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Abstract

Point cloud registration, a fundamental task in 3D vision, has achieved remark-
able success with learning-based methods in outdoor environments. Unsupervised
outdoor point cloud registration methods have recently emerged to circumvent the
need for costly pose annotations. However, they fail to establish reliable optimiza-
tion objectives for unsupervised training, either relying on overly strong geometric
assumptions, or suffering from poor-quality pseudo-labels due to inadequate in-
tegration of low-level geometric and high-level contextual information. We have
observed that in the feature space, latent new inlier correspondences tend to cluster
around respective positive anchors that summarize features of existing inliers. Mo-
tivated by this observation, we propose a novel unsupervised registration method
termed INTEGER to incorporate high-level contextual information for reliable
pseudo-label mining. Specifically, we propose the Feature-Geometry Coherence
Mining module to dynamically adapt the teacher for each mini-batch of data dur-
ing training and discover reliable pseudo-labels by considering both high-level
feature representations and low-level geometric cues. Furthermore, we propose
Anchor-Based Contrastive Learning to facilitate contrastive learning with anchors
for a robust feature space. Lastly, we introduce a Mixed-Density Student to learn
density-invariant features, addressing challenges related to density variation and
low overlap in the outdoor scenario. Extensive experiments on KITTI and nuScenes
datasets demonstrate that our INTEGER achieves competitive performance in terms
of accuracy and generalizability. [Code Release]

1 Introduction

Point cloud registration is a fundamental task in autonomous driving and robotics. It aims to align two
partially overlapping point clouds with a rigid transformation. Learning-based methods have achieved
remarkable success in outdoor point cloud registration[1–5]. PCAM[1] pioneered the integration
of low-level geometric and high-level contextual information, inspiring subsequent works[2–5].
However, these supervised methods suffer from poor generalizability and reliance on costly pose
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Figure 1: (1)Motivation : new inliers (outliers) tend to cluster around latentpositive (negative)
anchorsthat represent existing inliers (outliers) in the feature space, respectively. (2)Perfor-
mance: pseudo-labels from INTEGER are more robust and accurate than the previous state-of-the-art
EYOC[12].

annotations[6–8], underscoring the need for unsupervised methods to address these challenges in
real-world applications.

Despite recent progress[9–12] in unsupervised registration methods, the task remains challenging
and underexplored, especially in outdoor scenarios where LiDAR point clouds are large-scale and
complexly distributed. Some methods[9–11] optimize photometric and depth consistency, limiting
their applicability to indoor scenarios where RGB-D data and differentiable rendering are feasible.
Others[13, 14] learn global alignment and neighborhood consensus, but struggle with low overlap
and density variation in outdoor settings. Recent advances resort to pseudo-label-based frameworks,
achieving promising results in outdoor scenarios[12, 15]. However, they rely solely on geometric
cues to mine and �lter pseudo-labels, neglecting the complementarity of high-level contextual
information in feature space. Their partiality results in incomplete scene perception, leading to noisy
and suboptimal optimization objectives.

Various 2D [16, 17] and 3D vision tasks [18–20, 2, 5, 4] have bene�ted from integratingbothlow-
levelandhigh-level information. In point cloud registration, as illustrated in Fig. 1 (Left ), we observe
that potential inliers (outliers) tend to cluster aroundpositive (negative) anchorsthat summarize
the features of existing inliers (outliers) in the feature space, respectively. This suggests that high-
level contextual information is adept at discovering inliers from a global perspective of the scene.
Meanwhile, low-level geometric cues have proven effective in rejecting outliers[13, 21–23]. Inspired
by this, we propose a novel method, termedINTEGER , which adopts ateacher-student framework
to mINe andTransfer fEature-GEometry coheRence for unsupervised point cloud registration.

Speci�cally, our method starts by initializing a teacher with synthetic pairs generated from each point
cloud scan, and then transfers to real point cloud pairs with a teacher-student framework. Building
upon our observations, we introduce theFeature-GeometryCoherenceMining (FGCM) module for
the teacher, which �rst adapts the teacher to each mini-batch of real data to establish a denoised
feature space. Reliable pseudo-labels, including correspondences and anchors, are then generated
based on our key observation by iteratively mining potential inliers based on their similarity to anchors
and rejecting outliers via spatial compatibility [21]. These robust pseudo-labels mined by FGCM
not only accurately include inlier correspondences as shown in Fig. 1 (Right), but also aggregate
effective representations of inliers and outliers from the teacher. We refer to this characteristic as
feature-geometry coherence. To further enhance robustness and transfer feature-geometry coherence
to the student, we proposeAnchor-BasedContrastive Learning (ABCont) for contrastive learning
with anchors. Meanwhile, we design a succinct and ef�cientMixed-DensityStudent (MDS) for the
studentto learn density-invariant features using teacher's anchors, overcoming density variation and
low overlap in distant scenarios.

