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Abstract

Functional magnetic resonance imaging (fMRI) is an indispensable tool in modern
neuroscience, providing a non-invasive window into whole-brain dynamics at
millimeter-scale spatial resolution. However, fMRI is constrained by issues such
as high operation costs and immobility. With the rapid advancements in cross-
modality synthesis and brain decoding, the use of deep neural networks has emerged
as a promising solution for inferring whole-brain, high-resolution fMRI features
directly from electroencephalography (EEG), a more widely accessible and portable
neuroimaging modality. Nonetheless, the complex projection from neural activity
to fMRI hemodynamic responses and the spatial ambiguity of EEG pose substantial
challenges both in modeling and interpretability. Relatively few studies to date have
developed approaches for EEG-fMRI translation, and although they have made
significant strides, the inference of fMRI signals in a given study has been limited
to a small set of brain areas and to a single condition (i.e., either resting-state or a
specific task). The capability to predict fMRI signals in other brain areas, as well
as to generalize across conditions, remain critical gaps in the field. To tackle these
challenges, we introduce a novel and generalizable framework: NeuroBOLT1, i.e.,
Neuro-to-BOLD Transformer, which leverages multi-dimensional representation
learning from temporal, spatial, and spectral domains to translate raw EEG data
to the corresponding fMRI activity signals across the brain. Our experiments
demonstrate that NeuroBOLT effectively reconstructs unseen resting-state fMRI
signals from primary sensory, high-level cognitive areas, and deep subcortical brain
regions, achieving state-of-the-art accuracy with the potential to generalize across
varying conditions and sites, which significantly advances the integration of these
two modalities.

1 Introduction

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are the most
commonly utilized non-invasive neuroimaging techniques, providing crucial insights into brain
functionality. These two modalities offer distinct advantages and limitations that can complement
one another when combined [45, 13]. fMRI offers high spatial resolution imaging of whole-brain
activity by measuring blood-oxygen-level-dependent (BOLD) signal changes, which facilitates
probing regional and network-level function. However, fMRI suffers from low temporal resolution
and hemodynamic blurring, which limits its ability to capture the accurate timing of rapid neuronal
activity dynamics. Additionally, its high cost, non-portability, and incompatibility with metal implants
further restrict the utility of MRI in certain contexts. Conversely, EEG stands out as a low-cost,
portable neuroimaging modality with high temporal resolution [10, 30, 61]. However, EEG faces
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Figure 1:Overall illustration of EEG-to-BOLD fMRI translation using NeuroBOLT.
limitations due to volume conduction and from the super�cial location of electrodes (on the scalp),
making it dif�cult for EEG to accurately infer the origins of the measured electrical potentials. In
this context, the high spatial resolution of fMRI becomes indispensable, especially for imaging deep
brain regions.

One approach for investigating the relationship between EEG and fMRI signals is by analyzing
data collected simultaneously from both modalities. Such studies have demonstrated correlations
between fMRI data and various features of EEG signals, such as the power in certain frequency bands
[27, 7, 28], which underscore the potential of EEG to inform fMRI features. However, factors such
as the disparate biophysical origins of the two signals, and differences in their spatial and temporal
resolutions, can limit the accuracy, interpretation, and consistency of correlation-based EEG-fMRI
studies. These challenges are exacerbated in conditions during which a participant is resting passively
(i.e., resting state), which is characterized by signi�cant noise and randomness. Consequently, the
mechanisms linking neuronal activity to BOLD signals remain only partially understood, posing
challenges in mapping EEG to fMRI.

