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Abstract

Surface electromyography (sEMG) based gesture recognition offers a natural and
intuitive interaction modality for wearable devices. Despite significant advance-
ments in sEMG-based gesture recognition models, existing methods often suffer
from high computational latency and increased energy consumption. Additionally,
the inherent instability of sEMG signals, combined with their sensitivity to distri-
bution shifts in real-world settings, compromises model robustness. To tackle these
challenges, we propose a novel SpGesture framework based on Spiking Neural
Networks, which possesses several unique merits compared with existing methods:
(1) Robustness: By utilizing membrane potential as a memory list, we pioneer
the introduction of Source-Free Domain Adaptation into SNN for the first time.
This enables SpGesture to mitigate the accuracy degradation caused by distribution
shifts. (2) High Accuracy: With a novel Spiking Jaccard Attention, SpGesture
enhances the SNNs’ ability to represent sEMG features, leading to a notable rise
in system accuracy. To validate SpGesture’s performance, we collected a new
sEMG gesture dataset which has different forearm postures, where SpGesture
achieved the highest accuracy among the baselines (89.26%). Moreover, the actual
deployment on the CPU demonstrated a latency below 100ms, well within real-time
requirements. This impressive performance showcases SpGesture’s potential to
enhance the applicability of sEMG in real-world scenarios. The code is available
at https://github.com/guoweiyu/SpGesture/.

1 Introduction
Surface electromyography (sEMG) is a sensing modality that decodes motor intentions from muscle
electrical signals preceding movement to enable natural and intuitive interactions. It has distinct
advantages in gesture recognition for real-time applications. Specifically, sEMG provides rich
and comprehensive motion information, making it an excellent resource for accurate and efficient
wearable gesture recognition [12]. Moreover, sEMG signals can emerge anywhere from 50 to 150
milliseconds prior to the actual motor activity, enabling the anticipation of movements.

In recent years, Spiking Neural Networks (SNNs) [41, 21, 20] provide an unparalleled chance for
developing more practical and efficient sEMG-based gesture recognition systems. SNNs emulate
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the spiking behavior of biological neurons with a unique binary information communication proto-
col [53]. This binary communication is particularly amenable to the architectural speci�cs of sparse
neuromorphic hardware [50]. Besides, the primary computations in SNNs revolve around spike-based
accumulate (AC) operations [13]. The event-driven nature of these networks [51, 23, 82] enables
calculations to be made only when there is a change or `event' in the input, thereby circumventing
the need to process zero values. Therefore, compared to conventional Arti�cial Neural Networks
(ANNs) that typically rely on energy-demanding multiply-and-accumulate (MAC) operations [64]
and are normally deployed on high-computing-power hardware like GPUs, SNNs demonstrate sub-
stantially lower power consumption [42], positioning them as a promising candidate for developing
energy-ef�cient gesture recognition systems [2, 71, 52].

Although SNNs are computationally ef�cient, they struggle to match the accuracy of ANN-based
models [15]. In particular, the major problem is that the binary and sparse feature representations
make it dif�cult to perform regular contiguous similarity computations. This limitation hinders
expressive operations like attention mechanisms and advanced representation alignment algorithms,
such as domain adaptation. For example, attention-based structures like the Transformer have
demonstrated remarkable performance in Natural Language Processing [16, 40, 8, 69], Computer
Vision [26, 30, 39, 70, 68], Time-Series Processing [76, 77, 75] and Decision-Making tasks[56, 57],
leading to a wave of attention-centric architecture designs, underscoring the importance and versatility
of attention mechanisms in deep learning. However, with the proportion of `1's typically less than
5%, the dot product in cosine similarity inherent to attention mechanisms tends to yield results close
to zero [67]. Existing work often �rst converts spike signals into continuous values for similarity
calculations, but this can increase the inference latency and energy consumption of SNNs. There is
still a lack of methods for directly implementing advanced operations on spike features in SNN for
realizing effective sEMG-based gesture recognition systems.

