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Abstract
We present MV2Cyl, a novel method for reconstructing 3D from 2D multi-view
images, not merely as a field or raw geometry but as a sketch-extrude CAD model.
Extracting extrusion cylinders from raw 3D geometry has been extensively re-
searched in computer vision, while the processing of 3D data through neural
networks has remained a bottleneck. Since 3D scans are generally accompanied
by multi-view images, leveraging 2D convolutional neural networks allows these
images to be exploited as a rich source for extracting extrusion cylinder informa-
tion. However, we observe that extracting only the surface information of the
extrudes and utilizing it results in suboptimal outcomes due to the challenges in the
occlusion and surface segmentation. By synergizing with the extracted base curve
information, we achieve the optimal reconstruction result with the best accuracy
in 2D sketch and extrude parameter estimation. Our experiments, comparing our
method with previous work that takes a raw 3D point cloud as input, demonstrate
the effectiveness of our approach by taking advantage of multi-view images. Our
project page can be found at https://mv2cyl.github.io.

1 Introduction
Most human-made objects in our daily lives are created using computer-aided design (CAD). Recon-
structing the structural representation from raw geometry, such as 3D scans, is essential to enable
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the fabrication of 3D shapes and manipulate them for diverse downstream applications. Sketch-
Extrude CAD model is particularly notable not only as the most common but also as a versatile
CAD representation, which enables the expression of diverse shapes with 2D sketches and extruding
heights.

The reconstruction of a set of extrusion cylinders from raw 3D geometry has been extensively
explored in previous studies [58, 65, 49, 30], yet the suboptimal quality of the results remains a
challenge. Unsupervised methods [49, 30] have demonstrated notable capabilities in parsing raw
geometry but often struggle to precisely segment the shape and part-wise �t the output extrusions to
the given shape. Supervised methods using a language-based architecture, such as those described
in [65], often face challenges in producing valid outputs. A notable exception is Point2Cyl [58],
which is a supervised method proposing to �rst segment the given raw point cloud into each extrusion
region and estimate the 2D sketch and the extrusion parameters using the predicted segments and
surface normal information. While it has shown successful results, the bottleneck remains in the
limited performance of the 3D backbone network for segmentation.

To address the limitation, we focus on the fact that 3D scans are commonly accompanied bymulti-
view images, which are now even solely used to reconstruct a 3D shape without depth or other
information thanks to the recent advancements in neural rendering techniques [40, 61, 13, 62, 5]. 2D
multi-view images are a rich resource for extracting 3D extrusion information. Also, 2D convolutional
neural networks have been utilized in various 3D tasks [34, 63], owing to their superior performance
compared to 3D processing networks. In light of these observations, we introduce a novel framework
called MV2Cyl, which reconstructs a set of extrusion cylinders from multi-view images of an object
without relying on raw geometry as input.

A straightforward approach to exploiting multi-views in extrusion reconstruction is to �rst segment
2D regions of the extrusion in each image and reconstruct the 3D shape using the extrusion labels.
However, achieving precise 3D surface reconstruction solely from the multi-view images poses
challenges due to the ambiguity between the object's intrinsic color (albedo) and the effects of
lighting (shading) or shadows within images (Fig. 5). In contrast, we observe that reconstructing
only the 2D sketches of the two ends of the extrusion cylinders—the start and end planes of extru-
sion—provides much more accurate results while avoiding the ambiguity issue and the consequential
error accumulation. However, this approach also results in failure cases when one of the bases is not
properly detected in 2D image due to the sparse viewpoints. Therefore, we propose a framework that
synergizes the reconstructions of labeled surfaces and labeled curves of the extrusion bases so that
parameters such as extrusion center and height can be better calculated from the surface information,
while the 2D sketches can be precisely recovered from the curve information. In our experiments,
we demonstrate the superior performance of our method MV2Cyl on two sketch-extrude datasets:
Fusion360 [64] and DeepCAD [65].

2 Related Work

3D Primitive Fitting . Primitive �tting has been extensively investigated in computer vision. One
line of work involves decomposing into surface/volumetric primitives. Classical approaches include
detecting simple primitives such as planes [6, 11, 42] through RANSAC [51, 31], region growing [45],
or Hough voting [3, 8]. The emergence of neural networks gave rise to data-driven methods [29,
56, 28] learning frameworks that �t simple primitives such as planes, cylinders, cones, and spheres.
Primitive �tting has also been used to approach the task of shape abstraction [75, 57] that �t cuboids
given an input shape or image. However, these works all assume a �xed prede�ned set of primitives
that may not be able to cover complex real-world objects. The focus of our work is to recover a more
general primitive,i.e., extrusion cylinders, that are de�ned by any arbitrary closed loop and hence
can explain more complex objects.