We extensively evaluate our method on two large-scale outdoor datasets, KITTI and nuScenes. By
exploiting feature-geometry coherence for reliable optimization objectives, INTEGER outperforms
existing unsupervised methods by a considerable margin. It even performs competitively compared to
state-of-the-art supervised methods, especially in distant scenarios. To the best of our knowledge, our
approach is the �rst to integrate both low-level and high-level information for producing pseudo-labels
of unsupervised point cloud registration. Overall, our contributions are threefold:
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• We propose INTEGER, a novel method to exploit low-level and high-level information for unsu-
pervised point cloud registration, achieving superior performance in complex outdoor scenarios.

• We introduce FGCM and MDS for the teacher and student, respectively, to mine reliable pseudo-
labels and learn density-invariant features.

• We design ABCont to mitigate pseudo-label noise and facilitate contrastive learning with anchors
for a robust feature space.

2 Related Works

Supervised Registration. There are two categories of supervised registration approaches:
Correspondence-based methods [24–26, 4, 27, 28, 3] �rst extract point correspondences and then
estimate the transformation with robust pose estimators. In contrast, direct registration methods
[29–31] extract global feature vectors and regress the transformation directly with a neural network.
Recently, a series of works [12, 32] have tackled distant point cloud registration, which is crucial for
real-world applications.

Unsupervised Registration. Previous researches in unsupervised registration mainly focus on
indoor scenes. BYOC[11] suggests that random 2D CNNs generate robust image correspondences
for supervising 3D registration networks. Meanwhile, render-based methods[9, 10] leverage differ-
entiable renders as the supervision signal of 3D registration. However, these methods are restricted
to RGB-D input. To address this, Mei et al.[33] enforce consistencies between Gaussian Mixture
Models for unsupervised training, using only point cloud as input. Shen et al.[13] introduce an inlier
evaluation method based on neighborhood consensus. However, its performance drops when the
overlap is low. SGP[15] proposes a teacher-student framework for self-supervised learning from
hand-crafted feature descriptors. EYOC[12] introduces progressive training and spatial �ltering to
adapt the model to distant point cloud pairs gradually, demonstrating promising results in outdoor
scenarios.

Robust Pose Estimators. Pose estimators evaluate inliers and estimate poses from input correspon-
dence sets. Traditional methods such as RANSAC[34] suffer from inef�ciencies. Learning-based
methods[35–37] learn to predict inliers and poses using neural networks. However, they require
training and are thus constrained to supervised settings. To address this, non-parametric methods have
emerged. Chen et al.[21] introducedSC2-measurements for robust inlier selection. Graph-based
methods such as MAC[23] and FastMAC[22] approximate maximal cliques for fast and accurate
inlier evaluation.

3 Methodology

Problem Formulation. Given two point cloudsP = f p i g 2 Rm � 3 andQ = f q j g 2 Rn � 3, the
goal of point cloud registration is to uncover the rigid transformationT = f R ; t g that perfectly
alignsP to Q, whereR 2 SO(3) is the rotation matrix andt 2 R3 is the translation vector. When
the two point clouds are acquired at a large distanced such as whend 2 [5m; 50m], the registration
task faces the challenges of low overlap and density variation [32, 12, 38]. Therefore, it is crucial to
learn density-invariant features.

Overall Pipeline. INTEGER adopts a two-stage training scheme and a teacher-student framework.
Training of INTEGER consists of two stages: First, we initialize the teacher with synthetic data. Then,
we train a student model onreal datawith the reliable pseudo-labels mined by the teacher. The overall
pipeline and proposed modules are illustrated in Fig. 2. During teacher-student training, FGCM
�rst dynamically adapts the teacher model� to adata-speci�c teacher� designated for the current
mini-batch, and then mines reliable pseudo-labels with the adapted teacher. Next, the MDS learns
density-invariant features by learning to match regular and sparse views of point cloud pairs supervised
by pseudo-labels mined by� . A pseudo-labelI = fC; Ĉ; A + ; A � g contains correspondencesC; Ĉ to
supervise dense matches and sparse matches, respectively. The feature-space positive and negative
anchors, denoted respectively byA + andA � , serve as overall representatives of inliers and outliers
in the feature space. For a correspondence( i;j ) C = ( p i ; q j ) 2 C, the correspondence features are
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Figure 2:The Overall Pipeline. FGCM(Sec. 3.2) �rst adapt the teacher model to adata-speci�c
teacherfor the current mini-batch, and then mine reliable pseudo-labels. Next, MDS(Sec. 3.4) learns
density-invariant features from pseudo-labels. ABCont(Sec. 3.3) is applied for adapting the teacher
and transferring knowledge to the student in the feature space.