To tackle these challenges, we propose an SNN-based solution for a low-power yet accurate sEMG-
based gesture recognition framework. Speci�cally, we �rst propose a novel Jaccard Attention Spiking
Neural Network (JASNN) to enhance the representativeness of the network for sEMG features. In
particular, different from existing studies that exploit attention to regulate membrane potentials
and subsequently in�uence spiking activity [67], we propose a Spiking Jaccard Attention that
calculates attention directly on spike sequences, which enables more straightforward computationally
effective attention calculation under SNN schema. Indeed, such a computation process predominantly
involves `comparison' operations, aligning well with the design principles of neuromorphic chips and
preserving the low-power properties of SNNs. Moreover, to address the distribution shift problem,
we propose a novel Spiking Source-Free Domain Adaptation based on Membrane Potential Memory.
Our method leverages the changing membrane potential curve as a memory list and uses it to generate
pseudo-labels based on thek-nearest neighbors that are most similar to the current sample. In
particular, we incorporate a random exploration mechanism to avoid over�tting during pseudo-label
generation and bolster the model's generalizability. With our method, we achieve knowledge transfer
without sharing the data, which enhances gesture recognition accuracy in an unlabeled environment
under privacy reservation.

To better re�ect real-world conditions, we collect a new sEMG-based gesture dataset that includes
different forearm postures, acknowledging that variations in forearm posture can signi�cantly in�u-
ence the distribution of sEMG data. Our experimental results demonstrate that our algorithm not
only signi�cantly outperforms other SNN-based algorithms in gesture recognition accuracy but also
matches the performance of state-of-the-art methods in the Deep Neural Networks (DNNs) category.
Furthermore, the Spiking Jaccard attention method we proposed substantially enhances the accuracy
of SNN algorithms. Regarding inference speed, Spiking Jaccard attention is36.37xfaster on a CPU
than traditional attention mechanisms. Our innovatively designed SSFDA method, which does not
require source data or labels, improved the gesture recognition accuracy by4.5%. These results
collectively underline the effectiveness and ef�ciency of our proposed approach in addressing the
challenges in sEMG-based gesture recognition. Our contribution can be summarized as follows:

• We propose a Jaccard similarity-based attention mechanism speci�cally designed for SNNs. This
innovative approach preserves the original computational characteristics of SNNs, boosts inference
ef�ciency, and counteracts the accuracy degradation caused by sparse spiking sequences.

• To the best of our knowledge, we are among the �rst to propose an SNN-oriented SFDA algorithm.
This enables users to capture gesture actions under one speci�c forearm posture and empowers the
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model to unsupervised learning the features under other forearm postures, thereby bolstering its
robustness during actual use.

• We collect a new sEMG-based gesture dataset that features a variety of forearm postures. This
dataset can provide valuable resources for researchers aiming to develop robust gesture recognition
algorithms for different forearm postures.

• The experimental results demonstrate performance improvements over state-of-the-art sEMG
gesture recognition models, with particular bene�ts under varying forearm orientations. Our model
also provides higher ef�ciency than existing attention schemes.

2 Related Works

Spiking Neural Networks (SNNs), the third generation of neural networks, mimic biological neurons
through binary spiking signals and handle temporal information effectively [19]. SNNs are energy-
ef�cient, activating only a small portion of neurons during computation, unlike dense ANNs that
rely on energy-intensive operations [2]. Neuromorphic chips like Tianjic [14], TrueNorth [1], and
Loihi [13] exemplify this ef�ciency. Despite their energy advantages, SNNs have lower accuracy
than DNNs due to sparse feature representation and simplistic structures. Attention mechanisms,
widely used in DNNs [60], are under-explored in SNNs, posing challenges like spike degradation and
gradient vanishing. Addressing these issues is crucial for improving SNN performance.

Domain Adaptation (DA) aims to leverage labeled source domain data to improve performance
on unlabeled target domains, addressing domain shifts [62]. Traditional DA requires access to both
source and target data, which is impractical in scenarios involving privacy or resource constraints [36].
Source-Free Domain Adaptation (SFDA)addresses this by adapting models without source data,
crucial for privacy-sensitive applications like sEMG gesture recognition [22]. SFDA methods are
categorized into data-centric and model-centric approaches [49]. Data-centric methods extend UDA
techniques by reconstructing virtual domains or translating target data into source-style data [37].
Model-centric methods, like pseudo-labeling [35], entropy minimization [6], and contrastive learn-
ing [79], �ne-tune models using target data. However, applying SFDA to SNNs is challenging due to
their lower stability and sparse outputs.

