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Abstract

Natural behaviors, even stereotyped ones, exhibit variability. Despite its role in ex-
ploring and learning, the function and neural basis of this variability is still not well
understood. Given the coupling between neural activity and behavior, we ask what
type of neural variability does not compromise behavioral performance. While
previous studies typically curtail variability to allow for high task performance in
neural networks, our approach takes the reversed perspective. We investigate how
to generate maximal neural variability while at the same time having high network
performance. To do so, we extend to neural activity the maximum occupancy
principle (MOP) developed for behavior, and refer to this new neural principle
as NeuroMOP. NeuroMOP posits that the goal of the nervous system is to max-
imize future action-state entropy, a reward-free, intrinsic motivation that entails
creating all possible activity patterns while avoiding terminal or dangerous ones.
We show that this goal can be achieved through a neural network controller that
injects currents (actions) into a recurrent neural network of fixed random weights
to maximize future cumulative action-state entropy. High activity variability can
be induced while adhering to an energy constraint or while avoiding terminal states
defined by specific neurons’ activities, also in a context-dependent manner. The
network solves these tasks by flexibly switching between stochastic and determin-
istic modes as needed and projecting noise onto a null space. Based on future
maximum entropy production, NeuroMOP contributes to a novel theory of neural
variability that reconciles stochastic and deterministic behaviors within a single
framework.

1 Introduction

From opening a door to crossing the street, everyday life hinges on reliably executing actions. Despite
that, natural behaviors, including repetitive movements from expert athletes [1, 2, 3, 4], exhibit
variability [5, 6, 7]. The mechanisms governing the emergence of this variability from the central and
peripheral nervous systems remain unclear. Variability of neural activity in motor cortex [8, 9, 10] and
subcortical structures [11, 12] controlling muscle movements, as well as state changes of the effectors
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due to, e.g., fatigue [13, 14], might contribute to the observed behavioral variability. However, as
behavioral variability is also observed at longer time scales during perception [15, 16], decision
making [17, 6, 5, 18] and planning [19], neural �uctuations in most parts of the brain [20, 21, 22]
might be involved in the generation of variable behavioral repertoires as a whole.

Several mechanisms have been put forward for the generation of neural variability, including synaptic
noise within neural circuits [23, 24] or non-linear network interactions leading to variable activity
patterns [25, 26, 27, 28]. These proposed mechanisms are predominantly designed to describe
variability during spontaneous activity – in the absence of sensory stimuli – [22, 20] or in response to
simple stimuli [29, 30], most frequently outside a complex task. In other theoretical studies where the
goal is to maximize network performance in a task, variability is typically suppressed after learning
[31, 32, 33]. If anything, the initial noise or activity variability is used as means to regularize and
promote exploration during learning [34, 35], but they are considered to be unnecessary thereafter.
This approach is also the one taken in state-of-art reinforcement learning, where variability is added
during learning, but during task execution policies are forced to be deterministic [36, 37].

Given these two coexisting sides of natural behavior – namely, high task performance in spite
of large variability – we ask whether it is possible to have neural networks generating maximal
variability while at the same time being able to �exibly switch to deterministic behavioral modes
when needed. We surmise that generating neural variability is a fundamental goal of the nervous
system, as it enables the exploration of its entire dynamical range. This idea parallels the one that
neural activity should be variable to generate the vast behavioral repertoires [38, 8, 39, 40, 41] as the
ones empirically observed [5, 18, 42, 11]. The sought neural variability needs to be highly structured
in order to avoid non-adaptive behaviors. One relevant example comes from reaching tasks, where
neural activity is indeed found to be con�ned in null spaces as to avoid undesired movements [43].
To address the above question, we build on the maximum occupancy principle (MOP) developed for
behavior [44, 45], which posits that agents ought to occupy action-state space by generating all sorts
of action-state paths compatible with the dynamical and environmental constraints. Applied to neural
activity, we introduce NeuroMOP, which puts forward the hypothesis that the brain should generate
maximum entropy in the neural activity paths. Importantly, this entails avoiding the terminal states
where further entropy cannot be generated. This principle aligns with a broad body of Reinforcement
Learning (RL) literature on reward-free algorithms based on purely-entropic objectives [37, 46, 47].
By optimizing the cumulative sum of future action-state entropy, NeuroMOP emphasizes seeking
future variability to the extent that does not compromise performance. By properly de�ning terminal
states as absorbing states where no more entropy can be generated, this principle seeks variability
while also generating behaviors that guarantee future `survival'.

In this paper, we employ random recurrent neural networks (RNNs) of �xed weights as a simpli�ed
representation of brain dynamics, and we let them interact with a stochastic input current generator
following MOP (Fig. 1). The input current generator (theagent) is designed to maximize the entropy
– hence, the variability – of the series of currents (a function of theactions) it injects in the RNN (the
environment). As expected, variable currents lead to variable neural activities, but this variability
becomes structured in order to avoid dangerous (terminal) states. To bridge neural variability with
functionality, we test our architecture in a series of different problems. First, we show that the
NeuroMOP network learns to satisfy energy constraints, while generating large neural variability.
Second, a subset of RNN neuron activities can be con�ned within complex regions while remaining
free within the region, thereby `drawing' different symbols, also in a context dependent manner.
Crucially, the NeuroMOP network not only learns to effectively solve tasks, but it maintains a high
dimensionality of action signals whenever possible, allowing the visitation of a wide range of activity
patterns. By �exibly reducing its dimensionality when close to terminal states, we show that low
dimensionality is an emergent property under constrained tasks where higher dimensionality is the
default mode.

2 Methods

2.1 NeuroMOP architecture: controller and RNN

The NeuroMOP architecture consists of a controller (agent) injecting currents into an RNN of �xed
random weights (environment) (Fig. 1). The statex 2 RN of the RNN, wherex i is the activity of
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Figure 1: Schematic of the NeuroMOP network. At each time step the controller reads the activityx
(state) of the RNN and samples an actiona from the policy� (�jx). Using the optimal policy in Eq. 4
requires predicting the effect that each of the possible actionsa(k ) 2 A (x) would have on the state of
the RNN by computing the successor statex0(x; a(k ) ) and then evaluating the corresponding value
functionV

�
x0(x; a(k ) )

�
in that state. The value function is approximated by a feedforward network

(FFN). Once sampled, the low-dimensional actiona is expanded and transformed into currentsI via
a matrixK and fed into the RNN. Next, the RNN state evolves one time step and the loop is repeated.
The weights of the FFN are trained via gradient descent using as cost function the Bellman error
stored along a batch of trajectories.

neuroni = 1 ; : : : ; N , follows the dynamics

x i (t + 1) = x i (t) + �t

0
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+ �
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J ij x j + I i (t)

1

A

1

A ; (1)

where�( �) is a non-linear transfer function,�t is the integration time step of the dynamics, andI i (t)
are currents injected by the controller in the RNN neurons. The recurrent connections of the RNN
are �xed and sampled from a normal distribution,J ij � N (0; g2=N). We use a saturating transfer
function�( �) = tanh( �), which leads to chaotic dynamics when the internal recurrent connections
are strong enough [25] (see Fig. 2a). Results for RNNs with non-saturating (ReLU) transfer functions
are shown in Appendix F.