de�ned asF ( i;j )
C = FP

i � FQ
j . Then, the positive and negative anchorsA + ; A � are computed as the

average of the respective features of inliersC+ and outliersC�

A + =
1

jC+ j

X

(p i ;q j )2C+

F ( i;j )
C ; A � =

1
jC+ j

X

(p i ;q j )2C �

F ( i;j )
C ; (1)

ABCont is applied to effectively learn a robust student guided by anchors from the teacher. Progressive
training [12] is adopted to gradually train the student to adapt to pairs of distant point clouds.

3.1 Synthetic Teacher Initialization

To initialize a teacher model, Liu et al.[12] assume that two consecutive frames approximately have
no relative transformation and pretrain the teacher with theidentitytransformation. However, the
errors introduced in such approximation lead to suboptimal initial teachers. To address this, inspired
by existing efforts[39, 40], we instead pretrain the teacher with synthetic pairs generated from each
real scan. Speci�cally, we follow PointContrast[40] to generate two partially overlap fragments for
each scan. We additionally apply periodic sampling[39] to remove points periodically with respect
to a random center, simulating the irregular sampling of LiDAR. Please refer to the Appendix for a
visualization of synthetic pairs.

3.2 Feature-Geometry Coherence Mining

Figure 3: The two-pass usage of the proposed FGCM.

With the teacher initialized on syn-
thetic pairs, our goal is to provide
reliable supervision for the student.
Despite efforts to ensure an effective
initialization, a distribution discrep-
ancy persists between synthetic and
real data. Hence, we introduce atrain-
onlyFGCM. As is depicted in Fig. 2,
FGCM starts with Correspondence
Seed Proposals forC0 using a sim-
ple similarity threshold. Subsequently,
Feature-Geometry Clustering extends
from C0 by mining additional reliable
correspondences and anchors, which
serve as effective optimization objec-
tives.

As is illustrated in Fig. 3, for each mini-batch, we use FGCM in a two-pass manner. In the �rst
forward pass, we perform Per-Batch Self-Adaption on the teacher model� to establish a denoised
feature space, yielding a data-speci�c teacher� . In the second forward pass, the adapted teacher
� and FGCM are used to mine reliable pseudo-labelsI , which are then used to train the student,
achieving Teacher-Student Knowledge Transfer.
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Algorithm 1: Feature-Geometry Clustering

Input: Initial correspondence seed proposalsC0

Compute initialU P , U Q and anchorsA + , A � with Eq. 1
for i = 1 to max_iters do

Generate unclassi�ed correspondencesCU  FeatureMatching
�
U P ; U Q

�

SelectCtop-k
U with top-k S+

c satisfyingS+
c > S �

c based on Eq. 2
UpdateCi  C i � 1 [ C top-k

U // Anchor-Based Clustering
Filter Ci with spatial compatibility to produceCi

+ , Ci
� // Spatial Compatibility

Filtering
UpdateU P , U Q andA + , A � with Eq. 1
if

�
�Ci

+

�
� =

�
�Ci � 1

+

�
� or

�
�Ci

�

�
� =

�
�Ci � 1

�

�
� then

C  C i
+

break

return C, A + , A �

Feature-Geometry Clustering. Feature-Geometry Clusteringis central to the FGCM, designed to
extend initial correspondence proposals by integrating both high-levelfeaturerepresentations and
low-level geometriccues. It iteratively includes speculative inliers based on feature-space clustering,
followed by outlier rejection with spatial compatibility �ltering. We empirically adopt SC2-PCR[21]
for spatial compatibility �ltering. Our experiments show that our method is agnostic to the choice of
spatial compatibility measures.