3 Preliminaries

Data Collection: In human-computer interaction studies involving sEMG, diverse and represen-
tative data sets are crucial. Traditional research often collects sEMG data from a single forearm
posture [4, 31], but variations in forearm posture signi�cantly in�uence sEMG data distribution. Our
methodology incorporates gestures performed in different forearm postures to better re�ect real-world
conditions. Participants were instructed to replicate gestures and forearm postures shown on a screen.
Our dataset includes ten gestures across three forearm postures: P1 (forearm horizontal on a surface),
P2 (forearm elevated diagonally with elbow anchored), and P3 (forearm horizontal). Each gesture
was held for �ve seconds with a �ve-second relaxation period, repeated six times per posture. This
approach aims to provide robust sEMG data re�ecting practical variability. For further details on
dataset collection, including information about the acquisition devices and speci�c measures taken,
please refer to appendix A.1.

Data Processing:We used Root Mean Square (RMS) for initial feature extraction to enhance gesture
recognition stability. RMS ef�ciently summarizes signal magnitude, indicating signal power. A
100ms time window with a 0.5ms step size captured transient sEMG characteristics, extracting features
while maintaining high-resolution signal variations. RMS is further explained in appendix A.2.

4 Method

In the subsequent sections of this paper, we will present a sEMG-based gesture recognition solution
with SNNs capable of handling distribution shifts. This solution can be divided into Jaccard Attention
Spiking Neural Network (JASNN) and Spiking Source-Free Domain Adaptation (SSFDA). Firstly,
we will introduce the unique SNN backbone JASNN deployed in our study. Following this, we will
delve into our innovative design, the novel implementation of SSFDA within an SNNs framework – a
�rst in the �eld. For more details about SNN, please refer to appendix A.3.
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Figure 1: The pipeline of Jaccard Attention Spike Neural Network: Raw sEMG Data is �rst encoded
into Spike Signals using ConvLIF. These signals pass through ConvLIF layers withN and2N
channels. The processed data then goes through the Spiking Jaccard Attention mechanism.

4.1 Jaccard Attentive Spiking Neural Network

4.1.1 Network Overview
Our proposed Jaccard Attentive Spiking Neural Network (JASNN) comprises four primary compo-
nents: a Convolutional Leaky Integrate-and-Fire (ConvLIF) based spike encoder and feature extractor,
a Spiking Jaccard attention mechanism, LIF-based Classi�er, and a membrane potential recording
module. We detailed the �rst and third components in appendix A.4 A.6.

The ConvLIF-based spike encoding layer dynamically encodes sEMG signals into spike trains,
capturing temporal dynamics effectively. The Multi-Channel ConvLIF extractor transforms these
spikes into a higher-dimensional space for better feature representation. The Spiking Jaccard attention
mechanism focuses on task-relevant features, enhancing meaningful information. The modi�ed LIF
layer translates spiking activity into classi�cation results based on the highest membrane potential.
Finally, the membrane potential recording module converts output spikes into membrane potentials
for source-free domain adaptation.

4.1.2 Spiking Jaccard Attention
Attention mechanisms have enhanced DNNs in time-series analysis by focusing on important temporal
aspects for better predictions. However, applying attention mechanisms to Spiking Neural Networks
(SNNs) presents unique challenges. Firstly, SNNs' sparse neuron activation makes the dot product
operation in attention mechanisms produce sparse spike trains, hindering learning due to reduced
signal strength. Secondly, using the softmax function for attention scores increases computational
complexity and energy consumption, which is unsuitable for SNNs' ef�cient processing requirements.

To address these concerns, we propose a novel Spiking Jaccard Attention (SJA) mechanism specif-
ically designed for SNNs. As shown in Figure 2, unlike the method by Yaoet al. [67], SJA can
directly calculate the similarity on spike trains and retains the attention's query mechanism.

