x2, x3, . . .. With probability
p0, all the inputs for the trial are generated from a probability densityf1, and, with probability
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1 − p0, they are generated from an alternate probability densityf0. Let θ be index of the generating
distribution. The objective is to decide whetherθ is 0 or 1 quickly and accurately, while also under
the pressure of a stochastic decision deadline.

We definext , (x1, x2, . . . , xt) to be the vector of observations made by timet. This vector of
observations gives information about the generating densityθ. Definingpt , P{θ = 1 | x

t}, we
observe thatpt+1 may be obtained iteratively frompt via Bayes’ rule,

pt+1 = P{θ=1 | xt+1} =
ptf1(x

t+1)

ptf1(xt+1) + (1 − pt)f0(xt+1)
. (1)

Let D be a deadline drawn from aknowndistribution that is independent of the observationsx
t. We

will assume that the deadlineD is observed immediately and effectively terminates the trial. Let
c> 0 be the cost associated with each unit time of decision delay, andd≥ .5 be the cost associated
with exceeding the deadline, where bothc andd are normalized against the (unit) cost of making
an incorrect decision. We choosed ≥ .5 so thatd is never smaller than the expected penalty for
guessing atθ. This avoids situations in which we prefer to exceed the deadline.

A decision-policyπ is a sequence of mappings, one for each timet, from the observations so far
to the set of possible actions: stop and chooseθ = 0; stop and chooseθ = 1; or continue sam-
pling. We defineτπ to be the time when the decision is made to stop sampling under decision-policy
π, andδπ to be the hypothesis chosen at this time – both are random variables dependent on the
sequence of observations. More formally,π , π0, π1, . . ., whereπt(xt) 7→ {0, 1, continue},
and τπ , min(D, inf{t ∈ N : πt(xt) ∈ {0, 1}}), δπ , πτπ(xτπ ). We may also define
σπ , inf{t ∈ N : πt(xt) ∈ {0, 1}} to be the time when the policy would choose to stop sam-
pling if the deadline were to fail to occur. Thenτπ = min(D, σπ).

Our loss function is defined to bel(τ, δ; θ, D) = 1{δ 6=θ}1{τ<D} + cτ + d1{τ≥D}. The goal is to
find a decision-policyπ which minimizes the total expected loss

Lπ , 〈l(τπ , δπ; θ, D)〉θ,D,x = P(δπ 6= θ, τπ < D) + c〈τπ〉 + d P(D ≤ τπ). (2)

2.1 Dynamic Programming

A decision policy is characterized by howτ andδ are generated as a function of the data observed
so far. Thus, finding the optimal decision-policy is equivalent to finding the random variablesτ and
δ that minimize〈l(τ, δ; θ, D)〉. The optimal policy decides whether or not to stop based on whether
pt is inside a setCt ⊆ [0, 1] or not. Our goal is to show thatCt is a continuous interval, that
Ct+1 ⊆ Ct, and that for large enought, Ct is empty. That is, the optimal policy is to iteratively
computept based on incoming data, and to decide for the respective hypothesis as soon as it hits
either a high (δ = 1) or low (δ = 0) threshold. Furthermore, the two thresholds decay toward each
other over time and eventually meet.

We will use tools from dynamic programming to analyze this problem. Our approach is illustrated
in Fig. 2.1. The red line denotes the cost of stopping at timet as a function of the current belief
pt = p. The blue line denotes the cost of continuing at least one more time step, as a function of
pt. The black line denotes the cost of continuing at least two more time steps, as a function ofpt.
Because the cost of continuing is concave inpt (Lemma 1), and larger than stopping forpt∈{0, 1}
(Lemma 4), the continuation region is an interval delimited by where the costs of continuing and
stopping intersect (blue dashed lines). Moreover, because the cost of continuing two more timesteps
is always larger than that of continuing one more for a given amount of belief (Lemmas 2 and 3),
that “window” of continuation narrows over time (Main Theorem). This method of proof parallels
that of optimality for the classic sequential probability ratio test in [10].