To discover latent correspondences in the feature space, it is necessary to measure the similarity
between putative correspondences and anchors. Inspired by Xia et al.[41], we compute the feature
similarity using both Euclidean distance and cosine similarity. Speci�cally, for a correspondence
(p i ; q j ) 2 C with its featuresF ( i;j )

C , The similarityS+
c andS�

c w.r.t. respective anchorsA + andA �
is computed as:

S+
c = min f DE(A + ; F ( i;j )

C ); DC(A + ; F ( i;j )
C )g; S�

c = min f DE(A � ; F ( i;j )
C ); DC(A � ; F ( i;j )

C )g; (2)

whereDE(F1; F2)=1� min(L 2(F1; F2); 1) andDC(F1; F2)=(cos( F1; F2)+1) =2 arenormalized
Euclidean distance and cosine similarity, respectively.

The algorithm is detailed in Alg. 1. Given correspondence setCi at i -th iteration, we de�ne unclassi-
�ed points U P ; U Q in P andQ as:

U P =
�

pjp 2 P ^ (p; � ) =2 Ci 	 ; U Q =
�

qjq 2 Q ^ (� ; q) =2 Ci 	 (3)

Then, the algorithm takes an iterative approach, starting from the given initial correspondence set
C0: during thei th iteration, it (1) generates putative correspondences fromU P andU Q via feature
matching; (2) expandsCi � 1 with top-k similar correspondences to positive anchors measured bySc,
yieldingCi ; (3) �lters the expanded correspondence set with spatial compatibility and updates the
anchors based on Eq. 1; (4) updatesU P ; U Q andA + , A � according to Eq. 3. The iteration stops
when the number of inliers and outliers converges, or the maximum iteration is reached.

With ample accurate correspondences included inC, we can then estimate a more accurate transfor-
mationT and computêC using nearest neighbor search (NN-search) withT . We do not directly
apply Alg. 1 for sparse pairs because, in downsampled views, the features become less descriptive
[38], hindering feature-based approaches.

Per-Batch Self-Adaption. Throughout the iterations in Alg. 1, positive and negative anchors
gradually aggregate representative and discriminative features of inliers and outliers, respectively.
In the �rst forward pass, noise exists due to distributional discrepancies, leading to the rejection of
some correspondences by spatial compatibility. These rejected correspondences arehard samples:
ambiguous correspondences that are closer to positive anchors in the feature space but are more
likely to be outliers. We leverage these hard samples for teacher self-adaptation by applying the
InfoNCE[42] loss, guiding the teacher to distinguish them from the positive anchors. This step results
in the adapted teacher� , which produces more discriminative features for the current mini-batch.

5



Focusing only on hard samples for self-adaptation is more ef�cient than simply using all correspon-
dences for self-adaptation. Hard samples capture the key ambiguities in the feature space while
introducing only a limited number of pairwise relationships. This de�nes a clear and reliable opti-
mization objective for self-adaptation. In contrast, self-adaption with all correspondences not only
slows down the training, but also introduces too many already-distinguishable pairwise relationships,
diluting the focus on feature-space ambiguity and thus hindering effective adaptation.

Teacher-Student Knowledge Transfer. After Per-Batch Self-Adaption, the feature space of the
adapted teacher� is expected to contain less noise. Consequently, the positive and negative anchors
become suf�ciently representative and discriminative now, enabling effective guidance for the student
to learn a robust feature space. For Teacher-Student Knowledge Transfer, we utilize both the
correspondences and anchors from the adapted teacher� to train the student using the proposed
ABCont. Unlike existing methods[15, 12] that rely solely on correspondences, our approach directly
bridges the teacher and student in the feature space via anchors, providing a clear and effective
optimization objective for the student.

3.3 Anchor-Based Contrastive Learning

Figure 4: Toy Example for ABCont.
Anchor-based methods introduce fewer
pairwise relationships and are robust
against inevitable label noise.

Contrastive learning has been widely adopted to train reg-
istration models[43, 24, 4, 3, 20]. Recently, a surge of
research on various tasks involvesanchor-basedor proxy-
basedapproaches to facilitate contrastive learning due to
their robustness against inconsistency and noise in the fea-
ture space[44, 45, 41], superiority in generalizability[46]
and ability to learn discriminative features[47]. There-
fore, we design ABCont to leverage positive and negative
anchors to facilitate effective contrastive learning with
the pseudo-labels, where noise and outliers are inevitable.
As shown in Fig. 4, with anchor-based representations,
ABCont sets up a convergence target that is more robust
against label noise. Moreover, it is more ef�cient because
the number of additionally-introduced pairwise relationships is reduced[46].

Speci�cally, we propose the ABCont lossL ABCont= L reg+ � corrL corr, whereL corr is the anchor-based
correspondence loss, weighted by a hyperparameter� corr to complement the registration lossL reg
originally used by the feature extractors. The student's feature matching results can be classi�ed into
inliers C+ and outliersC� based on the pseudo-labels from the teacher. Then, anchorsfA + ; A � g
from the teacher are designated as auniversal inlierand auniversal outlier, resulting in augmented
inliers and outliers:

C?
+ = C+ [ sg(A + ); C?