Another line of work tackles �tting 3D parametric curves, where a common strategy is to �rst detect
edges [70] and corners [35, 70, 39] from an input point cloud, and then �t or predict parametric
curves from the initial proposals. A recent work, NEF [68], takes multi-view images as input and
introduces a self-supervised approach to the parametric curve �tting problem using neural �elds, thus
allowing them to optimize without needing clean point cloud data. Despite having multi-view images
as input, NEF only tackles recovering parametric curves and not extrusion cylinders, which is a basic
building block for the sketch-extrude reverse engineering task and is the focus of our work.
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CAD Reconstruction for Reverse Engineering. CAD reverse engineering has been a well-studied
problem in computer graphics and CAD communities [4, 60, 2, 1, 38], enabling the recovery of
a structured representation of shapes for applications such as editing and manufacturing. Earlier
works focused on reconstructing CAD through inverse CSG modeling [9, 55, 22, 48, 69], which
decomposes shapes into simple primitives combined with boolean operations. While achieving
good reconstruction, CSG-like methods tend to combine a large number of shape primitives, making
them less �exible or easily manipulated by users. Recent efforts in collating large-scale CAD
datasets (ABC [25], Fusion 360 [64], SketchGraphs [54]) have pushed this boundary, enabling
the learning of data-driven methods for various applications such as B-Rep classi�cation [19] and
segmentation [19, 26, 10], parametric surface inference [16, 36], and CAD reconstruction [23, 27]
and generation [66]. For the reverse engineering task, a common CAD modeling paradigm uses
sketch-extrude[64, 58] as the basic building block, where a sketch [67, 47] is de�ned as a sequence
of parametric curves forming a closed loop. This results in primitives that are more �exible and
complex, not a prede�ned �nite set, which will be the focus of this work.

Previous research uses NLP-based language models conditioned on raw geometry to represent CAD
models as token sequences [65, 14, 18, 72]. However these methods are not designed to understand
and decompose geometry into individual primitives and may also result in invalid CAD sequences. A
recent work [21] also models CAD with language but face similar issues despite allowing multi-view
inputs. To address these issues, Point2Cyl [58] is the pioneering work that poses the CAD reverse
engineering task as a geometry-aware decomposition problem. The idea was to �rst decompose an
input point cloud intoextrusion cylinders(sketch-extrude primitives) and introduce differentiable
loss functions to recover the parameters. ExtrudeNet [49] and SECAD-Net [30] further built on
this setting and extended it to the unsupervised and self-supervised settings, respectively. Our work
tackles a similar setting that takes a geometry-aware approach to the reverse engineering task, except
we take multi-view images as input, as opposed to existing works that only handle point cloud inputs.

3 MV2Cyl: Reconstructing 3D Extrusion Cylinders from Multi-View Images

Figure 1:Full Pipeline of MV2Cyl.

We propose a method that reconstructs 3D extrusion cylinders from multi-view images without
relying on raw 3D geometry as input. The idea is to leverage 2D neural networks to learn 2D priors
that provide 3D extrusion information (Sec. 3.2), i.e. extrusion curves and surfaces. The integration
of the information into 3D is achieved through optimizing neural �elds (Sec. 3.3). MV2Cyl is a
combination of a curve �eld and a surface �eld that is used to recover the parameters and reconstruct
the extrusion cylinders only given 2D input images (Sec. 3.4).

3.1 Problem Statement and Background
Given a set of 2D RGB imagesf I i gN

i =1 whereI 2 RH � W � 3, the goal is to recover a set of extrusion
cylindersf E j gK

j =1 that represent the underlying 3D shape. We provide an overview here but refer
the readers to Uyet al. [58] for more details.
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Sketch-Extrude CAD is a designing paradigm or the designed model itself in the area of computer-
aided design (CAD) consists of extrusion cylinders as its building blocks. Anextrusion cylinder
E is 3D space de�ned asE = ( n; c; h; ~S; s) with theextrusion axisn 2 S2, theextrusion center
c 2 R3, theextrusion heighth 2 R, and the normalizedsketch~S scaled bys 2 R. A sketch-extrude
CAD model is a 3D shape that is reconstructed from a set of extrusion cylinders,f E1; E2; :::; EK g
where K is the number of extrusion cylinders. Asketch ~S is a set of non-self-intersecting closed
loops drawn in a normalized plane.

We further classify the surfaces of a sketch-extrude CAD model asbaseor barrel . A surface is
a baseif its surface normal is parallel to its extrusion axisn, and is abarrel if its surface normal
is perpendicular to its extrusion axis. By this de�nition, base surfaces are parameterized by points
on the planes and a normal (n). The base surfaces can further be distinguished into start plane and
end plane where thestart plane contains the pointc � h

2 n, while theend planecontains the point
c + h

2 n.

With these de�nitions, we will later show how our method, MV2Cyl, is able to recover the set of
extrusion cylinders and their corresponding parameters given only 2D multi-view images.

3.2 Learning 2D Priors for 3D Extrusions

To reconstruct extrusion cylinders from multi-view images, we �rst learn 2D priors for 3D extrusions
by exploiting 2D convolutional neural networks. We train two U-Net-based 2D segmentation
frameworks:M curve that extracts curve information andM surfacethat extracts surface information.
The 2D information extracted from the two frameworks is integrated into 3D using a neural �eld
and then utilized for more robust reverse engineering. We detail each 2D segmentation frameworks
below.