Before proving the lemmas and the theorem, we first introduce some additional definitions. The
value functionV : N × [0, 1] 7→ R+ specifies the minimal cost (incurred by the optimal policy) at
time t, given that the deadline has not yet occurred, thatx

t have been observed, and that the current
cumulative evidence forθ = 1 is pt: V (t, pt) , infτ≥t,δ〈l(τ, δ; θ, D) | D > t, pt〉θ,D,x. The cost
associated with continuing at timet, known as theQ-factor for continuingand denoted byQ, takes
the form

Q(t, pt) , inf
τ≥t+1,δ

〈l(τ, δ; θ, D) | D > t, pt〉θ,D,x. (3)
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Figure 1: Comparison of the costQ(t, p) of stopping at timet (red); the costQ(t, p) of continuing
at timet (blue solid line); andQ(t + 1, p) − c (black solid line), which is the cost of continuing at
timet+1 minus an adjustmentQ(t+1, p)−Q(t, p) = c. The continuation regionCt is the interval
between the intersections of the solid blue and red lines, marked by the blue dotted lines, and the
continuation regionCt+1 is the interval between the intersections of the solid black and red lines,
marked by the black dotted lines. Note thatQ(t + 1, p) − c ≥ Q(t, p), soCt containsCt+1.

Note that, in general, bothV (t, pt) andQ(t, pt) may be difficult to compute due to the need to
optimize over infinitely many decision policies. Conversely, the cost associated with stopping at
time t, known as theQ-factor for stoppingand denoted byQ, is easily computed as

Q(t, pt) = inf
δ=0,1

〈l(t, δ; θ, D) | D > t, pt〉θ,D,x = min{pt, 1 − pt} + ct, (4)

where the infimum is obtained by choosingδ=0 if pt≤ .5 and choosingδ=1 otherwise.

An optimal stopping rule is to stop the first time the expected cost of continuing exceeds that of
stopping, and to chooseδ = 0 or δ = 1 to minimize the probability of error given the accumulated
evidence (see [10]). That is,τ∗ = inf{t ≥ 0 : Q(t, pt) ≤ Q(t, pt)} and δ∗ = 1{pτ∗≥1/2}.

We define the continuation region at timet by Ct ,
{

pt ∈ [0, 1] : Q(t, pt) > Q(t, pt)
}

so that
τ∗ = inf{t ≥ 0 : pt /∈ Ct}. Although we have obtained an expression for the optimal policy in
terms ofQ(t, p) andQ(t, p), computingQ(t, p) is difficult in general.

Lemma 1. The functionp 7→ Q(t, pt) is concave with respect topt for eacht ∈ N.
Proof. We may restrict the infimum in Eq. 3 to be over only thoseτ andδ depeding onD and
the future observationsxt+1 , {xt+1, xt+2, . . .}. This is due to two facts. First, the expectation
is conditioned onpt, which contains all the information aboutθ available in the past observations
x

t, and makes it unnecessary for the optimal policy to depend onx
t except throughpt. Second,

dependence onpt in the optimal policy may be made implicit by allowing the infimum to be attained
by differentτ andδ for different values ofpt but removing explicit dependence onpt from the
individual policies over which the infimum is taken. Withτ andδ chosen from this restricted set
of policies, we note that the distribution of the future observationsxt+1 is entirely determined byθ
and so we have〈l(τ, δ; θ, D) | θ, pt〉D,xt+1

= 〈l(τ, δ; θ, D) | θ〉D,xt+1
. Summing over the possible

values ofθ, we may then write:

〈l(τ, δ; θ, D) | pt〉θ,D,xt+1
=

∑

k∈{0,1}

〈l(τ, δ; θ, D) | θ = k〉D,xt+1
P{θ = k | pt}

= 〈l(τ, δ; θ, D) | θ=0〉D,xt+1
(1 − pt) + 〈l(τ, δ; θ, D) | θ=1〉D,xt+1

pt.

Eq. (3) can then be rewritten as:

Q(t, pt) = inf
τ≥t+1,δ

〈l(τ, δ; θ, D) | θ=0〉D,xt+1
(1 − pt) + 〈l(τ, δ; θ, D) | θ=1〉D,xt+1

pt,

where this infimum is again understood to be taken over this set of policies depending only upon
observations after timet. Since neither〈l(τ, δ; θ, D) | θ = 0〉 nor 〈l(τ, δ; θ, D) | θ = 1〉 depend on
pt, this is the infimum of a collection of linear functions inpt, and hence is concave inpt ( [9]).
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We now need a lemma describing how expected cost depends on thedistribution of the deadline. Let
D′ be a deadline whose distribution is different than that ofD. Let π∗ be the policy that is optimal
given that the deadline has distributionD, and denoteσπ∗ by σ∗. Then define