Given the binary nature of SNN layers outputs, the dot product approach in attention will make the
feature too sparse. We introduce the SJA mechanism based on the Jaccard similarity, which is better
suited for binary data. The Jaccard similarity between two sets A and B can be de�ned as:

Jaccard(A; B ) =
jA \ B j
jA [ B j

: (1)

Generally speaking, designing a spiking chip for SNNs mainly involves a large number of addition
circuits and comparison circuits. Therefore, in the practical implementation of our proposed SJA,
we retain the computational characteristics of the spiking chip to compute the Jaccard similarity
more ef�ciently. This is achieved by calculating the intersection and union of the vectors using
element-wise minimum and maximum operations, respectively. For two vectorsx andy , it can be
described as:

Jaccard(x; y ) =
P

i min (x i ; y i )P
i max (x i ; y i ) + �

: (2)
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Figure 2: Comparison of MA-SNN and Spiking Jaccard Attention Modules. MA-SNN [67] uses fully
connected layers with pooling but lacks a querying mechanism, leading to continuous intermediate
values and lower ef�ciency. Our Spiking Jaccard Attention uses spike values for intermediate
representations, enhancing ef�ciency and accuracy.

This approach enables ef�cient computation of the Jaccard similarity by taking advantage of the
sparsity of the data in SNNs. By computing the sums over the element-wise minimum and maximum
operations instead of using matrix dot multiplication operations, our algorithm becomes more easily
deployable on Neuromorphic chips, thereby enhancing the computational ef�ciency of the attention
mechanism within SNNs. We add a tiny constant to the denominator to avoid a division by zero when
there are no spikes in the spike train.

So, we can modify the traditional attention formula by incorporating Jaccard similarity into the
attention mechanism. The resulting SJA mechanism can be expressed as:

SJA (Q; K ) =
P

i min (qi ; ki )P
i max (qi ; ki ) + �

V ; (3)

whereQ, K , andV represent the query, key, and value matrices, respectively, andqi andki are the
corresponding elements in the query and key matrices.

First, we consider the channel-wise uniform weighting method. This approach implies that the same
weighting coef�cient is applied to all elements along the channel dimension ofV . In this case,
the attention weight is computed as a scalar, calculated by aggregating the elements within each
channel: wherei is the index of the elements within the channel. The resulting scalar is then used as
a weighting factor applied to each channel ofV :

V new[:; c; :] = Jaccard(Q; K ) � V [:; c; :]; (4)

wherec represents the channel index. In this way, the values across all channels are scaled by the
same weighting factor, thereby maintaining consistency across different channels.

Second, we consider the element-wise weighting method. In this case, theJaccard(Q; K ) result
is computed independently for each element positionq; k. This means that the attention weight for
each element is obtained by calculating the value for the corresponding elements inQ andK at that
position. These weights are then applied element-wise toV :

V new[:; c; n] = Jaccard(Q; K )[:; c; n] � V [:; c; n]; (5)

wheren represents the index along the sequence length. Under this element-wise weighting strategy,
different positions withinV are scaled independently based on their respective attention weights,
which enables the model to capture �ner-grained features.

The results presented in this paper are derived using the channel-wise weighting approach, as it
is more suitable for the characteristics of sEMG data, and we did not validate the element-wise
weighting approach due to these characteristics.
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These two weighting strategies each have their respective applications: channel-wise uniform weight-
ing is more appropriate for preserving feature consistency, while element-wise weighting is better
suited for capturing localized differences. Depending on the computational complexity and the
task requirements, an appropriate weighting strategy can be selected to achieve a balance between
ef�ciency and performance.

The SJA mechanism leverages the sparsity of SNN outputs to signi�cantly reduce computational
complexity. Unlike traditional attention mechanisms with a complexity ofO(n2 � d), SJA focuses
only on non-zero elements, resulting in a complexity ofO(b), whereb is the number of non-zero
elements. This approach enhances computational ef�ciency and reduces energy consumption, as
addition operations dominate SJA compared to the multiplication-heavy traditional attention, making
SJA particularly advantageous for SNNs. Further complexity analysis can be found in appendix A.5.