At time t, the controller samples a randomactiona from a state-dependent, stationary policy� (�jx).
The action is anM -dimensional discrete vectora 2 A (x); we will consider below the presence
of terminal statesxy, where the number of available actions is drastically reduced. Based on the
generated actiona, the controller injects into thei -th neuron the current

I i (t) = �
MX

k=1

K ik ak ; (2)

whereK ik � U(0; 1) are positive input weights sampled from a uniform distribution and� is a
parameter that scales the strength of the current. Thus, internal actionsa are expanded via the random
matrix K into N -dimensional currents. This expansion allows us to study the harder problem of
controlling the RNN's dynamics using actions with reduced dimensionality, i.e.,M � N , but our
framework also works for projections,M > N .

The controller follows MOP, that is, it aims at occupying action-state path space [44]. Here we restrict
ourselves to action paths, and show the general action-state framework in Appendix D. We assume
that the controller gets an intrinsic reward of� ln � (ajx) for generating actiona when the network
is in statex at timet, being the largest when the generated action has low probability under the
current policy� . The controller does not greedily maximize this immediate intrinsic reward at every
time step. Instead, the policy� is chosen to maximize thevaluefunction, de�ned as the expected
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discounted sum of future intrinsic rewards

V� (x) = E� � �;p

"

�
1X

t =0

 t ln � (a(t)jx(t))

#

= E� � �;p

"
X

t

 t H (Aj x(t))

#

; (3)

with discount factor0 <  < 1. Note that this expression takes the form of a sum of future
action entropies, whereH(Aj x) = �

P
a2A (x ) � (ajx) ln � (ajx). The expectation is over all paths

� = ( x; a(0); x(1); a(1); : : : ) with initial conditionx(0) = x generated by sampling actions from
the policy� and following the state transitions probabilityp = p(x(t + 1) jx(t); a(t)) de�ned by Eq.
1. By virtue of maximizing action path entropy, the MOP agent occupies current and future action
space as broadly as possible [44, 45]. Discounted cumulative future action entropy stands as the only
measure of occupancy that adheres to the intuitive notion that the occupancy over an action path is
the sum of the occupancies over any of its subpaths, the so-called additive property [44].

The optimal policy� � ([44], Appendix C) maximizing the value function is

� � (ajx) =
1

Z (x)
e

P
x 0 p(x 0j x;a )V � (x 0) ; (4)

whereZ (x) =
P

a2A (x ) e
P

x 0 p(x 0j x;a )V � (x 0) is the partition function andV � (x) is the optimal
value following the optimal policy, de�ned as

V � (x) = ln Z (x) = ln
X

a2A (x )

e
P

x 0 p(x 0j x;a )V � (x 0) : (5)

In our speci�c implementation with deterministic dynamics (Eq. 1), the transition probability
p(x0jx; a) is a delta function, and so the successor statex0 is uniquely determined by the current
statex and the actiona, x0(x; a). Our algorithms work well also for RNNs with noisy dynamics
(Appendix E).

We will de�ne different problems by choosing speci�c state-dependent action sets, so that the
available set of actionsa depends onx, a 2 A (x). Speci�cally, we de�ne terminal states, denoted
xy, as absorbing states the network cannot escape from and wheredoing nothing is the only
available action. These terminal states might represent detrimental state regions, e.g., too high neural
activity, or other adverse activity patterns resulting in signi�cant external penalties, such as the falling
of an agent to the �oor. Withdoing nothing being the only action, entering a terminal state is
an irreversible process leading to an intrinsic reward of always zero from that point onwards, i.e.,
� ln � (a = nothing jxy) = ln 1 = 0 , as no further action entropy can be generated. Therefore,
by de�nition, V� (xy) = 0 for any policy. Terminal states can be considered `dead' states of the
network, and they will be naturally avoided to keep maximizing future action path entropy. In our
implementations, non-terminal states share the same action set ofM � dimensional binary actions
ak 2 f� 1; 1g 8k = 1 ; : : : ; M . This does not imply that all non-terminal states are equally desirable;
via the computation of the value function, the network naturally exhibits less preference for `bad'
states that increase the likelihood of encountering terminal states in the future. We will show that
the structure of terminal regions, along with the network dynamics, leads to complex, rich, variable
behaviors without the need to specify an extrinsic reward function. In essence, MOP tells agents what
not to do, and thus it does not restrict behavior. In contrast, standard extrinsic reward maximization
tells agents what to do, inevitably limiting behavior. Note that maximizing action path entropy entails
striking a balance between maximizing immediate and future entropy, with behaviors that can become
locally very deterministic if thisgloballyopens up larger repertoires of possible action courses, i.e.,
larger future action entropy.

2.2 Value function approximator by minimizing the Bellman error

As our problem involves a high-dimensional continuous state space (N = 100), we use a feed-
forward network (FFN) to approximate the optimal value functionV � (x) in Eq. 5 withV (x; w). The
FFN with parametersw consists of one hidden layer ofNhid neurons, an input layer with input the
activitiesx of the RNN, and one single output neuron with activityV (x; w) (Fig. 1).

In order to optimize the parameters of the FFN, we considerVB (x; w), the expected evolution of the
approximated value function satisfying the Bellman consistency equation, de�ned as

VB (x; w) = ln
� X

a2A (x )

e
P

x 0 p(x 0j x;a )V (x 0;w )
�

: (6)
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If the approximated value functionV (x; w) were equal to the optimal valueV � (x), its expected
evolution would coincide with the value function itself, i.e.,VB (�) = V � (�) (see Eq. 5). Thus, we
optimize the weightsw of the FFN by minimizing a loss function, de�ned as the summed squared
errors betweenVB (�) andV(�; w) over trajectories in each epochl = 1 ; : : : ; Nep,

L l (w) =
1

N traj

N trajX

� =1

1

t ( � )
end

t ( � )
endX

t =1

�
V (x ( � ) (t); w) � VB (x ( � ) (t); wl )

� 2
; (7)

where the squared error is accumulated over a batch ofN traj paths � =
�
x ( � ) (0); x ( � ) (1); : : : ; x ( � ) (t); : : :

�
, and the path lifetimet ( � )

end is the minimum between the
time when the network reaches a terminal state and the maximum episode durationT. Each path� is
generated by sampling actions from the policy in Eq. 4 with the same initial conditionx(0) = x. The
policy depends on the speci�c values of the FFN weights at epochl. The parameters of the network
are updated at each epochl using Adam as optimizer.

Our results have proven to be stable also for FFNs only receiving as an inputN inp < N activities
randomly selected from theN � dimensional state, denoted~x. If needed, the input can be extended to
include any required extra-information or~x can be constrained to speci�c neurons. For instance, in
the context-dependent constraints problem de�ned in Sec. 3.2.1, we added extra units to the FFN
input layer to �ag (via a one-hot vector) the context. Including in~x the readout neurons(x1; x2)
improved stability and performance.

2.3 The reward-maximizing network

To provide a comparison for the NeuroMOP network, we introduce the R network, which aims
at maximizing the discounted sum of future extrinsic reward. To ensure a fair comparison, we
incorporate the notion of survivability present in MOP by assigning to the R network in statex and
taking actiona the extrinsic reward

r (x; a) =
�

1 if x0(x; a) 6= xy

0 if x0(x; a) = xy ; (8)

wherex0(x; a) is the state evolution of the RNN as de�ned in Eq. 1. To allow the generation of
variable trajectories also by this network, stochasticity in the action selection is implemented by
endowing the network with an� -greedy policy de�ned as

a � � � (�jx) =

(
argmax

a
V� (x0(x; a)) with probability 1 � �

random with probability�
; (9)

whereV� (x) is the expected future cumulative reward when following this policy, which can be
written recursively as

V� (x) = Ea� � � ;x 0� p [r (x; a) + V � (x0)] : (10)

In this framework� is a hyperparameter controlling the amount of (random) action variability
generated by the network. To better compare the two networks behaviors, the choice of� is such
that the average lifetime of the two networks in each problem is comparable. The value function is
approximated using a one-hidden layer FFN as in Sec. 2.2. Analogously to MOP, in order to train the
network we generate a batch ofN traj paths� starting with the same initial conditionsx ( � ) (0) = x
and minimize the loss function de�ned as the summed squared error between the approximated value
V� (x; w) and its expected evolution following the Bellman equation in Eq. 10.