V ′(t, pt) , 〈min(pσ∗

, 1 − pσ∗

)1{σ∗<D′} + c min(σ∗, D′) + d1{σ∗≥D′} | pt, D′ > t〉θ,D,x

so thatV ′ gives the expected cost of taking the stopping timeσ∗ which is optimal for deadlineD
and applying it to the situation with deadlineD′. Similarly, let Q′(t, pt) andQ

′
(t, pt) denote the

corresponding expected costs underσ∗ andD′ given that we continue or stop, respectively, at time
t givenpt andD′ > t. Note thatQ

′
(t, pt) = Q(t, pt) = min(pt, 1 − pt) + ct. These definitions

are the basis for the following lemma, which essentially shows that replacing the deadlineD which
a less urgent deadlineD′ lowers cost. This lemma is needed for Lemma 3 below.

Lemma 2 If D′ is such thatP{D′ > t+1 | D′ > t} ≥ P{D > t+1 | D > t} for all t, then
V ′(t, p) ≤ V (t, p) andQ′(t, p) ≤ Q(t, p) for all t andp.
Proof. First let us show that if we haveV ′(t + 1, p′) ≤ V (t + 1, p′) for some fixedt and allp′, then
we also haveQ′(t, p) ≤ Q(t, p) for that samet and allp. This is the case because, if we fixt, then

Q(t, pt) = (d + c(t + 1)) P{D= t+1 | D>t} + 〈V (t + 1, pt+1) | pt〉xt+1P{D>t+1 | D>t}

= d + c(t + 1) + 〈V (t + 1, pt+1) − (d + c(t + 1)) | pt〉xt+1P{D>t+1 | D>t}

≥ d + c(t + 1) + 〈V (t + 1, pt+1) − (d + c(t + 1)) | pt〉xt+1P{D′>t+1 | D′>t}

≥ d + c(t + 1) + 〈V ′(t + 1, pt+1) − (d + c(t + 1)) | pt〉xt+1P{D′>t+1 | D′>t} = Q′(t, p).

In the first inequality we have used two facts: thatV (t + 1, pt+1) ≤ Q(t + 1, pt+1) =
min(pt+1, 1 − pt+1) + c(t + 1) ≤ d + c(t + 1) (which is true becaused ≥ .5); and that
P{D > t+1 | D > t} ≤ P{D′ > t+1 | D′ > t}. In the second inequality we have used our
assumption thatV ′(t + 1, p′) ≤ V (t + 1, p′) for all p′.

Now consider a finite horizon version of the problem whereσ∗ is only optimal among stopping
times bounded above by a finite integerT . We will show the lemma for this case, and the lemma for
the infinite horizon version of the problem follows by taking the limit asT → ∞.

We induct backwards ont. Sinceσ∗ is required to stop atT , we haveV (T, pT ) = Q(T, pT ) =

Q
′
(T, pT ) = V ′(T, pT ). Now for the induction step. Fixp and t < T . If σ∗ chooses to stop

at t whenpt = p, thenV (t, p) = Q(t, p) = Q
′
(t, p) = V ′(t, p). If σ∗ continues instead, then

V (t, p) = Q(t, p) ≥ Q′(t, p) = V ′(t, p) by the induction hypothesis.

Note the requirement thatd ≥ 1/2 in the previous lemma. If this requirement is not met, then ifpt

is such thatd < min(pt, 1 − pt) then we may prefer to get timed out rather than chooseδ = 0 or
δ = 1 and suffer the expected penalty ofmin(pt, 1 − pt) for choosing incorrectly. In this situation,
since the conditional probabilityP{D = t+1 | D > t} that we will time out in the next time period
grows as time moves forward, the continuation region may expand with time rather than contract.
Under most circumstances, however, it seems reasonable to assume the deadline cost to be at least
as large as that of making an error.

We now state Lemma 3, which shows that the cost of delaying by one time period is as least as large
as the continuation costc, but may be larger because the delay causes the deadline to approach more
rapidly.