With recent progress in cross-modality synthesis and brain decoding techniques using deep neural
networks [8, 9, 16], EEG-to-fMRI synthesis has emerged as a promising yet largely untapped research
area [4]. Early pioneering work by [39, 43] employed ridge regression on EEG temporal-spectral
features to reconstruct fMRI signals from the visual cortex and sub-cortical regions. More recent
studies have used deep neural networks for EEG-fMRI translation [33–35, 5, 3, 25, 31], and those of
[25] and [31] developed sequence-to-sequence (Seq-to-Seq) models to reconstruct fMRI time series
of deep brain regions from EEG. However, these efforts have primarily focused on task datasets,
including cued eye opening/closing [25, 31, 34, 35, 54, 3], leaving the (fully eyes-closed) resting state
condition largely unexplored. In addition, prior studies rely on a subject-speci�c approach, wherein
models are solely trained and tested on different sections of the same individual's scans. Further, only
a small number of brain regions have been examined in current studies, leaving as an open question
the predictive power of EEG for fMRI signals across broader areas (see Appendix B for further
discussion of related work). These limitations underscore the need for developing more generalizable
models for EEG-fMRI translation that are accompanied by more comprehensive evaluation.

In this paper, we present NeuroBOLT: a multi-dimensional transformer-based EEG encoding frame-
work for Neural-to-BOLD fMRI Translation (Figure 2). NeuroBOLT is designed to capture and
integrate multi-dimensional representations across temporal, spatial, and spectral domains, offering a
generalizable approach for translating raw EEG waves to BOLD fMRI time series from regions of
interest (ROIs). Drawing inspiration from vision transformer (ViT) [15] and its adaptation for multi-
channel biosignals [59, 22], our framework transforms raw EEG data into uni�ed "EEG patches",
enabling �exible and effective EEG data encoding. These EEG patches are then passed into two
parallel sub-modules: (1) spatiotemporal and (2) spectral representation learning modules. The
spatiotemporal module is propelled by a recently proposed EEG foundation model (LaBraM) [22],
which has been trained to learn effective representations on about 2,500 hours of various types of EEG
signals. Moreover, as previous studies have emphasized the importance of leveraging spectral features
in EEG representation learning [59, 57, 60], EEG-fMRI correlations [27, 14], and EEG-to-fMRI
synthesis [31, 39, 25], the spectral module incorporates multi-scale encoding on EEG spectrogram
patches. Speci�cally, instead of employing a �xed window size for the Short-Time Fourier Transform
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(STFT) as commonly used [59, 58, 24, 11], we incorporate spectral features from windows of varying
scales. This approach retains the advantages of high temporal resolution from smaller windows and
high frequency resolution from larger windows, thereby enhancing the spectral analysis. The output
embeddings from the above two encoding modules are then integrated, allowing NeuroBOLT to
capture the complexity of neural dynamics and learn the projection from neural to BOLD signals.
The key contributions of this work are summarized as follows:

1) Generalizable EEG-to-fMRI translation framework. We introduce a novel approach, Neu-
roBOLT, that utilizes multi-spectral representation to predict high-dimensional fMRI signals from
raw EEG data without relying on prede�ned assumptions about the hemodynamic delay between
fMRI and EEG signals. Additionally, our model is designed to accommodate any number of EEG
channels, enhancing its versatility across various experimental setups.

2) Comprehensive evaluation of the predictive power.We performed comprehensive experiments
on subject-speci�c and cross-subject learning, across selected ROIs in primary sensory, high-level
cognitive, and deep brain regions. Further, we probe the generalizability of our approach across data
acquired in both resting state and task (auditory stimulus) conditions.

3) Successful resting-state fMRI reconstruction.To our knowledge, this is the �rst study to
successfully reconstruct the eyes-closed resting-state fMRI signal from raw EEG data, with a relatively
small number (26) of EEG electrodes.

2 Method

2.1 Task Formulation

While it is well-established that fMRI signals are coupled to neuronal activity, the details of this
process are only partially understood and still under debate [19]. In practice, most studies model
the relationship between neuronal activity and fMRI by convolving the assumed neural activity
with the hemodynamic response function (HRF), which reaches its peak at about 6 seconds and
gradually returns to baseline over the next 12-15 seconds. However, the HRF is not uniform, varying
signi�cantly across different brain regions and between individuals. Moreover, although EEG can
detect the electrical activity of neural populations at millisecond timescales, it suffers from volume
conduction, making it challenging to extract its neural origins. This spatial ambiguity also complicates
the interpretation of EEG and its relation to fMRI data.