3 Results

3.1 Energy constraint

To test whether NeuroMOP can produce maximal variability under strict constraints, we �rst study
a scenario where a terminal state is reached when the overall level of the RNN's activities is high.
Speci�cally, xy are all the states where the energy, de�ned as a function ofx, exceeds a certain value
E(xy) > L (see Appendix B). In this way, we implement the idea that high activity is detrimental,
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Figure 2: Energy constraint.(a) In the free network, the RNN shows chaotic activity (top panel)
with high energy consumption (bottom) above threshold (dashed line). In the top panel, each line
represents the activity of a randomly sampled neuron of the RNN. A single trial is shown.(b) Early
in training (� 10 epochs), the NeuroMOP network quickly reaches a terminal state by crossing
the energy threshold (dashed line, bottom panel). Indeed, the large action entropy throughout the
trajectory suggests no state-dependent action entropy adjustment. Inset provides a zoom of the energy
close to the boundary.(c) After training, the NeuroMOP network is able to avoid terminal states for
the whole duration of the trajectory (T = 1000) by reducing its action entropy whenever closer to the
energy threshold. Inset as in (b).(d) The R network employs completely different and risk-averse
solutions.(e) Probability density function of the average state occupancy.(f) When far from the
energy threshold (E(x) � L ), the NeuroMOP network exhibits maximum effective dimensionality
(ED a ' M = 8 ), but loses one degree of freedom (ED a ' M = 7 ) when approaching the threshold
corresponding to terminal states (E(x) � L , i.e. E (x) 2 [L � �L; L ], with �L = 0 :001, arbitrary).
The R network only lives far from the threshold injecting mainly inhibitory currents and it exhibits a
low effective action dimensionality.(g,h) With training, both networks increase the average standard
deviation of the individual trajectoriesh� i , with MOP displaying larger variability (g). Together, they
learn to reach the end of the episodetend = T = 1000 (h). Averages overNav = 10 networks with
batches ofN traj = 10 trajectories; errors are standard errors of the mean (SEM ).

either because it is costly [48], or because it leads to neural saturation, impeding sensory encoding
[49]. We consider a free network (the RNN without external current, Eq. 1 withI = 0 ) in a chaotic
state, where the repetitive saturation of the neurons activities leads to high energy consumption over
time (Fig. 2a). The NeuroMOP network learns to control the input current in order to generate
maximal input entropy while, at the same time, avoiding terminal states and thus surviving for the
whole length of the stimulation (Fig. 2b, early training; Fig. 2c, late training). Importantly, we
observe that the NeuroMOP network changes dynamical regimes depending on how far the energy
consumption is to threshold (Fig. 2c, bottom panel, inset): when the energy is close to threshold,
the action entropy reduces, and therefore the policy becomes more deterministic. In contrast, when
the energy is far from threshold, action entropy rises again and the policy increases its stochasticity.
Moreover, the policy dimensionality, as measured by the effective dimensionality of the currents (see
Appendix A), is lower when close to the threshold compared to further away (Fig. 2f), projecting
noise to a lower dimensional manifold such that actions (i.e., currents) that would push the network
above threshold are suppressed. Overall, these results show that the NeuroMOP network �exibly
changes from a highly stochastic to a more deterministic policy depending on the network state.

Comparing NeuroMOP with the R network, we �nd that the R network employs different solutions,
showcasing a preference for risk-averse solutions (Fig. 2d). As a long lifetime is encouraged by the
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Figure 3: Constrained neural space.(a) Terminal states are de�ned as the boundaries of a square in the
activity space of two randomly selected RNN's neurons(x1; x2). (b-c) As a result, the NeuroMOP
network con�nes the activitiesx1 andx2 within the square boundaries (panel b, magenta traces),
while it `draws' the square by �lling its inside (panel c, colored line, representing one trajectory of the
two readout neurons). In contrast, in the space of any other pair of neurons(x i ; x j ) i; j > 2 activities
spread in space (grey line, representing one trajectory). A zoom-in of the readout space shows that
the NeuroMOP network adapts the action entropy based on the state proximity to the boundaries
(colorbar, c, right panel).(d) The R network, following an� � greedy policy, fails to avoid the
terminal states except for extremely small values of� , effectively reducing its action stochasticity to
zero. Lifetime computed after training the network for100epochs.(e)Matching lifetimes for both
NeuroMOP and R network with an� � greedy policy with exponential decay (see Appendix B). The
R network learns to satisfy the boundaries constraints after the exponential decay has dropped the
randomness of the action selection (� ) to zero.(f) Same as in (c) for the R network. The R network
only `draws' one side of the square with the two readout neurons(x1; x2), while the other neurons,
as well receiving the external currents, are driven towards the saturating states. Averages are over
Nav = 10 networks with batches ofN traj = 10 trajectories. Errors areSEM .

extrinsic reward, the R network learns to steer the RNN's energy very far from the terminal state, so
that the spontaneous action �uctuations given by the stochasticity of the random policy would not
harm the overall performance by keeping it far from threshold. The policy found by the R network
consists in injecting mostly inhibitory currents, driving the RNN towards the point of minimum
energy and effectively `silencing' the RNN.

Although both networks are able to avoid the terminal states, they lead to different behaviors and
space occupancy: while the R network tends to suppress the RNN's activity, the NeuroMOP network
exploits the overall range of activities permitted by the terminal states (Fig. 2e). Again, the NeuroMOP
network is able to do so by adapting its action entropy in a state dependent manner. Proximity to the
terminal state imposes a constraint on the network's activity. In contrast, the R network operates only
far from the threshold and, by showing a clear preference for inhibitory actions, exhibits an effective
dimensionality signi�cantly lower than the maximum possible one, i.e.,ED a < M (Fig. 2f). As a
consequence of the different action selection strategies, the RNN's neurons within the NeuroMOP
network display greater variability than those within the R network, with a larger average standard
deviation over the trajectories (Fig. 2 g). The choice of� , representing the level of stochasticity, of
the R network is such that the two networks have comparable lifetimes (Fig. 2 h).

3.2 Constrained neural space

Terminal states can be arbitrarily imposed on the activities of individual neurons or any subset of
them, not only globally as in the previous scenario. Here, we test NeuroMOP in a new problem
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Figure 4: NeuroMOP can constrain a subset of neural activities within different regions of the neural
space in a context-dependent manner. The network is informed of the shape it needs to draw via
a one-hot vector fed into the value function.(a) Example of a single network drawingC = 6
different shapes by con�ning its readout activities(x1; x2) within the corresponding activity regions
(T = 5000). Notably, action entropy is both state and context dependent. One trajectory per context
is shown.(b) Mean accuracy, measured as the mean lifetime in each contexttC

end , re�ects varying
shape dif�culty, consistent across networks.(c) With training, the NeuroMOP network learns to
approach the arbitrary training end of the simulationtend = T = 600 (left panel) and to increase the
average standard deviation of the individual trajectoriesh� i (right panel). Averages overN = 10
networks, with batches ofN traj = 10 trajectories. Errors areSEM .

where terminal states are set directly on two randomly selected readout neurons(x1; x2) of the RNN.
Speci�cally, a terminal state is encountered any timejx1j > L or jx2j > L .