Lemma 3. For eacht ∈ N andp ∈ (0, 1), Q(t − 1, pt−1 =p) ≤ Q(t, pt =p) − c.
Proof. Fix t. Let σ∗ , inf{s ≥ t + 1 : ps /∈ Cs} so thatmin(σ∗, D) attains the infimum for
Q(t, pt). Also defineσ′ , inf{s ≥ t : ps /∈ Cs+1} andτ ′ , min(D, σ′). Sinceτ ′ is within the set
over which the infimum definingQ(t − 1, p) is taken,

Q(t − 1, p) ≤ 〈min(pτ ′

, 1 − pτ ′

)1{τ ′<D} + cτ ′ + d1{τ ′≥D} | D > t − 1, pt−1 = p〉D,xt

= 〈min(pσ′

, 1 − pσ′

)1{σ′<D} + c min(D, σ′) + d1{σ′≥D} | D > t − 1, pt−1 = p〉D,xt

= 〈min(pσ∗

, 1−pσ∗

)1{σ∗−1<D} + c min(D, σ∗−1) + d1{σ∗−1≥D} | D>t−1, pt = p〉D,xt+1
,

where the last step is justified by the stationarity of the observation process, which implies that the
joint distribution of(ps)s≥t, pσ∗

, andσ∗ conditioned onpt = p is the same as the joint distribution
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of (ps−1)s≥t, pσ′

, andσ′ + 1 conditioned onpt−1 = p. Let D′ = D + 1 and we have

Q′(t, p) = 〈min(pσ∗

, 1−pσ∗

)1{σ∗<D′} + c min(D′, σ∗) + d1{σ∗≥D′} | D′ >t, pt = p〉D′,xt+1
,

so Q(t − 1, p) ≤ Q′(t, p) − c. Finally, asD′ satisfies the requirements of Lemma 2,Q′(t, p) ≤
Q(t, p).

Lemma 4. For t ∈ N, Q(t, 0) = Q(t, 1) = c(t + 1) + dP{D = t + 1 | D > t}.
Proof. On the eventpt =0, we have thatP{θ=0} = 1 and the policy attaining the infimum in (3) is
τ∗= t+1, δ∗=0. Thus,Q(t, 0) becomes

Q(t, 0) = 〈l(τ∗, δ∗; θ, D) | D > t, pt =0〉D,xt+1
= 〈l(τ∗, δ∗; θ, D) | D > t, θ=0〉D,xt+1

= 〈d1{t+1≥D} + c(t + 1) | D > t, θ=0〉D,xt+1
= c(t+1) + dP{D= t+1 | D > t}.

Similarly, on the eventpt =1, we have thatP{θ=1} = 1 and the policy attaining the infimum in (3)
is τ∗= t+1, δ∗=1. Thus,Q(t, 1) = c(t+1) + dP{D≤ t + 1 | D > t}.

We are now ready for the main theorem, which shows thatCt is either empty or an interval, and
thatCt+1 ⊆ Ct. To illustrate our proof technique, we plotQ(t, p), Q(t, p), andQ(t + 1, p) − c as
functions ofp in Figure 2.1. As noted, the continuation regionCt is the set ofp such thatQ(t, p) ≤
Q(t, p), To show thatCt is either empty or an interval, we note thatQ(t, p) is a concave function
in p (Lemma 1) whose value at the endpointsp = 0, 1 are greater than the corresponding values of
Q(t, p) (Lemma 4). Such a concave function may only intersectQ(t, p), which is a constant plus
min(p, 1 − p), either twice or not at all. When it intersects twice, we have the situation pictured in
Figure 2.1, in whichCt is a non-empty interval, and when it does not intersectCt is empty.

To show thatCt+1 ⊆ Ct we note that the difference betweenQ(t + 1, p) andQ(t, p) is the constant
c. Thus, to show thatCt, the set whereQ(t, p) containsQ(t, p), is larger thanCt+1, the set where
Q(t + 1, p) is larger thanQ(t + 1, p), it is enough to show that the difference betweenQ(t + 1, p)
andQ(t, p) is at least as large as the adjustmentc, which we have done in Lemma 3.

Theorem. At each timet ∈ N, the optimal continuation regionCt is either empty or a closed
interval, andCt+1 ⊆ Ct.
Proof. Fix t ∈ N. We begin by showing thatCt+1 ⊆ Ct. If Ct+1 is empty then the statement
follows trivially, so consider the case whenCt+1 6= ∅. Choosep ∈ Ct+1. Then

Q(t, p) ≤ Q(t + 1, p) − c ≤ Q(t + 1, p) − c = min{p, 1 − p} + ct = Q(t, p).