In this study, we aim to build a neural network to learn this complicated projection from the
electrophysiological signal measured by EEG to the BOLD signal measured by fMRI. Our approach
tries to overcome the above challenges in the following ways: 1) it captures multi-dimensional
features of EEG across temporal, spatial, and spectral domains, learning representations that are
crucial for accurate fMRI synthesis; 2) it does not assume a pre-de�ned delay between the two
modalities, instead, we extract time windows of EEG data that span a duration approximating the
length of HRF preceding each fMRI data point as the inputs to predict the corresponding fMRI data
values (i.e., a Sequence-to-One model), in order to accommodate potential variability across subjects,
regions, and frequencies.

Functional MRI data are conventionally represented in four dimensions, and can be expressed as
a temporal sequenceS = f V1; :::; VK g with K observations, where each observation is a volume
V 2 Rx � y � z with spatial dimensionsx; y; andz. This high-dimensional fMRI signal is often
summarized by representing it as a set of brain areas (i.e.,P parcels), each with a corresponding fMRI
signal that is averaged over its constituent voxelsvx;y;z � V . Here, we employ such a functional
parcellation, Dictionaries of Functional Modes (DiFuMo) [12], which was learned across millions of
fMRI volumes (see details in [12, 50]). We utilize the DiFuMo parcellation withP = 64 regions,
and the resulting parcellated fMRI dataY 2 RP � K contains the signals from each of these regions.

Since fMRI signals are delayed by several seconds compared to the corresponding neural activity,
the relationship between an input EEG window and the corresponding fMRI prediction is de�ned
asŶp;t = f � (X t � T :t � 1), whereŶp;t 2 R1 is the reconstructed fMRI value from thepth ROI at
time indext, andX 2 RC � T represents the multi-channel EEG signal inputs withC electrodes,T
total timepoints. To estimatef � (:), we formulate an optimization problem that minimizes the lossL
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Figure 2:Overall architecture of NeuroBOLT. Our method �rst divides the input EEG window
into uniform patches (A), and has two modules that are trained simultaneously: the temporal-spatial
representation learning module (B) and the spectral representation learning module (C). The output
embeddings from the two modules are summed and used as input to a regression head, which
generates the �nal output.

between the predicted fMRI signalŶp;t and the true fMRI signalYp;t as follows:

min
f �

EX [L (f � (X t � T :t � 1); Yp;t )]: (1)

The functionf � is NeuroBOLT, which includes a temporal-spatial representation module and a
spectral representation learning module (Figure 2).

2.2 Model Architecture

In this section, we introduce our model: NeuroBOLT, a general architecture for translating EEG
signals to fMRI. Our model is designed to accommodate input EEG signals with an arbitrary number
of channels. As shown in Figure 2, we leverage the pre-trained EEG foundation model, LaBraM
(checkpoint version: LaBraM-base) [22], and �netune on our dataset to obtain spatiotemporal
representations of EEG signals. Additionally, we propose multi-scale spectral feature fusion to obtain
comprehensive spectral representations. These two modules learn complementary attributes of EEG
data. Finally, we integrate the spatiotemporal and multi-scale spectral representations and feed them
into a regression head for fMRI prediction.

Spatiotemporal Representation We formulate the multi-channel EEG signals asX 2 RC � T ,
whereC represents the number of EEG electrode channels andT denotes the time length of the
input EEG. To obtain the spatiotemporal representation of a given set of EEG signals, we leverage
an operation from LaBraM [22], which segments the EEG signals into patches. Assuming the
time window length (patch size) for tokenization of EEG signal isw and the stride iss, X can be
segmented into

�
T � w

s

�
+ 1 segments, with each segment denoted asx 2 RC � w . In this work, we

use a window of lengthw and a strides = w to segment each EEG channel into patches, obtaining
x = f xcj ;k 2 Rw j j = 1 ; 2; : : : ; C; k = 1 ; 2; : : : ;

�
T
w

�
g. The total number of patches isC �

�
T
w

�
.