The structure of the terminal states generates interesting behavior in the NeuroMOP network: the
network `draws' a square in the(x1; x2) activity space by �lling the available area while avoiding
the square's boundaries (Fig. 3). In other words, the network occupies all the space allowed by the
terminal states after learning. The NeuroMOP network can con�ne the activities of the two readout
neurons even within very small regions of the activity space (Fig. 3b, magenta lines). Notably, as
neurons are driven by actions that aim to maximize future cumulative entropy and terminal states are
here exclusively set onx1 andx2, all other neurons (x i , 8i 6= 1 ; 2) occupy a much larger region of
the activity space (grey lines, in their own spaces(x i ; x j )). In the(x1; x2) space, the network reduces
its action entropy when in proximity to terminal states, corresponding to the square boundaries (Fig.
3c). Due to the activity correlations induced by the shared input current, controlling the readout
neurons along the anti-diagonal of the square presents challenges for the NeuroMOP network. In
those regions, the NeuroMOP network learns the necessity of highly deterministic action selection to
avoid terminal states (Fig. 3c, right panel).

While NeuroMOP adapts the stochasticity of its policy to occupy the maximum available space, we
�nd that the R network, following� � greedy policy, fails to do the same for most values of� (Fig.
3d). The R network's lifetime is comparable to that of the NeuroMOP network for extremely low
values of� (notice decreasing scale), for which the consequent randomness of the action selection is
effectively zero. To give more �exibility to the R agent, we allowed the R network to �rst explore
phase space by using an epoch-dependent� l with an exponential decay. Starting from a larger� 0 at
epochl = 0 , and slowly decreasing it, we can match the two lifetimes (Fig. 3e). Despite this, the
inherent greediness of the action selection forbids the R network to occupy all the available activity
region (Fig. 3f), resulting in a largely repetitive and stereotyped network behavior.

3.2.1 Context-dependent neural space constraints

We next wondered about the versatility of the NeuroMOP network to con�ne neural activity within
even more complex boundaries. We introduce context-dependent neural space constraints (see
Appendix B), where in each context the set of terminal states in the readout space of two random
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activities(x1; x2) de�ne different shapes, with different sizes, orientations and border complexity.
We augment the input layer of the value approximator described in Sec. 2.2 withC = 6 additional
nodes, whereC represents the number of different shapes where activity has to be con�ned. Thus,
the feedforward value approximator now receives, alongside the network statex, aC dimensional
one-hot vector indicating the current context.

The same feedforward network, opportunely informed of the context, correctly approximates the
value function. Consequently, the NeuroMOP network also adapts its action entropy in a context-
dependent manner (Fig. 4a). Notably, while avoiding terminal states, the NeuroMOP network learns
to occupy the available state region in each given context. As expected, some terminal states rise
greater challenges for the NeuroMOP network to be avoided (Fig. 4b), a feature that is independent
on the number of stored contextsC. Overall, the NeuroMOP network successfully avoids terminal
states while increasing the variability in the network with learning (Fig. 4c).

4 Discussion

We have introduced NeuroMOP, a novel theory that puts forward the idea that neural variability
arises from the active generation of future neural activity entropy. We have explored this theory by
introducing a mechanism for maximizing and controlling variability in a highly-dimensional RNN in
the chaotic regime. Contrary to the common idea that excessive variability may impede performance,
our model showcases that injecting maximal controlled variability into RNNs actually permits to
solve different `tasks', indirectly de�ned by the structure of terminal states. By allowing for a diverse
array of actions according to the state, this variability enables the network to explore a wider solution
space, potentially leading to more effective adaptations [50, 51, 52].

We tested our network in a series of scenarios. First, we introduced an energy threshold on the
network activity. Energy constraints may have been likely selected by evolution, as brain activity is
costly both during information processing and at rest [53, 48]. By observing that the network always
keeps energy consumption close to the threshold without exceeding it, our results align with the
idea that sustained, controlled energy consumption could actually be bene�cial [54]. In a second
series of problems, we showed that the NeuroMOP network can avoid terminal states in the readout
space while increasing the variability in the subspaces where no boundaries are set. Therefore,
long lifetime is achieved by �exibly switching between deterministic and stochastic dynamical
regimes when needed. Additionally, we show that our algorithm is capable of solving problems often
tackled through extrinsic rewards, such as balancing a cartpole (Appendix G), or scenarios where
more deterministic behavioral modes are required, like traversing a narrow corridor in neural space
(Appendix H). In addition, we show that introducing extrinsic rewards in the MOP framework largely
reduces the variability of the network behavior (Appendix I).

When comparing MOP with other systems that also generate variability, like a reward-maximizing
(R) network with epsilon-greedy noise, we �nd that R networks can only avoid terminal states after
extensive training and only by quenching the source of randomness. We remark that MOP agents
face as well the drawback of stochasticity as their policy follows a Boltzmann distribution (Eq.
4), and thus a non-zero probability is assigned to all actions regardless of the state. Despite that,
MOP agents overcome this tendency by adapting their randomness via the computation of the value
function, which trades-off immediate with future variability. This is in contrast with R agents, where
the stochasticity parameter� is state independent. These results suggest that state adaptation of
stochasticity is a relevant property we might expect in intelligent systems.

By keeping the weights of the RNN �xed, we depart from the common practice of training networks.
Weights training usually leads to activities exploiting the saturation state of the neurons [35, 33]. We
conjecture this dynamics to be unrealistic, as biological neurons largely display activities that are well
below their maximum values [55, 56, 49]. Analogously, saturation is undesirable even in arti�cial
neural networks due to the vanishing curvature of the loss landscape. By favoring states and actions
with low probability, the NeuroMOP network leads to the more uniform occupation as possible,
avoiding saturation and encouraging neurons to stay in a `healthy' regime, i.e., a regime suitable for
computation [57]. As well, we have demonstrated that NeuroMOP can control high-dimensional
chaotic RNNs. Future research should investigate how MOP-driven input currents affect the RNN's
regime. We anticipate that MOP currents will stabilize neural trajectories, consistent with operating at
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the edge of chaos [58]. Characterizing chaoticity as a function of the input properties (e.g., magnitude)
[59] is a promising direction.

In our system, an external stochastic input current generator is designed to maximize its cumulative
entropy impinging onto the neurons of an RNN. The idea of specialized circuits serving the role of
stochastic input generator is not novel. In songbirds, for instance, the LMAN brain region, part of
the neural circuit controlling songs' production, has been largely postulated to ful�ll the function of
injecting variability into the downstream motor pathways [60, 61]. Allegedly, increased variability
in the motor neural activity favors behavioral exploration in the songs' production. Remarkably, it
has also been shown that, during courtship, adult birds signi�cantly reduce their vocal variability
compared to their solitary singing [60, 62]. This switch of behavior from random to more deterministic
modes aligns with our hypothesis of the existence of directed variability in the brain.