� = C� [ sg(A � ); (4)

wheresg(�) denotes the stop-gradient operator, preventing gradients from �owing back to the teacher.
Following existing efforts[41, 40], we samplenp correspondences randomly and formulateL aux as a
contrastive learning problem to distinguish inliers from outliers. InfoNCE[42] loss is then applied to
these correspondence features:

L corr = �
1

np

n pX

i =1

log
exp(� i

p)

exp(� i
p) +

P n n
j =1 exp(� j

n )
; (5)

where� i
p and � j

n are the distance between thei th positive correspondence and thej th negative
correspondence, respectively. ABCont is pivotal in transferring feature-geometry coherence from
the teacher to the student: the accurate pseudo-labels for correspondences, combined with anchors,
enable the student to learn discriminative features ef�ciently. Anchors from the teacher impose
direct constraints on the student's feature space, encouraging the student to replicate the teacher's
feature-space matchability. This leads to a more effective transfer of feature-geometry coherence.

3.4 Mixed-Density Student

The density of LiDAR point clouds varies greatly with the distance to the sensor, posing challenges
for matching distance point clouds effectively[38]. To address this, it is crucial for a student model
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to learn density-invariant features, ensuring robust correspondences across varying point densities.
Previous methods [32, 38] have sought density invariance through auxiliary reconstruction tasks
or by identifying positive groups, but these techniques are either computationally expensive or
depend on precise supervision. Xia et al.[48] introduced a simple yet effective technique for density
invariance in object detection by using features from downsampled views. Inspired by this, we
propose Mixed-Density Student to learn density-invariant features from reliable correspondences.

Speci�cally, given point cloudsP andQ, we compute their sparsely-downsampled viewsP � and
Q� with increased voxel sizes. We then extract student's features(FP ; FQ ) and(F �

P ; F �
Q ). Using

features from point clouds of different density, we computedense matchesandsparse matches
through matching respective features. We then apply ABCont to both sets of matches, encouraging
the extraction of similar features at corresponding spatial locations across point clouds of varying
densities, thereby promoting density-invariant feature learning.

Loss Aggregation. The student's overall training loss is aggregated as a weighted combination of
L ABCont on both dense and sparse matches:

L = L (P ;Q )
ABCont + � 1L (P � ;Q � )

ABCont ; (6)

where� 1 is a weight for the sparse match.

4 Experiments

We mainly evaluate INTEGER on two challenging public datasets: KITTI[6] and nuScenes[7]. Both
datasets adhere to of�cial splits. The evaluation protocol follows the standard setting of EYOC[12].
Please refer to the appendix for more details of implementation and experimental settings.

Metrics Following previous works[4, 2, 43, 38], we evaluate the registration performance using
Relative Rotation Error(RRE),Relative Translation Error(RTE) andRegistration Recall(RR).
Related to the practical purpose of outdoor registration, we additionally reportRR@ [d1; d2) andmean
Registration Recall(mRR).RR@ [d1; d2) is registration recall w.r.t pairs with distanced 2 [d1; d2),
following [12]. mRR is de�ned as the average ofRR@ [d1; d2) for all [d1; d2). To measure the
quality of correspondences in pseudo-labels, we reportInlier Ratio(IR) of theteacherin the �rst
epoch, denoted “tIR@1st Epoch”.

Baselines For supervised methods, We compare INTEGER with FCGF[24], Predator[43],
SpinNet[49], D3Feat[50], CoFiNet[51], and Geometric Transformer(GeoTrans.)[4]. For unsuper-
vised methods, we compare with RIENet[13] and EYOC[12]. Following Liu et al. [12], we report a
variant of FCGF denoted as FCGF+C, which is FCGF trained with progressive training [12].

4.1 Performance Comparison with State-of-the-Art

Quantitative results are presented in Table 1. Our method outperforms existing unsupervised ap-
proaches and achieving state-of-the-art performance across all datasets and demonstrates superior
generalizability. Notably, our unsupervised approach maintains competitive performance compared
to supervised methods and even surpasses them in distant scenarios, highlighting its potential for
real-world application.