These patches are then passed forward to a temporal encoder [22] to obtain the patch embeddings,
denoted as:

f ecj ;k 2 Rd j j = 1 ; 2; : : : ; C; k = 1 ; 2; : : : ; : : : ;
�

T
w

�
g (2)

whered is the dimension of the embedding.

To enable the model to capture the temporal and spatial information of the patch embeddings, we
set up a list of trainable temporal embeddings and spatial embeddings, denoted asTE = f tek j
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Figure 3:Multi-scale spectral feature embedding.

k = 1 ; 2; : : : ;
�

T
w

�
g andSE = f sej j j = 1 ; 2; : : : ; Cg, respectively. Thus, the �nal segment

embeddingeseg can be represented as the sum of the output embedding, temporal embedding, and
spatial embedding, denoted as:

eseg = f ecj ;k + tek + sej j j = 1 ; 2; : : : ; C; k = 1 ; 2; : : : ;
�

T
w

�
g (3)

The segment embeddingeseg is directly fed into the Transformer encoder [52] to obtain the output
embeddings. We then apply average pooling to these embeddings to obtain the spatial and temporal
representationr st 2 Rdst , wheredst denotes the dimensionality.

Multi-scale Spectral Representation Compared to RGB images, EEG signals present several
challenges, such as a low signal-to-noise ratio, apparent stochasticity, nonstationarity, and nonlinear
characteristics, making the reconstruction of the original signals dif�cult [41]. Previous research
indicates that the frequency spectrum of EEG signals is crucial for understanding the brain's neuro-
physiological activities [59, 55]. Therefore, in our work, we utilize the Short-Time Fourier Transform
(STFT) to achieve a spectral representation of EEG signals. Unlike most recent state-of-the-art
methods, we design a multi-scale spectral approach that captures both coarse and �ne representations
in the temporal and frequency domains [56, 36]. Details of rationale can be found in Appendix C). For
the EEG signalsX 2 RC � T , we set the base window size aswb and de�ne the window size at levell
aswl = wb � 2l , wherel = 0 ; 1; : : : ; L represents the level number. Thus, the EEG patches with

different window size can be denoted asx l = f x l;c j ;k 2 Rw l j j = 1 ; 2; : : : ; C; k = 1 ; 2; : : : ;
j

T
w l

k
g.

After obtaining the EEG patches, Fast Fourier Transform (FFT) is applied to each patch with the FFT
size matches the window length to calculate the magnitude spectrum withw l

2 + 1 frequency bins at

each levell , which can be denoted assl 2 RC �
j

T
w l

k
� ( w l

2 +1) .

Similar to the operation in spatiotemporal module, we de�ne a list of trainable frequency embeddings
for each magnitude spectrum at different levels, represented by:

FE = f fe l 2 RC �
j

T
w l

k
� d j l = 0 ; 1; : : : ; Lg (4)

These frequency embeddings, which vary in the number of temporal windows, are further mapped to
a set of window embeddings as follows:

WE = f wel 2 RC � n � d j l = 0 ; 1; : : : ; Lg (5)

Then, we calculate the sum of thewel for each level to obtain an overall spectrum embedding as
esp 2 RC � n � d as shown in equation 6

esp =
LX

l =0

wel 2 RC � n � d (6)