Finally, NeuroMOP offers several testable predictions regarding the nature of neural variability
we should expect in the brain. Firstly, it predicts that neural variability will persist even after
extensive training, which aligns with studies reporting large spiking variability even in well-trained
non-human primates [21, 29]. Despite this persistence, our model also suggests that neural variability
may decrease when terminal states are suf�ciently close, as the network is expected to transition
into a more deterministic mode to avoid those states [30, 63]. Finally, our model predicts that
reward signaling systems in the brain will also signal intrinsic motivation rewards. This is partially
supported by recent studies demonstrating that spontaneous movements elicit dopamine release
[11]. Further, we postulate that the visitation of all activity states may increase �exibility and
help generalization. Consistent with that, certain activity states are observed to be replayed in the
absence of any stimulation in the brain, and several mechanisms in RNNs have been proposed for
this phenomenon [64, 65]. NeuroMOP predicts the deterministic reactivation of activity patterns and
memories that are relevant for generating higher future behavioral entropy, but the more stochastic
reactivation of less relevant memories.

Limitations In the proposed framework, we choose not to approximate the policy, but instead
to rely on an `oracle' to provide the best action following the derived exact analytical expression
(Fig. 1,� box). Our model could be extended to include a neural network to also approximate the
policy � using actor critic approaches [66]. Therefore, we do not delve in the process of learning
the policy itself. Exploring the policy learning process represents a signi�cant direction for future
work. Despite relying on the exact policy, the input current selection has still a high computational
cost. In order to partially mitigate this, we introduced the random matrixK , which transforms low
M -dimensional binary actions into highN -dimensional currents. Via this matrix, we were able to
reduce complexity from� O

�
2N

�
to � O

�
2M

�
, thereby signi�cantly speeding up the computation,

without compromising the convergence of the algorithm. The extension of NeuroMOP to more
realistic spiking and Poisson-like variability is another major possible direction. Finally, another
interesting direction that we have not addressed here is how to learn the structure of terminal states,
and how nearby `bad' states surrounding terminal states can be learnt and used to speed up learning.

Conclusion Our results demonstrate that maximizing cumulative future action entropy while
avoiding terminal states leads to interesting behaviors without the need of de�ning an extrinsic reward
function. Our work shows that NeuroMOP networks can �exibly switch between stochastic and
deterministic modes as needed to avoid terminal states. These results contribute to a novel theory
of neural variability based on future entropy production, reconciling stochastic and deterministic
behaviors within a single framework. Our work highlights a signi�cant limitation in classical
neuroscience studies, where limited behavioral repertoires are promoted by the task design and
experimental trials terminate upon reaching the goal. In ecological settings, in contrast, agents
continuously generate interim goals and elicit new behaviors. NeuroMOP offers a powerful model of
neural activity underlying natural behavior.
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Appendix

A Additional Methods

Effective dimensionality We model an external controller sampling actionsa living in an
M � dimensional space. In the NeuroMOP network, the controller aims at occupying action-state
path space, and therefore we expect the sampled actions to maximally occupy the action space. To
quantify the effective occupation of action space, we introduce the effective dimensionality [67, 68]
of the actions as

ED a =
(
P

i � i )
2

(
P

i � 2
i )

; (11)

where� i (i = 1 ; : : : ; N ) are the eigenvalues of the covariance matrix of the sampled actions.
Intuitively, the effective dimensionality quanti�es the number of dimensions needed to explain the
observed variance in the sampled actions by identifying the dimensions of spread of the signal. In the
absence of constraints, the NeuroMOP network would maximally occupy space, uniformly in all the
directions of the action space, leading to comparable eigenvalues� i 8i = 1 ; : : : ; M and an effective
dimensionality close to the full dimensionality of the action space itself (ED a ' M ). The presence
of constraints introduce directions of actions that will be avoided by optimal networks. Along these
constrained directions, the sampled actions variances, hence the corresponding eigenvalues, are
signi�cantly reduced, resulting in a lower effective dimensionality, i.e.ED a < M . Since actions
are sampled from a state-dependent stationary distribution, the effective action dimensionality may
vary according to the state. To investigate that, we quantify the effective dimensionality as a function
of different states by restricting the covariance matrix, from which the eigenvalues in Eq. 11, to the
actions sampled in speci�c regions of the state space.

Average standard deviation We quantify the induced variability in the RNN's activities by mea-
suring the �uctuations of individual neurons. For this reason, we introduce the average standard
deviation as

h� i =
1

N traj

1
N

X

�

NX

i =1

� ( � )
i ; (12)

where� ( � )
i is the standard deviation of the activities of neuroni 8i = 1 ; : : : ; N along a trajectory� .

Parameters of the simulation We simulate RNNs in the chaotic state [25, 35] with the parameters
reported in Table 1, unless otherwise speci�ed. The parameters de�ning the algorithm, including the
speci�cs of the feedfoward network and the details of the optimization, are reported in Table 2.

B Terminal states

Energy constraint Terminal states are reached whenever the RNN's current energy expenditure

exceedsL = 0 :11(arbitrary units). Energy is de�ned asE(x) = 1
N

q P N
i =1 (x i + 1) 2 ; the euclidean

norm of the activity, translated so that the lowest activity statex i = � 1 8i = 1 ; : : : ; N has zero
energy. Thus, terminal statesxy are all the states whereE(xy) > L . Analogous results have been

Table 1: Hyperparameters for the RNN.

Parameter Value

N 100
nonlinearity�( �) tanh, ReLU
� t 0.05
� 1.0
g 5.0
� tanh 2.0
� ReLU 5.0
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Table 2: Hyperparameters for the algorithm, including the parameters of the FFN.

Parameter Value

action dimensionalityM 8
discount factor 0.9
number of hidden layers (FFN) 1
hidden units per layer 256
input unitsN inp 20
FFN nonlinearity ReLU
xy see Sec. Terminal states
training epochsNep see Sec. Terminal states
number of agentsNag 10
trajectories per batchN traj 10
optimizer Adam
learning rate� 0.01

obtained with different de�nitions of energy function. Reward-maximizing (R) networks follow an
� � greedy policy with� = 0 :3. Both networks are trained forNep = 60 epochs.

Constrained neural space Terminal states are all states wherejx1j > L or jx2j > L , with (x1; x2)
being two arbitrary neurons of the RNN andL = 0 :1. The R networks follow an� � greedy policy
with exponential discount, i.e. at epochl the probability of sampling a random action decreases as
� l = � l � 1 � � , with � 0 = 0 :5 and� = 0 :9. The networks are trained forNep = 100 epochs.

Context-dependent neural space constraints Taking two length scalesL + = 0 :2 andL � = 0 :1,
we de�ne terminal states in the different contexts as below. In each epoch, one of theC possible
contexts is randomly sampled, and kept �xed for all the trajectories in the epoch. More stable yet
slower convergence is obtained if different contexts are sampled in each trajectory of the batch. The
NeuroMOP network is trained forNep = 100 epochs. Terminal states in each context are reached
whenever the following conditions are met:

square context: jx1j > L � or jx2j > L � ;

plus context: jx1j > L + or jx2j > L + or (jx1j > L � and jx2j > L � );

circle context:
p

x2
1 + x2

2 > L + ;

diamond context: jx1j + jx2j > L + ;

oval context:
�

x 1
L +

� 2
+

�
x 2
L �

� 2
> 1;

heart context:
�
x2

1 + x2
2 � L �

� 3
� x2

1x3
2 > 0.

C Optimal policy and value

We show here the derivation of the analytical expression for the optimal policy� � (ajx) in the case
of an agent following MOP and maximizing the action-state path entropy [44]. Then, we use this
analytical solution to derive the Bellman consistency equation. While in the main text we focused
on agents maximizing the action space occupancy, here we take the more general formulation
considering both the action and state space occupancy maximization. We include the state entropy in
our NeuroMOP network using a small noise approximation in Appendix D.