Thus,p ∈ Ct, implyingCt+1 ⊆ Ct.

Now suppose thatCt is non-empty and we will show it must be a closed interval. Letat , inf Ct

andbt , sup Ct. SinceCt is a non-empty subset of[0, 1], we haveat, bt ∈ [0, 1]. Furthermore,
at > 0 becauseQ(t, p) ≥ c(t + 1) + dP{D = t + 1 | D > t} > ct = Q(t, 0) for all p, and
the continuity ofQ(t, ·) implies thatQ(t, p) > Q(t, p) > 0 for p in some open interval around0.
Similarly, bt < 1. Thus,at, bt ∈ (0, 1).

We will show first that[at, 1/2] ⊆ Ct. If at > 1/2 then this is trivially true, so consider the case
that at ≤ 1/2. SinceQ(t, ·) is concave on the open interval(0, 1), it must also be continuous
there. This and the continuity ofQ imply thatQ(t, at) = Q(t, at). Also, Q(t, 0) > Q(t, 0) by
Lemma 4. Thusat > 0 and we may take a left-derivative atat. For anyε ∈ (0, at), at − ε /∈ Ct so
Q(at − ε) > Q(at − ε). This implies together withQ(t, at) = Q(t, at) that

∂−

∂p
Q(t, at) = lim

ε→0+

Q(t, at) − Q(t, at − ε)

ε
≤ lim

ε→0+

Q(t, at) − Q(t, at − ε)

ε
=

∂−

∂p
Q(t, at).

SinceQ(t, ·) is concave by Lemma 1 andQ(t, ·) is linear on[0, 1/2], we have for anyp′ ∈ [at, 1/2],

∂−

∂p
Q(t, p′) ≤

∂−

∂p
Q(t, at) ≤

∂−

∂p
Q(t, at) =

∂−

∂p
Q(t, p′).

SinceQ(t, ·) is concave, it is differentiable except at countably many points, so for anyp ∈ [at, 1/2],

Q(t, p) = Q(t, at) +

∫ p

at

∂−

∂p
Q(t, p′) dp′ ≤ Q(t, at) +

∫ p

at

∂−

∂p
Q(t, p′) dp′ = Q(t, p).
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Thereforep ∈ Ct, and, more generally,[at, 1/2] ⊆ Ct. By a similar argument,[1/2, bt] ⊆ Ct.

Finally,Ct ⊆ [at, bt] ⊆ [at, 1/2] ∪ [1/2, bt] ⊆ Ct and we must haveCt = [at, bt].

We also include the following proposition, which shows that if D is finite with probability1 then
the continuation region must eventually narrow to nothing.

Proposition. If P{D < ∞} = 1 then there exists aT < ∞ such thatCT = ∅.
Proof. First consider the case whenD is bounded, soP{D ≤ T + 1} = 1 for some timeT < ∞.
Then,Q(T, pT ) = d + c(T + 1), while Q(T, pT ) = cT + min(pT , 1 − pT ) ≤ cT + 1/2. Thus
Q(T, pT ) − Q(T, pT ) ≥ d + c − 1/2 > 0, andCT = ∅.

Now consider the case whenP{D > t} > 0 for everyt. By neglecting the error probability and
including only continuation and deadline costs, we obtainQ(t, pt) ≥ d P{D= t+1 |D>t}+c(t+1).
Bounding the error probability by1/2 we obtainQ(t, pt) ≤ ct + 1/2. Thus,Q(t, pt) − Q(t, pt) ≥
c + d P{D = t + 1 | D > t} − 1/2. SinceP{D < ∞} = 1, limt→∞ c + d P{D = t+1 | D >
t}− 1/2 = c+ d− 1/2 > 0, and there exists aT such thatc+ d P{D= t+1 | D>t}− 1/2 > 0 for
everyt ≥ T . This implies that, fort ≥ T andpt ∈ [0, 1], Q(t, pt) − Q(t, pt) > 0 andCt = ∅.