5



For each channel, we apply spatial embedding, similar to the spatiotemporal representation section,
to obtain the �nal embedding with dimensionsesp 2 RC � n � d, whereC, n andd represent the
channel number, window embedding dimension, and frequency embedding dimension, respectively.
The original Transformer is known to have quadratic complexity in both time and space, and EEG
signals typically contain tens of channels. To learn these embeddings with lower complexity [59], we
feed spectrum embeddingsesp into a linear Transformer Encoder [53, 23]. Let the input embedding
esp 2 RN � d, whereN = C � n represents the number of tokens. The self-attention operation in the
linear Transformer Encoder can be formulated as follows:

H = Attention (espWQ ; EespWK ; FespWV )

= sof tmax (
(espWQ )(EespWK )>

p
k

)
| {z }

N � D

� FespWV

| {z }
D � k

(7)

HereWQ , WK , WV 2 Rd� k are the query, key and value matrices. The self-attention module uses
a rank-D approximation for the softmax attention(N � N ) by reduced-rank parameter matrices
E> 2 RN � D , F 2 RD � N (whereD � N ). Main components of this module include one linear
self-attention layer and one fully connected network. Layer normalization before each component
[2], residual connection after each component [18], and dropout right after the self-attention to enable
stable training [49, 59]. The output is fed into average pooling along the token dimension to obtain
the �nal spectral representationr sp 2 Rdsp , wherer sp has the same dimension as the spatiotemporal
representationr st .

Projection Head The hidden embeddings from the above two modules are then summed up and
fed into a regression head, which consists of Gaussian Error Linear Unit (GELU) [20] followed by a
single linear layer, to make the �nal prediction of fMRI in thepth ROI at timet.

Ŷp;t = Linear(GELU(r st + r sp )) (8)

3 Experiments

3.1 Datasets

Resting-state dataset EEG and fMRI data were collected simultaneously from 24 healthy volun-
teers in two sessions, each lasting 20 minutes. Scans with signi�cant artifacts in the EEG or fMRI
data were excluded for further analysis. The �nal sample contains 29 fMRI scans from 22 subjects, 7
of whom had two scans. During these fMRI scans, subjects rested passively with their eyes closed
(resting state). Written informed consent was obtained, and all protocols were approved by the
Institutional Review Board. BOLD fMRI data were collected on a 3T scanner using a multi-echo
gradient-echo EPI sequence with repetition time (TR) = 2100 ms. Scalp EEG was acquired simul-
taneously with fMRI using a 32-channel (10-20 system) MR-compatible system with FCz as the
reference (BrainAmps MR, Brain Products GmbH) at a sampling rate of 5 kHz, and was synchronized
to the scanner's 10 MHz clock to facilitate MR gradient artifact reduction. Details of EEG and fMRI
acquisition, preprocessing as well as artifact reduction can be found in Appendix D.

Auditory Task Dataset To further evaluate the model generalization performance, we also include
simultaneous EEG-fMRI data (16 scans from 10 subjects) collected during auditory tasks. Subjects
were asked to keep their eyes closed the entire time and to make a right-handed button press as soon
as possible upon hearing a tone. This dataset was collected at a different site, different MR scanner
(3T Siemens Prisma scanner) and using a slightly different EEG cap (32 channels but with partially
different electrode settings). Please also see detailed information about data collection, preprocessing,
and experiments in Appendix D.

Unless speci�ed otherwise, the experiments and results below refer to the resting-state data.