The MOP agent gets an intrinsic reward over a path equal toR(� ) =
�

P
t  t ln

�
� � (a(t)jx(t)) p� (x(t + 1) jx(t); a(t))

�
, with discount factor0 <  < 1, action

� > 0 and state� � 0 weights, and where� = ( x(0); a(0); x(1); a(1); : : : ; x(t); a(t); : : : ) denotes
a path of states and actions. Although we use two parameters,� and� , effectively the number of
parameter is only one, their ratio, which measures the relative strength of state over action entropy.
Note that the action path entropy maximizer agent is recovered by taking� = 0 and� = 1 . The
objective of the agent is to maximize the value functionV (x), de�ned as the expected return of the
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intrinsic reward asV(x) = E� � �;p [R(� )jx(0) = x]. The Bellman recursive equation enables us to
write the value function as the sum of the intrinsic reward the agent receives in the statex and the
expected discounted sum of future intrinsic rewards, i.e., the value function in the next state, taking
the form
V(x) = E� � �;p [R(� )jx(0) = x]

= E� � �;p

"

�
X

t =0

 t ln
�
� � (a(t)jx(t)) p� (x(t + 1) jx(t); a(t))

�
jx(0) = x

#

= �
X

a

X

x 0

� (ajx)p(x0jx; a)
X

t =0

 t ln
�
� � (a(t)jx(t))p� (x(t + 1) jx(t); a(t))

�
�
�
�
�
x (0)= x

= �
X

a

X

x 0

� (ajx)p(x0jx; a)
�

ln
�
� � (ajx)p� (x0jx; a)

�
+

+ 
X

t =0

 t ln
�
� � (a(t)jx(t))p� (x(t + 1) jx(t); a(t))

�
�
�
�
�
x (0)= x 0

�

= �
X

a

� (ajx)� ln � (ajx) �
X

a

� (ajx)
X

x 0

p(x0jx; a)� ln p(x0jx; a) +

+  E
�
R(� 0)jx(0) = x0�

= � H (Aj x) + �
X

a

� (ajx)H (Sjx; a) + 
X

a

� (ajx)
X

x 0

p(x0jx; a)V (x0) ;

where we recognize the entropy over the action spaceH(Aj x) = �
P

a � (ajx) ln � (ajx) and state
spaceH(Sjx; a) = �

P
x 0 p(x0jx; a) ln p(x0jx; a).

The optimal policy� � (�j� ) is the policy maximizing this value function. Therefore, we look for the
critical policies� c(�j� ) under the constraints� (�js) � 0 and

P
a � (ajx) = 1 . Finding the critical

points of the Lagrangian function de�ned asL = V(x) � � (
P

a � (ajx) � 1) involves solving

@L
@�(ajx)

�
�
�
�
� = � c

=
@V(x)

@�(ajx)

�
�
�
�
� = � c

� � (x; x ) = 0 ; (13)

where� (x; x ) indicates that the derivatives and the policy are computed in the same statex. Deriving
the value function with respect to� (ajx) gives the desired Lagrange multiplier� . By writing V (x)
using the Bellman recursive equation we get that

� (x; x ) =
@V(x)

@�(ajx)

�
�
�
�
� = � c

=
@

@�(ajx)

"

�
X

a0

� (a0jx)
�

� ln � (a0jx) +
X

x 0

p(x0jx; a0)
�
� ln p(x0jx; a0) �

� V (x0)
�
� #�

�
�
�
�
� = � c

= � � ln � c(ajx) +
X

x 0

p(x0jx; a) ( � � ln p(x0jx; a) + V � c (x0)) �

� � + 
X

a0

� c(a0jx)
X

x 0

p(x0jx; a0)� (x0; x)

= � � ln � c(ajx) � �
X

x 0

p(x0jx; a) ln p(x0jx; a) + 
X

x 0

p(x0jx; a)V� c (x0) + h(14)

where we collected in h = h(x) all the terms that are not dependent on
a. Introducing the partition function Z (x) = exp

�
1
� (� (x; x ) � h(x))

�
=P

a2A (x ) exp
�

1
� (� H (Sjx; a) + 

P
x 0 p(x0jx; a)V� c (x0))

�
as the normalization constant,

the critical policy takes the expression

� c(ajx) = Z (x) � 1 exp

 
1
�

 

� H (Sjx; a) + 
X

x 0

p(x0jx; a)V� c (x0)

!!

: (15)
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The corresponding critical expected return is obtained by substituting the critical policy in the Bellman
recursive equation as

V c(x) =
X

a

� c(ajx)
X

x 0

p(x0jx; a) [� � ln � c(ajx) � � ln p(x0jx; a)] +  E[V c(x0)]

=
X

a

� c(ajx)
X

x 0

p(x0jx; a)

"

� ln Z (x) � � ln p(x0jx; a) �

� � ln
�

e
1
� ( � H (Sj x;a )+ 

P
x 0 p(x 0j x;a )V c (x 0)))

�
#

+  E� c

�
V c(x0)

�

= � ln Z (x) �
X

a

� c(ajx)

 

� H (Sjx; a) + 
X

x 0

p(x0jx; a)V c(x0)

!

+

+
X

a

� c(ajx)� H (Sjx; a) +  E� c

�
V c(x0)

�

= � ln Z (x) = � ln
X

a2A (x )

e( 1
� ( � H (Sj x;a )+ 

P
x 0 p(x 0j x;a )V� c (x 0))) ; (16)

where we see the expectation value over future states simpli�es in the last step.

We now prove that this stationary point corresponds to a maximum of the value function. For this,
�rst note that the value function is continuous and has continuous derivatives with respect to the
policy, and therefore the maximum lies either on the boundaries of the policy constraints or it is
indeed the critical value. Given a statex, the policy boundaries are the points where an (initially
available) action~a is unavailable, i.e.� (~ajx) = 0 . Thus, computing the critical value of the expected
return along a boundary leads to the same solution de�ned in Eq.(16) but the unavailable action~a
does not appear in the sum over all the possiblea. As the expected return is an increasing function
with the elements making up the sum, the critical valueV c(x) is greater than the expected return
along the policy boundaries. The critical value function is therefore the optimal value function,
i.e., V c(x) = V � (x), and the critical policy is indeed the optimal policy, i.e.,� c(ajx) = � � (ajx).
Uniqueness of the critical value comes from concavity of the value function.

As discussed in Sec. 2.2, we deal only with approximations of the optimal value function, and
consequently ourV (x; w) will not exactly satisfy the Bellman consistency equation. We extend
the evolution via the Bellman operator de�ned in Eq. 6 to the case of the action-state occupancy
maximization by de�ningVB (x; w) as

VB (x; w) = � ln ZVB (x; w) = ln
X

a

exp

 
1
�

 

� H (Sjx; a) + 
X

x 0

p(x0jx; a)V (x0; w)

!!

:

(17)
As the Bellman consistency equation is satis�ed by the optimal valueV � (x), we take the best
representation of the weightsw of the value approximator to be the one that minimizes the difference
between the valueV (x; w) and its evolution through the Bellman operatorVB (x; w) by minimizing
the loss function de�ned in Eq. 7.