Figure 2:Example of segmentation prediction.From left to right: input rendered image, surface instance seg-
mentation, surface start-end-barrel segmentation, curve instance segmentation, and curve start-end segmentation.

2D Surface Segmentation FrameworkM surface. The goal of the surface segmentation network
is to extract the extrusion instance segmentation as well as start plane, end plane, and barrel
(start-end-barrel) segmentation given an input image. That isM surface : RH � W � 3 ! f P surface 2
f 0; :::; K gH � W ; Qsurface 2 f 0; 1; 2; 3gH � W g, whereK is the number of instances,P surfacerepre-
sents the extrusion instance segmentation label, andQsurfacedenotes the start-end-barrel segmentation
label. The zero index is used for background annotation.M surfaceis implemented as two distinct
U-Nets predicting each segmentation and is trained using a multi-class cross entropy loss with ground
truth labelsP̂ surfaceandQ̂surface. An important property is that the problem does not admit a unique
solution as i) the extrusion segment can be ordered arbitrarily and ii) the start and end planes can
also be arbitrarily labeled. To handle this, we use Hungarian matching to �nd the best one-to-one
matching with the ground truth labels and reorder it as~P surfaceand ~Qsurface. This gives us the loss
function of the instance segmentation:

L surface
2D = �

1
BHW

BX

b=1

HX

h=1

WX

w=1

KX

k=0

1[ ~P surface
hw = k] logP surface

hwk ; (1)

whereP surface
hwk is the model's predicted probability that pixel(h; w) belongs to thek-th instance in the

b-th image in the batch, and~P surface
hw is the pseudo GT label for that pixel, with the number of images

in a batchB and the number of possible instances including the backgroundK . The loss function of
the start-end-barrel segmentation appears the similar, replacing theP asQ and the range of classes
{0, ..., K} to {0, 1, 2, 3}.
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2D Curve Segmentation FrameworkM curve. We observe that detecting and extracting curves
on the base planes of each extrusion cylinder segment provides additional information to recover
the parameters and reconstruct the extrusion cylinders. Moreover, (feature) curves have been a
longstanding and well-explored problem dating back to classical computer vision literature [46, 74,
43] thanks to their strong expressiveness. This leads us to learn a 2D curve prior that provides more
discriminative and detailed outputs to make reverse engineering more robust.

The goal of the curve segmentation framework is to extract both extrusion instance segmen-
tation and start-end segmentation, where the start-end plane segmentation distinguishes the
curves of the two base planes of extrusion cylinders. Concretely,M curve : RH � W � 3 !�

P curve 2 f 0; :::; K gH � W ; Qcurve 2 f 0; 1; 2gH � W
	

, whereP curve is the extrusion instance segmen-
tation label andQcurve is the start-end segmentation label.

Similar toM surface, the zero index is used for background annotation in both segmentation tasks
andM curve is also implemented with two U-Nets and trained using a multi-class cross-entropy loss

against the pseudo ground truth
n

~P curve; ~Qcurve
o

that is reordered with Hungarian matching to handle
order invariance and ambiguities. An additional challenge for curves compared to surfaces is the
labels are a lot sparser with the majority of the images being background pixels. Hence, the model can
easily fail to predict meaningful labels due to this label imbalance. To alleviate this, we additionally
employ a dice loss [41] to handle the strong foreground-background imbalance and a focal loss [33]
to circumvent the class imbalance between the extrusion instances. Hence the loss function used to
train the curve prior is given as:

L curve
2D = � CE L cross-entropy+ � focalL focal + � diceL dice: (2)

Additional details about the segmentation framework are available in the appendix E.1.

3.3 Integrating 2D Segments into a 3D Field

Figure 3:Overview of the learned surface and curve �elds.(Left-to-Right) Density �eld of surface, instance
semantic �eld of surface, start-end semantic �eld of surface, density �eld of curve, instance semantic �eld of
curve, and start-end semantic �eld of curve.

To establish correspondences and collate the information extracted from multi-view images, a natural
approach tointegrate2D information into a consistent 3D representation is through learning a 3D
�eld [ 40, 61, 68, 44]. For each of our 2D priorsM surfaceandM curve, we learn a density �eldF and a
semantic �eldA as detailed below, respectively.

Density FieldF . We learn a density �eld for surfacesF surfaceand curvesF curve. Given a query point
in 3D spacex 2 R3, the density �eld networkF : R3 7! R outputs a scalar value that indicates
how likely the 3D pointx is on a surface or a curve forF surfaceand curvesF curve, respectively. To
optimize the �eld differentiably with only 2D images, we use volume rendering [40, 5] and a learnable
transformation [68] to convert the density �eldF (x) to an opacity �eld� (x). This transformation is
in the form of a learnable sigmoid function given as:

� (x) = � �
�

1 + e� � � (F (x ) � � )
� � 1

(3)
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