Overall Performance Compared to existing methods, our approach excels in performance. RIENet,
an end-to-end unsupervised registration method for outdoor scenes, exhibits suboptimal performance,
particularly in low-overlap scenarios and environments with low LiDAR resolution, such as nuScenes.
Both EYOC and INTEGER adopt a teacher-student framework for unsupervised training. However,
our method demonstrates superior accuracy across all evaluation metrics, overcoming challenges
associated with pseudo-label discovery and the absence of feature-space knowledge transfer in EYOC.

Generalizability We assess generalizability on nuScenes using weights trained on KITTI. Vari-
ations in LiDAR resolutions between nuScenes and KITTI may lead to different point densities,
potentially degrading extracted features. Compared to existing unsupervised methods, our approach
exhibits superior generalizability to unseen datasets. This superiority can be attributed to INTEGER's
design, which learns density-invariant features.
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Table 1:Comparisons with State-of-the-Art Methods.“X ” in the column “U” denotes the methods
areUnsupervised. Otherwise, they are supervised. The bestunsupervisedresults are highlighted in
bold. “KITTI � nuScenes”denotes generalizability results from KITTI to nuScenes.

Dataset Method U mRR RR@d 2

[5; 10) [10; 20) [20; 30) [30; 40) [40; 50)

KITTI

FCGF – 77.4 98.4 95.3 86.8 69.7 36.9
FCGF+C – 84.6 100.0 97.5 90.1 79.1 56.3
Predator – 87.9 100.0 98.6 97.1 80.6 63.1
SpinNet – 39.1 99.1 82.5 13.7 0.0 0.0
D3Feat – 66.4 99.8 98.2 90.7 38.6 4.5
CoFiNet – 82.1 99.9 99.1 94.1 78.6 38.7
GeoTrans. – 42.2 100.0 93.9 16.6 0.7 0.0

EYOC X 83.2 99.5 96.6 89.1 78.6 52.3
RIENet X 50.7 96.3 72.1 38.2 24.4 22.6
Ours X 84.0 99.5 97.1 89.6 79.6 54.2

nuScenes

FCGF – 39.5 87.9 63.9 23.6 11.8 10.2
FCGF+C – 59.3 96.2 85.1 59.6 35.8 20.0
Predator – 51.0 99.7 72.2 52.8 16.2 14.3

EYOC X 61.7 96.7 85.6 61.8 37.5 26.9
RIENet X 47.1 96.5 57.9 36.6 25.8 18.9
Ours X 63.1 97.1 86.9 62.9 39.6 29.4

KITTI
_

nuScenes

EYOC X 55.3 96.2 75.6 58.7 26.6 19.7
RIENet X 46.2 83.3 73.2 43.5 19.8 11.1
Ours X 62.6 97.5 84.6 62.6 37.8 30.2

4.2 Analysis

Table 2: Different Pose Estimators
in FGCM

Pose tIR@1st Time
Estimators Epoch (s)

PointDSC 81.3 1.13
MAC 80.1 28.2

FastMAC 79.3 0.67

SC2-PCR 81.2 0.75

Different Choices of Pose Estimator in FGCM We contend
that the robustness and ef�cacy of FGCM are not contingent
upon a speci�c pose estimator. To substantiate this claim, we
conduct experiments employing various robust pose estimators
within FGCM. The results are detailed in Table 2. For differ-
ent robust pose estimators in FGCM module, we experiment
PointDSC[35]2, MAC[23], FastMAC[22] and SC2-PCR[21].
The results demonstrate that the effectiveness of FGCM is
agnostic to choices of pose estimators, despite marginal perfor-
mance discrepancies are observed. Given the iterative nature
of FGCM, the ef�ciency of pose estimators holds paramount
importance, as the module's runtime is proportional to pose
estimation time. We choose SC2-PCR[21] for FGCM by default due to its superior balance in
performance and ef�ciency.

Effectiveness of Self-Adaption for Discriminative Features. To further understand the effective-
ness of self-adaption in FGCM, we visualize thepoint-level feature distributionandcorrespondence-
level similarity distributionin Fig. 5 (Please refer to the Appendix for implementation details.). The
two representative samples are taken from KITTI dataset. In Fig. 5, the smaller overlap regions
of point-level feature distribution between points from inliers and outliers indicate the features
of inliers and outliers distribute more distant, and thus, the features are more discriminative. For
correspondence-level similarity, inlier similarity should be distinct from outlier similarity to effec-
tively differentiate between the two. With the self-adaption in FGCM, the data-speci�c teacher
produces more discriminative features, resulting in a less noisy feature space conducive to the
subsequent feature-based approach employed in FGCM.