D Approximation of the state entropy term

We introduce here an approximation for the state entropy term in NeuroMOP networks that maximize
cumulative future action-stateentropy. The state entropy term could bring a fundamental contribution
in the overall desired large occupancy of the state space when the magnitude of the action signal is
weaker. To quantify the state entropy term, we leverage the non-linear dynamics of the RNN. By
taking the small noise limit, we assume that a network maximizing state entropy would exhibit a
preference for the regions where the non linear dynamics induces larger changes in phase-space
volumes, resulting in a larger occupation in the state space. We rewrite the RNN's dynamics in Eq. 1
in differential form asdx0 = dx + �t r f � (x; a)dx , wheref � (x; a) = � x

� + �( Jx + I (a)) is the
dynamics of the RNN for a �xed policy� (�jx) and where we made explicit the dependence from the
MOP actions. We quantify the changes in the occupation by looking at the changes in the volume in
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Figure 5: Effect of introducing a `reward' term approximating the state-entropy.(a) The free network
is characterized by high energy consumption and the exploitation of the saturating states, with the
RNN's neurons alternating between activities� 1 and1. (b-d) Same as in (a), but for increasing
values of the� 2 f 0:0; 0:8; 1:5g. With increasing� , there is a larger average occupancy of the non-
saturating regime of the neurons. Activities and corresponding energies correspond to single trials,
while the occupancy is averaged over the trajectories ofNag = 10 agents.(e) Lifetime as a function
of � . With reduced action magnitude, for small values of� , a small fraction of agents (� 1 out of the
Nav = 10) fails to avoid the terminal state.(f) The exploitation of the non-saturating regime leads the
NeuroMOP network to increase alsoh� � X i , i.e., the average standard deviation of the `jumps' done
by the activities in two consecutive temporal points in the dynamics.(g) Average standard deviation
over the trajectories is not affected by� . (h) The effective dimensionality of the action signal is
reduced for� = 1 :5 in order to drive the dynamics in the `rewarded' non saturating region. Averages
are overNav = 10 networks trained forNep = 60 epochs, with batches ofN traj = 10 trajectories.
Standard deviations are computed over batches ofN traj = 50 trajectories. Errors areSEM .

the state space

Vol(dx0) = det(1̂ + �t r f � (x; a))Vol(dx) =
�
1̂ + Tr (r f � (x; a))

�
Vol(dx) ; (18)

where we exploited the fact that for small�t the RNN dynamics behaves as a perturbation of an
identity transformation and we can approximate the determinant with the trace. This `extra' term
Tr(r f � (x; a)) represents the contribution of the RNN dynamics in increasing the occupation of the
state space. We take this term as the approximation of the state entropyH(Sjx; a) and add it to the
intrinsic return the MOP agent receives along a trajectory. The value function is then modi�ed as

V� (x) = E � � �;p

"
1X

t =0

 t (� H (A t jx(t)) + � Tr(r f � (x(t); a(t)))) jx(0) = x

#

; (19)

where we introduced the `temperature' hyperparameters� and� regulating the amount of action and
state entropy. Finding the optimal policy maximizing this value function reduces to solving the same
constrained minimization problem de�ned in Eq. 13, with the value functionV� (x) de�ned here.
The resulting Lagrange multiplier follows the same expression as in Eq. 14, where the state entropy
termH(Sjx; a) is substituted by our approximationTr(r f � (x; a)) . The optimal policy maximizing
the value function de�ned above is

� � (ajx) =
1

Z (x)
e

1
� ( � Tr( r f � (x;a ))+ 

P
x 0 p(x 0j x;a )V � (x 0)) : (20)

Effectively, we will set� = 1 and measure the state entropy temperature in units of� .

We test the effect of introducing the state entropy term in the NeuroMOP network while satisfying
the energy constraint, as de�ned in Appendix B. We start with an RNN showcasing chaotic dynamics,
with large energy consumption, when left free to evolve with no external currents, i.e., with the
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Figure 6: Energy constraint problem with noisy RNNs.(a) The RNN with no external control
(I = 0 ) now has an intrinsic source of noise in the dynamics (n = 0 :1, parameter scaling the external
Gaussian noise term� (t)) (top panel). The energy is also subject to small �uctuations due to the
noisy nature of the activities (bottom).(b) Given the external source of random noise, the NeuroMOP
network learns to generate long lifetimes by keeping the energy close, but far enough from threshold.
(c) The NeuroMOP network learns to avoid the terminal states and generate variability, but in this
case the lifetime does not reach (on average) the maximum episode length.(d) On the other side, the
average standard deviation of the trajectories increases with learning.(e) Average probability density
function of the occupancy in the activity space. Averages overNav = 10 networks with batches of
N traj = 10 trajectories, errors areSEM .

dynamics de�ned in Eq. 1 withI = 0 (Fig. 6a). Without the state-entropy term (� = 0 ), the choice
of the parameter� (� = 1 :2) rescaling the external current is such that the injected external currents
cannot lead to the full occupancy of the state space. Thus, the NeuroMOP network learns to avoid the
terminal states but still largely exploits the saturating states of the transfer function (Fig. 6b). With
increasing� , the NeuroMOP network gradually expands its occupation in the activity space, favoring
those regions leading to larger activity changes (Fig. 6c,d). First, we note that we can match the
average lifetimes for different values of� (Fig. 6e). To test the effect of introducing the state entropy
term, we de�ne for each neuroni the activity `jumps'� x i as the difference in activity between two
consecutive time points, i.e.,� x i (t) = x i (t + 1) � x i (t) 8i = 1 ; : : : ; N . Therefore, we introduce
the standard deviation of these series averaged across neurons, i.e.,h� � x i , and �nd that it increases
with the contribution of the (approximated) state entropy (Fig. 6f). Conversely, the average standard
deviation remains roughly constant (Fig. 6g). To drive neurons towards the highly sensitive region of
the transfer function, the NeuroMOP network reduces its effective action dimensionality even when
far from the threshold, deviating from the maximum available dimensionality when� = 1 :5 (Fig.
6h).

E RNNs with noisy dynamics

We extend the NeuroMOP network to a controller of a noisy RNN, following the same dynamics as
in Eq. 1 but with an additional Gaussian noise term as

x i (t + 1) = x i (t) + �t

0

@�
x i

�
+ �

0

@
NX

j =1

J ij x j + I i (t) + n� i (t)

1

A

1

A ; (21)

where� i 2 N (0; 1) is an i.i.d. normal random variable acting on each neuroni , andn is the noise
amplitude. With the introduction of noise in the network, we consider an environment whose transition
probability is de�ned over a continuous set of possible values. Therefore, sampling from the optimal
policy requires performing the integral that appears in the r.h.s of� � (ajx) = 1

Z (x ) e
R

x 0 p(x 0j x;a )V (x 0) .
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Figure 7: Energy constraint problem with non-saturating transfer function (�( �) = ReLU (�)).
(a) The free network (Eq. 1 withI = 0 ) is characterized by exploding patterns of the RNN's
activity. Consequently, its energy consumption quickly diverges as well (not shown).(b-c) The
NeuroMOP network learns to keep the RNN's activity bounded (b) by avoiding a terminal state of
high energy consumption (c). Here, we choose an arbitrary threshold ofL = 0 :13. (d) Effective
action dimensionality when far (E (x) � L ) and close (E(x) � L ) to the terminal state.(e) Average
lifetime as a function of the training epochs. Averages overNav = 10 networks with batches of
N traj = 10 trajectories, errors areSEM .