3 Computational simulations
We conducted a series of simulations in which we computed the continuation region and distribu-
tions of response time and accuracy for the optimal policy for several choices of the parametersc and
d, and for the distribution of the deadlineD. We chose the observationxt to be a Bernoulli random
variable under bothf0 andf1 for everyt = 1, 2, . . . with different values forqθ , P{xi =1 | θ}. In
our simulations we choseq0 = .45 andq1 = .55.

We computed optimal policies for two different forms of deadline distribution: first for a determin-
istic deadline fixed to some known constant; and second for a gamma distributed deadline. The
gamma distribution with parametersk > 0 andβ > 0 has density(βk/Γ(k))xk−1e−βx for x > 0,
whereΓ(·) is the gamma function. The parametersk andβ, called theshapeandrate parameters
respectively, are completely determined by choosing the mean and the standard deviation of the dis-
tribution since the gamma distribution has meank/β and variancek/β2. A fixed deadlineT may
actually be seen as a limiting case of a gamma-distributed deadline by taking bothk andβ to infinity
such thatk/β = T is fixed.

We used the table-look-up form of the backward dynamic programming algorithm (see, e.g., [11])
to compute the optimal Q-factors. We obtained approximations of the value function and Q-factors
at a finite set of equally spaced discrete points{0, 1/N, . . . , (N − 1)/N, 1} in the interval[0, 1]. In
our simulations we choseN =999. We establish a final timeT that is large enough thatP{D ≤ T }
is nearly1, and thusP{τ∗ ≤ T } is also nearly1. In our simulations we choseT = 60. We
approximated the value functionV (T, pT ) at this final time byQ(T, pT ). Then we calculated value
functions and Q-factors for previous times recursively according to Bellman’s equation:

Q(t, p) = 〈V (t + 1, pt+1) | pt = p〉pt+1 ; V (t, p) = min(Q(t, p), Q(t, p)).

This expectation relatingQ(t, ·) to V (t + 1, ·) may be written explicitly using our hypotheses and
Eq. 1 to define a functiong so thatpt+1 = g(pt, xt+1). In our case this function is defined by
g(pt, 1) , (ptq1)/(ptq1 + (1− pt)q0) andg(pt, 0) , (pt(1− q1))/(pt(1− q1)+ (1− pt)(1− q0)).
Then we note thatP{xt+1 = 1 | pt} = P{xt+1 = 1 | θ = 1}pt + P{xt+1 = 1 | θ = 0}(1 − pt) =
ptq1 + (1 − pt)q0, and similarlyP{xt+1 = 0 | pt} = pt(1 − q1) + (1 − pt)(1 − q0). Then

Q(t, pt) = (c(t+1)+d)P{D≤ t+1 | D>t} + P{D > t+1 | D>t} [

V
(

t+1, g(pt, 1)
) (

ptq1+(1 − pt)q0

)

+V
(

t+1, g(pt, 0)
) (

pt(1 − q1)+(1 − pt)(1 − q0)
)]

.

We computed continuation regionsCt from these Q-factors, and then used Monte Carlo simulation
with 106 samples for each problem setting to estimateP{δ = θ | τ = t} andP{τ = t} as functions
of t. The results of these computational simulations are shown in Figure 3. We see in Fig. 3A that
the decision boundaries for a fixed deadline (solid blue) are smoothly narrowing toward the midline.
Clearly, at the last opportunity for responding before the deadline, the optimal policy would always
generate a response (and therefore the thresholds merge), since we assumed that the cost of penalty
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Figure 2: Plots of the continuation regionCt (blue), and the probability of a correct responseP{δ=
θ | τ = t} (red). The default settings werec = .001, d = 2, mean(D) = 40, std(D) = 1, and
q0 =1−q1= .45. In each plot we varied one of them while keeping the others fixed. In (A) we varied
the standard deviation of D, in (B) the mean of D, in (C) the value ofc, and in (D) the value ofd.

is greater than the expected cost of making an error:d ≥ .5 (since the optimal policy is to choose the
hypothesis with probability≥ .5, the expected probability of error is always≤ .5). At the time step
before, the optimal policy would only continue if one more data point is going to improve the belief
state enough to offset the extra time costc. Therefore, the optimal policy only continues for a small
“window” around.5 even though it has the opportunity to observe one more data point. At earlier
times, the window “widens” following similar logic. When uncertainty about the deadline increases
(larger std(D); shown in dashed and dash-dotted blue lines), the optimal thresholds are squeezed
toward each other and to the left, the intuition being that the threat of encountering the deadline
spreads earlier and earlier into the trial. The red lines denote the average accuracy for different
stopping times obtained from a million Monte Carlo simulations of the observation-decision process.
They closely follow the decision thresholds (since the threshold is on the posterior probabilitypτ ),
but are slightly larger, becausepτ must exceed the threshold, andpt moves in discrete increments
due to the discrete Bernoulli process.