4.2 Spiking Source-Free Domain Adaptation based on Membrane Potential Memory

The formal de�nition of the problem is as follows: given a labeled source domainDs = f (xs
i ; ys

i )gN s
i =1 ,

an unlabeled target domainDt = f x t
j gN t

j =1 and a modelf s trained onDs, the goal is to adapt
or �ne-tune the modelf s such that its performance on the target domainDt is optimized. The
primary challenge stems from the different data distributions of the source and target domains, i.e.,
Ps(x; y) 6= Pt (x; y), wherePs andPt denote the data distributions of the source and target domains,
respectively. In SFDA, the added complexity is that the source dataDs is not available when adapting
or �ne-tuning the model, while only having the source modelf s. Thus, the adaptation must rely on
the properties and capabilities of the source model and unlabeled target data.

Figure 3: Computation �ow of Spiking Source-Free Domain Adaptation. The process starts with
selecting thek-nearest samples from the membrane potential memory using the Pearson correlation
coef�cient. Probabilistic Label Generation then produces pseudo-labels based on thesek samples.
Gradients are computed with Smooth NLL and KL divergence loss. The membrane potential memory
list is updated at each epoch's end.

Most previous methods consider similarity based on instance discrimination among all features in their
loss functions, which can lead to high computational costs. This requirement can generate a signi�cant
computational overhead. In line with the approach taken by [65], we generate pseudo-labels using
the k-most similar samples to the target sample with a consistency regularization. Furthermore,
we introduce an exploration mechanism to mitigate over�tting. This strategy effectively maintains
computational ef�ciency while enhancing the robustness and generalization of our SFDA approach.

Another challenge is that the intermediate layer features in SNNs are represented by Spike Trains, and
existing methods for �nding neighbors cannot directly compute them. To identify the semantically
closest neighbors to a target domain sample, we utilize the membrane potential from the Memory
Layer to construct a Membrane Potential Memory List. Note that we only use target source data to
generate the Membrane Potential Memory List. The membrane potential encapsulates both spatial
and temporal features, rendering it a more informative and ef�cient tool for our purpose. Membrane
Potential MemoryM n =

�
V m

n;t

	 T

t =1
can be computed by:

V m
n;t = St + � � N (0; 1); (6)
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whereN (0; 1) represents Gaussian noise with mean 0 and standard deviation 1, and� is a scaling
factor. Integrating Gaussian noise with scaling offers two key bene�ts: regularization helps prevent
over�tting, allowing the model to generalize better to unseen data, and noise introduction reduces the
dominance of zeros in spike data, leading to a more balanced data representation. Figure 3 shows the
SSFDA computation �ow.

The core of the loss function is the alignment of predictions between the current target feature and
its k-nearest neighbors in the Membrane Potential List, identi�ed based on Pearson similarity. To
achieve this, we introduce the following loss function Smooth Negative Log Likelihood (SNLL) Loss
that combines two crucial components:

L = � (1 � � )
1
n

nX

i =1

KX

k=1

log (p(x i ) � argmax(Sk )) + �
CX

c=1

KL (�pc k qc) ; (7)

where

Sk =

8
><

>:

mode
�

argmax
�

fMg k
1

��
; with probability(1 � p);

random
�

argmax
�

fMg k
1

��
; with probabilityp;

(8)

fMg k
1 = fF j j topK (Pearson(f (x i ); F j )) ; F j 2 Fg ; (9)

�p =
1
n

nX

i =1

pc (x i ) ; qc =
1
C

; for c = 1 ; 2; : : : ; C: (10)

The loss function,L , is composed of two main terms:Consistency Term: The �rst component,
� (1 � � ) 1

n

P n
i =1

P K
k=1 log (p(x i ) � argmax(Sk )) , is designed to advocate consistent predictions

between a target feature and itsk-nearest neighbors. It strives to minimize the negative logarithm of
the inner product of the prediction score for the target sample, denoted byp(x i ), and the aggregated
prediction scores represented byargmax(Sk ) of its k-nearest neighbors.Sk represents either the
mode of theargmaxvalues from the subsetfMg k

1 with probabilityp, or a random selection from the
same subset with probability(1 � p). By inducing similarity in predictions among closely related
features, our model can discover latent structures and associations within the data;Regularization
Term: The subsequent component,�

P C
c=1 KL (�pc k qc), uses the Kullback-Leibler divergence

to measure the discrepancy between the model's average predicted class distribution,�pc, and the
ideal uniform distribution across classes,qc. Speci�cally, �pc denotes the model's average prediction
probability for classc over all data samples. By comparing�pc with qc, the divergence quanti�es the
deviation of the model's predictions from a perfectly balanced class distribution. The aim is to reduce
the model's inclination to favor certain classes overly, ensuring a more balanced prediction landscape.
In this con�guration, The scalar� in the loss function acts as a balancing factor between predictive
consistency and regularization.