2We directly use their of�cial weights for evaluation.
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Figure 5:Before v.s. After Self-Adaption in FGCM: Point-wise Feature & Correspondence-wise
Similarity Distribution indicate that the self-adaption results in more discriminative features.

4.3 Ablation Study

We conduct ablation studies to evaluate the ef�cacy of INTEGER on the KITTI dataset. We
present mRR and registration errors in a distant scenario whered2 [40; 50). Various alternative
con�gurations of INTEGER are compared in Table 3. Our method exhibits superior performance
compared to alternatives, demonstrating the effectiveness of our design. This superiority may be at-
tributed to the features-geometry coherence: With FGCM, correspondences in pseudo-labels possess
discriminative features, facilitating effective knowledge transfer in feature space using ABCont.

Table 3:Ablation Study of INTEGER. S.T.I denotes
syntheticteacherinitialization. PBSA and FGC denote
Per-Batch Self-Adaption and Feature-Geometry Clus-
tering, respectively

Methods tIR@1st
mRR d 2 [40; 50)

Epoch RR RRE RTE

Full 81.2 84.0 54.2 1.1 0.54

w/o ABCont 80.3 83.5 53.7 1.3 0.58
w/o PBSA 43.3 80.9 50.2 1.7 0.79
w/o FGC 67.6 82.8 52.7 1.4 0.61

w/o MDS 81.2 82.7 52.3 1.3 0.71
w/o S.T.I 71.9 83.7 53.7 1.2 0.55

Additionally, MDS signi�cantly enhances
performance in distant scenarios. The com-
bination of Per-Batch Self-Adaption and
Feature-Geometry Clustering in the FGCM
module yields more substantial improve-
ment than using either alone. The removal
of Per-Batch Self-Adaption marginally de-
grades the quality of pseudo-labels, em-
phasizing the importance of denoising the
feature space. When synthetic teacher ini-
tialization is removed (w/o S.T.I), we em-
ployed the same way as EYOC to pretrain
the teacher. We �nd that synthetic teacher
initialization greatly enhances the initial
teacher's performance. Please refer to the
Appendix for more qualitative results on
generated synthetic pairs.

5 Conclusion

In this paper, we present INTEGER, a novel unsupervised method for point cloud registration that
integrates low-level geometric and high-level contextual information for reliable pseudo-labels. Our
method introduces Feature-Geometry Coherence Mining for dynamic teacher self-adaption and robust
pseudo-label mining based on both feature and geometric spaces. Then, we propose Mixed-Density
Student to learn density-invariant features. We also introduce Anchor-Based Contrastive Learning
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for effective contrastive learning using anchors. Extensive experiments on two large-scale outdoor
datasets validate our method's ef�cacy. Despite being unsupervised, it achieves results comparable
to state-of-the-art supervised methods and surpasses existing unsupervised methods, particularly in
distant scenarios. Furthermore, our approach exhibits superior generalizability to unseen datasets.

Limitations. The main limitations of the proposed method are twofold:

• Our method is subject to the quality of the teacher. If the teacher is inaccurate, the feature space
may become too noisy, potentially impeding Feature-Geometry Clustering in FGCM, especially
in distant scenarios. One potential remedy is to devise a more robust strategy for initializing the
teacher.

• Our method is slightly slower to obtain pseudo-labels compared to existing efforts[12] due to the
proposed iterative method used in FGCM of the FGCM module. Future work may involve devising
a more ef�cient strategy for mining pseudo-labels.
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A Appendix

A.1 Evaluation Protocol

Following previous works[4, 2, 43, 38], we evaluate the registration performance usingRelative
Rotation Error(RRE),Relative Translation Error(RTE) andRegistration Recall(RR). Related to the
practical purpose of outdoor registration, we additionally reportRR@ [d1; d2) andmean Registration
Recall(mRR).RR@ [d1; d2) is registration recall w.r.t pairs with distanced 2 [d1; d2), following
[12]. mRR is de�ned as the average ofRR@ [d1; d2) for all [d1; d2). To measure the quality of
correspondences in pseudo-labels, we reportInlier Ratio(IR) of the teacher in the �rst epoch, denoted
“tIR@1st Epoch”.

Relative Rotation Error Relative rotation error is the geodesic distance in degrees between
ground-truth and predicted rotation matrices:

RRE(R p; R gt ) = arccos

 
trace(R T

p R gt ) � 1

2

!

; (7)

whereRgt andRp denote the ground-truth and predicted rotation matrices, respectively.

Relative Translation Error Relative translation error is the Euclidean distance between ground-
truth and predicted translation vectors:

RTE( t p; t gt ) = kt p � t gt k2; (8)

wheret p andt gt are the ground-truth and predicted translation vectors, respectively.