Here, we describe an approximation to the integral, suitable for our transition dynamics. For small
�t , we can locally linearize the transfer function�( �), and replace normal variable with a Bernoulli
variable withp = q = 0 :5. With this approximation, the integral simpli�es to a sum of a positive and
a negative contribution of the noise over the dynamics, namely

Z
dx0p(x0jx; a)V (x0) = qV(x0(x; a; � = 1)) + qV(x0(x; a; � = � 1)) ; (22)

wherex0(x; a; � = � 1) de�nes the evolution of the dynamics as in Eq. 21 when the external noise
takes the values+1 or � 1, respectively.

The dynamics in Eq. 21 in the absence of external control (I = 0 ) generate noisy patterns of
activation, with neurons, and consequently the energy, randomly �uctuating (Fig. 6a). We test
the NeuroMOP network in the same energy constraint problem de�ned in Appendix B. Due to the
inherent random �uctuations in the activities, long lifetimes are only granted if the RNN is kept
suf�ciently distant from the terminal state. The NeuroMOP network adopts this strategy, reducing
its action entropy even before approaching proximity to the boundary (Fig. 6b). Nevertheless, the
stochastic nature of the RNN can still lead the network to enter the terminal state after training:
while the average lifetime approaches the arbitrary length of the simulation, it always remains below
threshold (Fig. 6c). The NeuroMOP network learns to increase the average standard deviation of the
individual trajectories (Fig. 6d), and to broadly occupy the activity space (Fig. 6e).

F RNNs with non-saturating transfer function

The ability of the NeuroMOP network to avoid terminal states and generate variability is independent
on the choice of the RNN parameters and dynamics. To illustrate this point, we introduce RNNs
following the dynamics de�ned in Eq. 1, but employing a non-saturating transfer function, speci�cally
�( �) = ReLU(�). In the absence of external control (no external currents,I = 0 ), the RNN
activity exhibits runaway excitation of its neurons (Fig. 7a), resulting in unbounded levels of energy
consumption. We set thus an arbitrary thresholdL of high energy and test the NeuroMOP network's
ability to inject variable currents while avoiding the terminal statesxy whereE(xy) > L . The
network successfully bounds the RNN's activity pattern (Fig. 7b) by keeping the energy below
threshold for the whole duration of the episode (Fig. 7c). Notably, the inherent diverging drive of
the network given by the linear transfer function, makes it highly responsive to positive input. To
avoid this, the NeuroMOP network reduces action entropy throughout the whole episode, not only
in proximity of the energy threshold. The energy constraint imposes in the action space a no-go
direction for all states in state space due to the high susceptibility in the RNN. Thus, the effective
action dimensionality loses one degree of freedom independently of the distance from the terminal
state (Fig. 7d). The NeuroMOP network rapidly increase its lifetime through learning (Fig. 7e).
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Figure 8: Balancing a cartpole.(a) Scheme of the cartpole. The controller network has binary actions
(forces)F 2 f� 40; 40g to act on the cart.(b) Probability density function of the occupation of the
cart positionx and pole angle� . The MOP network balances the pole while generating variability
in its state variables.(c) Lifetime increases with the training of the value function. Averages over
Nav = 10 networks, errors areSEM .

Table 3: Hyperparameters for the balancing of the cartpole

Parameter Value

cart massM 1.0
pole massm 0.1
pole lengthl 1.0
gravity accelerationg 9.81
discount factor 0.98
number of hidden layers (FFN) 1
hidden units per layer 10
input unitsN inp 4
FFN nonlinearity ReLU
training epochsNep 105

number of agentsNag 10
trajectories per batchN traj 20
optimizer SGD
learning rate� 0.02

G Balancing the Cartpole

We test the ability of MOP to control and generate diverse behavior in a system with physically
realistic dynamics. We consider a MOP `network' balancing a cartpole [69, 70] composed of a
moving cart with a pole attached and free to rotate (Fig. 8a). The system has four degrees of freedom:
the cart positionx, the pole angle� and the corresponding velocities,_x and _� respectively. The
value function is approximated via a feedforward network receiving as input the four variables
(hyperparameters are reported in Table 3). When not in a terminal state, the MOP network acts
directly on the cart with two possible actions, which are binary forcesF 2 f� 40; 40g, with dynamics

•� =
gsin � + cos(� )

�
� F � ml _� 2 +sin �

m + M

�

l
�

4
3 � m cos2 �

m + M

� (23)

•x =
F + ml _� 2 sin � � •� cos�

M + m
; (24)

whereM is the mass of the cart,m andl are the mass and the length of the pole andg is the gravity
acceleration. Note that no damping is applied to the cartpole, i.e., the system is frictionless. The
MOP network enters a terminal state when either the cart position of the pole angle overshoot their
threshold, speci�cally whenjxj > 1:8 or j� j > 0:62 (radiant units). We threshold the values of the
velocities such that they never exceeds the valuesj _xj = 6 andj _� j = 3 . We �nd that the MOP network
can generate variability in the cart position and the pole angle (Fig. 8b) while balancing the pole,
ensuring enough distance to the terminal states (Fig. 8c).
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Figure 9: Two rooms arena connected by a narrow corridor in the neural space(x1; x2). (a) The
NeuroMOP network occupies both rooms of the arena and acts deterministically to cross the corridor
(example of one trajectory withT = 5000), and(b) learns quickly to avoid the complex terminal
states (note low action entropy at the corridor). Averages overNav = 10 networks with batches of
N traj = 10 trajectories, errors areSEM .

Figure 10: Adding an extrinsic reward term to MOP changes the behavior in the constrained neural
space problem. Terminal states are all the states outside the boundaries of a square in the neural space
(x1; x2), centered in zero and with total side lengthl = 0 :4. The NeuroMOP network gets an extrinsic
rewardr = +1 whenever in an inner square centered in(0:1; 0:1) and with side lengthl r = 0 :1. We
introduce a parameter� regulating the balance between extrinsic reward and the action-entropy term.
(a) Probability density function of the occupation (left) and lifetime (right) for� = 0 :1. (b) Same as
in (a), but for� = 0 :5. Averages overNav = 5 networks with batches ofN traj = 10 trajectories,
errors areSEM .

H Crossing a narrow corridor

MOP agents' ability to generate future entropy is guaranteed by their capacity to �exibly switch
between stochastic and deterministic behavior. We provide an additional example of this �exibility by
showing the behavior of the NeuroMOP network in a problem where highly deterministic actions are
(locally) required. Speci�cally, we consider the same neural space(x1; x2) we introduced in Sec. 3.2,
but now terminal states are de�ned such that the network can only live in a region of space de�ned by
two circles (e.g., rooms) connected by a narrow available region of the neural space (e.g., a corridor).
We observe that the intrinsic motivation for occupancy drives the NeuroMOP network to visit both
rooms. To succeed in that, the NeuroMOP network largely reduces its action entropy to cross the
narrow corridor, to later increase its stochasticity when in the larger rooms (Fig. 9a). Importantly,
crossing the narrow neural space does not affect the agent's ability to avoid the terminal states (Fig.
9b).

I Adding an extrinsic reward

We showed that the NeuroMOP network is able to show complex behavior (e.g., crossing a narrow
corridor) without the need to specify any reward function. Here we show that NeuroMOP is
compatible with the addition of an extrinsic reward function. In this case, the value function is
modi�ed as

V� (x) = E� � �;p

"
1X

t =0

 t (� H (A t jx(t)) + � H (St +1 jx(t); a(t)) + �r (x(t); a(t))) jx(0) = x

#

;

(25)
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