4.3 Training Method

Deep Spiking Neural Networks (SNNs) are typically trained using ANN-to-SNN conversion or direct
training. While ANN-to-SNN conversion faces latency challenges, direct training is more time-step
ef�cient and suitable for temporal tasks. We use rate coding for its support of complex SNNs. In this
paper, we use the SuperSpike [73] surrogate gradient to calculate gradients, with detailed explanations
provided in appendix A.7.

5 Experiment

5.1 Gesture Recognition based on sEMG

We compared our model's performance with existing sEMG-based gesture estimation models, pri-
marily categorized into DNN and SNN architectures. A comparison summary is in Table 1.

In terms of Top-1 Accuracy, our JASNN model, which integrates the SNN framework with the SJA
mechanism, outperforms other DNN models, including CNN, TCN [5], Transformer [60], GRU [11],
Informer [80], and a hybrid TCN with an Attention mechanism. This superior performance is due to:
1) The SNN structure's alignment with the biological basis of sEMG generation, providing a natural
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Table 1: Comparison with previous works on sEMG-based gesture estimation.
Methods Work Model Top-1 Acc.(%) Std. Dev. (%)

DNN

Asif et al. 2020 [3] CNN 75.46 0.52
Tsinganoset al. 2020 [59] TCN 79.69 0.83
Rahimianet al. 2021 [47] Transformer 84.23 0.37

Chenet al. 2021 [9] GRU 82.19 0.28
Zhouet al. 2021 [80] Informer 88.32 0.36

Rahimianet al. 2022 [48] TCN+Attention 87.10 0.57
Zhanget al. 2023 [78] Transformer 86.24 0.31

SNN
Bellecet al. 2018 [7] LSNN 86.24 0.22
Zhanget al. 2022 [74] SIB+SNN 77.84 0.62

Xu et al. 2023 [63] SCNN 84.30 0.23

SNN-Ours SOTA backbone [7] LSNN+SJA(Ours) 88.10 0.25
This Work JASNN 89.26 0.31

modeling of the processes. 2) The SJA mechanism's enhancement of sparse spike train features
focuses on the key characteristics of sEMG signals. Compared to other SNN models like LSNN [7],
SIB+SNN [78], and SCNN, our model achieves higher accuracy. Models like SIB+SNN and SCNN
perform lower, likely due to the absence of a feature enhancement design like SJA, which is crucial
for capturing the temporal dynamics of sEMG signals. Incorporating SJA into Xuet al.̀ s LSNN
network [63] signi�cantly improved performance, demonstrating SJA's scalability in recurrent SNNs.

5.2 Ablation Study
To validate the effectiveness of each module we have proposed, we present the results of an ablation
study. Here, we discuss the impact of the backbone's attention mechanisms and loss functions on the
experimental results and the in�uence of different pseudo-label generation methods within SSFDA.
All experimental results in this section are based on the mean values across all �fteen subjects in
the dataset. The same learning rate, batch size, and optimizer were used during training, ensuring
each network converges (with training set accuracy showing less than0:2% improvement over �ve
consecutive epochs). This thorough examination allows us to isolate the individual contributions of
the different components and clarify their speci�c roles in the performance of our proposed system.

5.2.1 Attention Mechanisms
In our ablation study on attention mechanisms, we compared Raw Attention [60], MA-SNN [67],
and our proposed Spiking Jaccard Attention (SJA) on SCNN, keeping all other parameters consistent.
As shown in Table 2, using Raw Attention directly on spikes resulted in an accuracy of only 11.31%
due to the high sparsity of spike sequences. This sparsity often leads to information loss when
multiplying matrices with sparse values. MA-SNN converts spike sequences into continuous values
and uses a fully connected layer for attention, which increased SCNN's accuracy from 84.12% to
85.67%. However, this approach reduces the usability of SNNs on spiking chips. In contrast, our SJA
computes attention weights directly on the spike sequence, preserving compatibility with spiking
hardware and further boosting accuracy to 87.44%. This highlights SJA's superior ability to handle
spike sequence sparsity while maintaining hardware compatibility.