Registration Recall The registration recall is de�ned as the fraction of point cloud pairs whose
RRE and RTE are simultaneously below the given thresholds (i.e.RRE < 5� andRTE < 2m for
KITTI datasets):

RR =
1

M

MX

i =1

JRREi < � r ^ RTE i < � t K; (9)

where� r and� t are thresholds for RRE and RTE, respectively, andJ�Kis the Iverson bracket. We
compute the mean RRE and RTE only for point cloud pairs that are registered successfully, following
common practices [50, 24, 43, 2, 51].

Following existing efforts[12], we denote the registration recall w.r.t pairs with distanced 2 [d1; d2) as
RR@ [d1; d2). With the set of distance intervalsD = f [5; 10); [10; 20); [20; 30); [30; 40); [40; 50)g,
we de�ne the mean registration recall as:

mRR =
1

jDj

X

[d1 ;d2 )2D

RR@ [d1; d2) : (10)

A.2 Implementation Details

We introduce the implementation details of INTEGER in this section. Firstly, we describe the network
architectures of FCGF and SC2-PCR, which we use by default to implement INTEGER. Then, we
provide additional information about the implementation of FGCM. Finally, we provide the details of
the implementation of visualization in Fig. 1 and Fig. 5.

FCGF We adopt the popular FCGF[24] for the registration network in INTEGER. As depicted
in Fig. 6, the architecture incorporates Res-UNet structure and is implemented with sparse voxel
convolution. It adopts three layers of skip connections with a roughly symmetric encoder-decoder
structure. Before used for registration, features are normalized onto the unit sphere after the last
convolutional layer.
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Figure 6: The Architecture of FCGF. We use the same architecture as their of�cial
implementation[24]. It adopts three layers of skip connections with a roughly symmetric encoder-
decoder structure.

SC2-PCR SC2-PCR is a robust pose estimator built upon theSC2 measurement[21]. For two
correspondencecx = ( p i ; q j ) andcy = ( pk ; q l ), Literatures prior to Chen et al.[21] utilized
�rst -order spatial compatibility (SC) de�ned as:

M xy = jkp i � pk k2 � k q j � q l k2j (11)

to measure the spatial compatibility between two correspondences, wherecx ; cy 2 C andM 2
RjCj�jCj is the spatial compatibility matrix. To better distinguish inliers from outliers, Chen et al.
[21] proposed asecond-order spatial compatibility (SC2) by usingM � M 2. Thus, theSC2 scores
for inliers will be skyrocketing and can easily be distinguished from outliers.

Built upon theSC2 measurement, SC2-PCR �rst using a spectral technique to extract most promis-
ing seed correspondences and then iteratively re�ne the correspondences. The SC2-PCR is GPU-
compatible and non-parametric. Therefore, it is ef�cient and has great generalizability for implement-
ing our unsupervised method.

Details in FGCM Following existing efforts[24], we have to samplenc = 1024 correspondences
for training with Hardest-Contrastive Loss. Thus, when FGCM mines more thannc correspondences
in pseudo-labels, we randomly samplenc correspondences for training. However, in some cases,
FGCM may fails to mine enough correspondences, resulting in less thannc correspondences. For
effective training, we additionally perform a NN-search to complement the correspondences under
such circumstance. This typically happens in very early stages in training when the teacher model
has not adequately adapted to real data yet, and very late stages when the overlap between two point
clouds is too low.

Visualization in Fig. 1 and Fig. 5 In Fig. 1, we visualize the features of points and anchors
by projecting them into 2D space using t-SNE[52]. In Fig. 5, we visualize the point-wise feature
distribution and correspondence-wise similarity distribution. For point-level feature distribution, we
�rst project the point features intoscalarspace using t-SNE[52]. Then, we estimate the probability
density for points associated with inlier and outlier correspondences using Kernel Density Estimation
(KDE)[53]. To estimate correspondence-level similarity distribution, we compute theL 2-distance in
feature space between two points in each correspondence and visualize the distribution of similarities
for inliers and outliers. We use the sklearn[54] library to implement t-SNE and KDE.

A.3 Training Details

To train INTEGER, we use the SGD optimizer with an initial learning rate of0:3 and a weight decay
of 1e � 4. We train INTEGER for400epochs with a batch size of8. The training process takes
approximately 6 days on a single NVIDIA RTX 3090 GPU running at 1.70 GHz with 24 GiB of GPU
memory.

A.4 Additional Experiments
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