3.2 Experimental Setup

Preprocessing We employ DiFuMo withn = 64 dimensions [12] (see Section 2.1) to extract
measured BOLD signals within speci�c ROIs. We focus on seven ROIs that span a range of spatial
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locations and functional roles, namely:primary sensory regions(cuneus and Heschl's gyrus),
high-level cognitive areas(anterior precuneus, anterior and middle frontal gyri),subcortical regions
(putamen and thalamus), and theglobal (whole-brain average) signal. From these ROI time series,
we regress out motion confounds, low-pass �lter the signals below 0.15Hz, and use the 95th-percentile
of the absolute amplitude to normalize the demeaned ROI time courses. To prepare the EEG data for
input, we �rst exclude the ECG, EOG, and EMG channels (remaining 26 channels), and resample
the EEG to 200 Hz to enhance computational ef�ciency while preserving meaningful frequency
components (which are typically below 100 Hz). To predict the fMRI ROI signal, we extract EEG
windows of 16 seconds before each fMRI data point. This window length is selected to encompass
the peak and most of the variation in the hemodynamic response function. Additionally, this duration
aligns with the maximum temporal encoding window length of the pre-trained LaBraM model [22],
ensuring optimal �ne-tuning. The normalization of the EEG also strictly follows [22], where EEG
data values are divided by 100 so that the resulting amplitude falls primarily between -1 to 1, since a
typical EEG amplitude range is from -100�V to 100�V .

Baselines and Evaluation Metrics The baseline models include state-of-the-art EEG encoding
models from [59] and [22], as well as two EEG-to-fMRI translation baselines [25, 31]. Since the
original EEG-to-fMRI baselines are sequence-to-sequence models, we adapted them by adding a
�nal projection layer to their encoder to enable sequence-to-one prediction. Additional details on
baseline implementations are provided in the Appendix E.2. We employed the following two metrics
for comparison: 1)Pearson correlation coef�cient (R), which measures the strength and direction of
the linear relationship between prediction and ground truth; 2)Mean squared error (MSE), which
measures the average squared differences between prediction and ground truth across samples. The
main text highlights the correlation coef�cient as the primary evaluation metric, while MSE results
are provided in the Appendix Table 6.

Implementation Details For the spatiotemporal module, we initialize the model by loading the
pretrained weights from LaBraM-base [22], with a token length = 200, i.e., 1 second, with no overlap.
Please refer to [22] for more details of EEG pretraining. For the multi-scale spectral module, we set
the smallest scale sizel0 = 100, i.e., 0.5 seconds without overlap. Experiments are conducted on a
single RTX A5000 GPU using Python 3.9.12, Pytorch 2.0.1, and CUDA 11.7. To ensure consistency
during model training, we set a �xed seed across all experiments. The batch sizes are set at 16 and 64
for intra-subject and inter-subject analyses, respectively. AdamW is utilized as our optimizer, and
MSE as our training objective. The initial learning rate is set at 3e-4 with a weight decay of 0.05, and
a minimal learning rate of 1e-6. For subject-speci�c prediction, where training and testing occur on
the same scan, we split the scan in an 8:1:1 ratio for training, validation, and testing, i.e., training on
the �rst 80% of the data and testing on the last 10%. Given that the fMRI signal exhibits signi�cant
autocorrelation, typically extending from about -10 to 10 seconds [6], we implement gaps of 20
seconds between the training and validation sets, as well as between the validation and testing sets, to
prevent data leakage. For the inter-subject analysis in resting-state data, we randomly divided the
datasets into training/validation/testing sets by approximately 3:1:1 (18 scans : 5 scans : 6 scans). For
the task data, we split the scans by 9 scans : 3 scans : 4 scans. Since data from the same individual
might have shared representations, the two scans from the same individual are ensured to be in the
same set (either training, validation, or testing set) to avoid possible data leakage. All models are
optimized on the training set and evaluated on the test set, with the best model and hyperparameters
selected based on the validation set.

3.3 Intra-subject Prediction

In this section, models were trained on approximately 16 minutes of EEG data, and used to forecast a
future interval of fMRI signal (about 2 minutes) within a resting-state scan. Figure 4 illustrates the
distribution of correlation coef�cients (R) between the predictions and the ground truth, along with
examples that represent the average performance of our model. The quantitative results are detailed
in the upper part of Table 1 and Figure 7 in Appendix. NeuroBOLT outperforms the next two best
EEG encoders by 12.26% and 9.71% (respectively) in terms of the average correlation, exhibiting the
best performance in reconstructing fMRI signals from all ROIs.
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