5.2.2 Loss Functions
The study compared Negative Log Likelihood (NLL) loss and our improved Smooth NLL with
Kullback–Leibler divergence loss (SNLL+KLL) for classi�cation tasks. Using SNLL+KLL in
JASNN increased accuracy from 87.44% to 89.72% (see Table 2). This enhancement is due to:Kull-
back–Leibler (KL) divergence: KL divergence quanti�es the difference between two probability
distributions, encouraging predicted probabilities to closely match actual class distributions. This
reduces model biases towards certain categories.Smooth NLL (SNLL): SNLL ensures consistent
predictions between a feature and its k-nearest neighbors in the embedding space, enhancing model
sensitivity to detailed class clusters and underlying patterns. In summary, adding KL divergence and
SNLL improves model strength and fairness, enhancing �exibility across various datasets and tasks.

5.2.3 Pseudo-Label Generation Methods
We evaluated three pseudo-label (PL) generation methods: Duanet al. [17] (PL), Huanget al. [28]
(NPL), and our proposed Probabilistic Label Generation (PLG) method. Both PL and NPL improved
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Table 2: Ablation study results
Attentions Loss Functions Label Selection Results

SCNN RA MA-SNN SJA (Ours) NLL SNLL+KLL (Ours) PL NPL PLG (Ours) ACC Improved ACC

Backbone

X X 84.12% -
X X X 11.31% -
X X X 85.67% -
X X X 87.44% -
X X X 89.72% -

Source-Free
X X X X - 1.87%
X X X X - 2.33%
X X X X - 3.81%
X X X X - 4.10%

accuracy in an unsupervised setting on JASNN by 1.87% and 2.33%, respectively. Our PLG method
achieved a signi�cant boost, enhancing accuracy by 4.1%. Additionally, PLG increased accuracy on
MA-SNN by 3.81%, demonstrating its scalability across different architectures. The effectiveness
of PLG comes from selecting the mode of neighboring labels as the pseudo-label and introducing
a probabilistic mechanism to explore other labels, preventing overly compact feature distribution
and enhancing generalization. This makes PLG a powerful tool for unsupervised adaptation in
sEMG-based gesture recognition.

5.3 Variant Distributions of Hand Gestures with Three Different Forearm Postures

In this study, we evaluated datasets from three forearm postures (P1, P2, P3) to train models without
SSFDA, revealing challenges with sEMG data. The model trained on P1 achieved high accuracy
on P1's test set but dropped to 30% accuracy on P2 and P3 due to variations in motor neuron �ring
patterns. Figure 9 illustrates this performance disparity, highlighting the out-of-distribution (OOD)
issue. These �ndings underscore the need to address OOD phenomena in sEMG data to enhance the
reliability and user experience of sEMG-based systems.

5.4 Result of Spiking Source-Free Domain Adaptation

In our investigation, we used the same dataset to experiment with three different methodologies,
namely Pseudo-Label [34, 17] method, Neighborhood-guided Pseudo-Labels [28] method, and our
proposed Probabilistic Label Generation method. In this experiment, the Pseudo-Label method
determines the pseudo-label by taking the mode of thek samples. Conversely, the neighborhood-
guided Pseudo-labeles method involves choosing the nearestk samples from the memory list and then
randomly selecting one from thesek samples as the pseudo-label. Details of our proposed method
have been elaborated on in the previous sections of the paper.

(a) (b)

Figure 4: Comparison of performance before and after applying SSFDA for various methodologies:
Figures 4a and 4b are Violin Plots demonstrating this disparity.