The effect of decreasing the mean deadline is to shift the decision boundaries left-ward, as shown in
Fig. 3B. The effect of increasing the cost of timec is to squeeze the boundaries toward the midline
(Fig. 3C – this result is analogous to that seen in the classical sequential probability ratio test for the
infinite-horizon case. The effect of increasingd is to squeeze the thresholds to the left (Fig. 3D),
and the rate of shifting is on the order oflog(d) because the tail of the gamma distribution is falling
off nearly exponentially.

4 Discussion

In this work, we formalized the problem of sequential hypothesis testing (of two alternatives) under
the pressure of a stochastically sampled deadline, and characterized the optimal policy. For a large
class of deadline distributions (including gamma, normal, exponential, delta), we showed that the
optimal policy is to report a hypothesis as soon as the posterior belief hits one of a pair of mono-
tonically declining thresholds (toward the midline). This generalizes the classical infinite horizon
case in the limit when the deadline goes to infinity, and the optimal policy reverts to a pair of fixed
thresholds as in the sequential probability ratio test [1]. We showed that the decision policy becomes
more conservative (thresholds pushed outward and to the right) when there’s less uncertainty about
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the deadline, when the mean of the deadline is larger, when thelinear temporal cost is larger, and
when the deadline cost is smaller.

In the theoretical analysis, we assumed thatD has the property thatP{D > t+u | D > t} is non-
increasing int for eachu≥0 over the set oft such thatP{D>t} > 0. This assumption implies that,
if the deadline has not occurred already, then the likelihood that it will happen soon grows larger
and larger, as time passes. The assumption is violated by multi-modal distributions, for which there
is a large probability the deadline will occur at some early point in time, but if the deadline does not
occur by that point in time then will not occur until some much later time. This assumption is met
by a fixed deadline (std(D)→ 0), and also includes the classical infinite-horizon case (D → ∞) as a
special case (and the optimal policy reverts to the sequential probability ratio test). This assumption
is also met by any distribution with a log-concave density becauselog P{D > t+u | D > t} =

log P{D>t+u} − log P{D>t} = F (t+u) − F (t), whereF (t), log P{D>t}. If the density of
D is log-concave, thenF is concave ( [9]), and the incrementF (t+u)−F (t) is non-increasing int.
Many common distributions have log-concave densities, including the exponential distribution, the
gamma distribution, the normal distribution, and the uniform distribution on an interval.

We used gamma distributions for the deadline in the numerical stimulations. There are several em-
pirical properties about timing uncertainty in humans and animals that make the gamma distribution
particularly suitable. First, realizations from the gamma distribution are always non-negative, which
is consistent with the assumption that a subject never thinks a deadline has passed before the ex-
periment has started. Second, if we fix the rate parameterβ and vary the shapek, then we obtain a
collection of deadline distributions with different means whose variance and mean are in a fixed ra-
tio, which is consistent with experimental observations [12]. Third, for large values ofk the gamma
distribution is approximately normal, which is also consistent with experimental observations [12].
Finally, a gamma distributed random variable with meanµ may be written as the sum ofk = µβ
independent exponential random variables with mean1/β, so if the brain were able to construct
an exponential-distributed timer whose mean1/β were on the order of milliseconds, then it could
construct a very accurate gamma-distributed timer for intervals of several seconds by resetting this
exponential timerk times and responding after thekth alarm. This has interesting ramifications for
how sophisticated timers for relatively long intervals can be constructed from neurons that exhibit
dynamics on the order of milliseconds.

This work makes several interesting empirical predictions. Subjects who have more internal un-
certainty, and therefore larger variance in their perceived deadline stochasticity, should respond to
stimuli earlier and with lower accuracy. Similarly, the model makes quantitative predictions about
the subject’s performance when the experimenter explicitly manipulates the mean deadline, and the
relative costs of error, time, and deadline.
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