Figure 4a and 4b represent the performance variations when deploying the model trained on Posture 1
to Posture 2 and 3, respectively, both with and without the use of our SSFDA. This is portrayed using
a violin plot. It can be observed that the use of SSFDA indeed shifts the distribution of accuracy
across different subjects upward as a whole. Particularly, our method exhibits superior performance
after applying SSFDA compared to the other two methods. Furthermore, the standard deviation of
performance across various subjects is minimal for our method, demonstrating the robustness of our
methodology when employing SSFDA. We detailed the differences by individuals in Figure 10a 10b
in the appendix.
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5.5 Ef�ciency Analysis of Spiking Jaccard Attention
Inference latency in�uences user experience, with delays leading to missed or inappropriate actions.
Attention mechanisms are pivotal for ef�cient interactions. We compared SJA's computational superi-
ority over Raw [60] and Ef�cient [54] Attention, conducting 100 inference tests using pseudo-data on
twelve channels, a common practice in sEMG data. Results averaged and shown in Figure 5, highlight
SJA's clear advantages. Regardless of the computing platform or data type, SJA demonstrated superior
ef�ciency in inference speed and RAM consumption, making it ideal for real-time and mobile devices.
Additionally, SJA showed better scalability, with only a gentle increase in inference time and RAM
usage as sEMG data length increased, compared to Raw Attention's exponential growth.

Figure 5: Inference speed and RAM usage comparison between spike and �oat data for Raw
Attention [60], Ef�cient Attention [54], and our Spiking Jaccard Attention: The �rst column shows
inference time for �oat data, and the second for spike data. The third and fourth columns show
RAM usage for these data types. Thex-axis represents different data row counts, and they-axis is
logarithmic to highlight performance differences. Each experiment was conducted 100 times, with
averaged results.

5.6 Real World Deployment
SpGesture has been deployed in a real-world application using an in-house developed sEMG acquisi-
tion system, as illustrated in appendix A.10.

6 Limitation and Future Work
Domain Adaptation on Various Network Structures: We veri�ed the ability of SJA and SSFDA to
enhance the accuracy of sEMG-based gesture recognition, along with their adaptability to distribution
shift based on the Spiking Convolutional Neural Network architecture. Moving forward, we intend to
assess their robustness across a wider variety of SNNs and different tasks.

Performance Analysis on Neuromorphic Chips: Our current evaluations of inference speed and
memory utilization are conducted on CPU and GPU platforms, where our system demonstrates clear
advantages over existing algorithms. We believe that these advantages will be further ampli�ed on
neuromorphic chips. We are currently developing neuromorphic chips and will conduct practical
tests on these chips to measure the system's energy consumption and inference ef�ciency.

7 Conclusion
We presented SpGesture, an innovative framework for sEMG-based gesture recognition built on SNN,
and innovatively introduced Spiking Source-Free Domain Adaptation with Spiking Jaccard Attention,
which directly enhances spike features. These novel contributions improve the system's robustness
and accuracy in real-world scenarios. Our experimental results include the highest accuracy among
baselines and system latency below 100ms on a CPU, demonstrating its real-world applicability. Our
proposed SJA processes spike sequences at36:37 times the speed of conventional attention and can
be extended to other SNNs, such as LSNN. SpGesture not only offers a practical solution to current
challenges in gesture recognition but also opens new possibilities for Human-computer Interaction.
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A Appendix / supplemental material

A.1 Details of Data Collection

Figure 6: Overview of our dataset: the compilation contains sEMG data for ten distinct actions, each
across three postures. Varied background colors represent distinct forearm postures, while the digits
ranging from 0 to 9 correspond to speci�c gesture actions. The `Rest' label at the top denotes a static
hand gesture when no action is being performed.

In human-computer interaction studies focusing on surface electromyography (sEMG), the acquisition
of diverse and representative data sets is crucial. Current research predominantly collects sEMG
data from gestures made with a single forearm posture [4, 31, 46, 43, 32, 33, 29]. However, it is
evident that variations in forearm posture can signi�cantly in�uence the distribution of the sEMG
data, potentially causing discrepancies between laboratory results and real-world applications. To
address this, our data collection methodology incorporates gestures performed in different forearm
postures, aiming to re�ect the conditions and variability encountered in practical scenarios more
accurately.

The experiments were carried out using the DataLITE wireless LE230 and DataLITE PIONEER,
commercial sEMG acquisition systems from Biometrics Ltd.* The device's sampling rate is 2000Hz,
allowing for high-resolution data capture of the electrical activities in the muscles during the per-
formance of gestures. Eight LE230 sEMG sensors were uniformly and equidistantly af�xed to the
surface of the participant's right forearm.

* https://www.biometricsltd.com/
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