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Abstract

Driving systems often rely on high-definition (HD) maps for precise environmental
information, which is crucial for planning and navigation. While current HD map
constructors perform well under ideal conditions, their resilience to real-world
challenges, e.g., adverse weather and sensor failures, is not well understood, rais-
ing safety concerns. This work introduces Bench, the first comprehensive
benchmark designed to evaluate the robustness of HD map construction methods
against various sensor corruptions. Our benchmark encompasses a total of 29 types
of corruptions that occur from cameras and LiDAR sensors. Extensive evaluations
across 31 HD map constructors reveal significant performance degradation of ex-
isting methods under adverse weather conditions and sensor failures, underscoring
critical safety concerns. We identify effective strategies for enhancing robustness,
including innovative approaches that leverage multi-modal fusion, advanced data
augmentation, and architectural techniques. These insights provide a pathway for
developing more reliable HD map construction methods, which are essential for
the advancement of autonomous driving technology. The benchmark toolkit and
affiliated code and model checkpoints have been made publicly accessible.

1 Introduction

HD maps are fundamental components in autonomous driving systems, providing centimeter-level
details of traffic rules, vectorized topology, and navigation information [55, 43]. These maps enable
the ego-vehicle to accurately locate itself on the road and anticipate upcoming features [ |, 74, 1 1, 50].
HD map constructors formulate this task as predicting a collection of vectorized static map elements
in bird’s eye view (BEV), e.g., pedestrian crossings, lane dividers, road boundaries, etc. [42, 73, 77].

Existing HD map construction methods can be categorized based on the input sensor modality:
camera-only [35, 43, 41, 74, 50] LiDAR-only [35, 43, 41, 47], and camera-LiDAR fusion [35, 43, 41]
models. Each sensor poses distinct functionalities: cameras capture semantic-rich information from
images, while LiDAR provides explicit geometric information from point clouds [42, 48, 26, 29].
Generally, camera-based methods outperform LiDAR-only methods, and fusion-based methods yield
the most satisfactory results [3 |, 77]. However, current model designs and performance evaluations
are based on ideal driving conditions, e.g., clear daytime weather and fully functional sensors [, 34].
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Figure 1: Radar charts of state-of-the-art HD map constructors under the and LIDAR sensor
corruptions. We report the mAP scores of different map construction methods under each corruption
type across severity levels. Camera Corruptions: #| Clean, #2 Frame Lost, #3 Camera Crash,

Low-Light, Bright, Color Quant, Snow, Fog, and Motion Blur. LiDAR
Corruptions: #1 Clean, #2 Wet Ground, #3 Snow, #4 Motion Blur, #5 Incomplete Echo,
#6 Fog, #7 Crosstalk, #8 Cross-Sensor, and #9 Beam Missing. The radius of each chart is
normalized based on the Clean score. The larger the area coverage, the better the overall robustness.

In real-world driving scenarios, adverse conditions, such as bad weather, motion distortions, and
sensor malfunctions (frame loss, sensor crashes, incomplete echoes, efc.) are unavoidable [62, 7 7].
It remains unclear how existing HD map construction methods perform under such challenging yet
safety-critical conditions, highlighting the need for a thorough out-of-domain robustness evaluation.

To address this gap, we introduce Bench, the first comprehensive benchmark aimed at evaluating
the reliability of HD map construction methods against natural corruptions that occur in real-world
environments. We thoroughly assess the model’s robustness under corruptions by investigating
three popular configurations: camera-only, LIDAR-only, and camera-LiDAR fusion models. Our
evaluation encompasses 8 types of camera corruptions, 8 types of LIDAR corruptions, and 13 types
of camera-LiDAR corruption combinations, as depicted in Fig. 2 and Fig. <. We define three severity
levels for each corruption type and devise appropriate metrics for quantitative robustness comparisons.

Utilizing Bench, we perform extensive experiments on a total of 31 state-of-the-art HD map
construction methods. The results, as shown in Fig. |, reveal significant discrepancies in model
performance across “clean” and corrupted datasets. Key findings from these evaluations include:

Among all camera/LiDAR corruptions, Snow corruption significantly degrades model performance;
it covers the road, rendering map elements unrecognizable and posing a major threat to autonomous
driving. Besides, sensor failure corruptions (e.g., Frame Lost and Incomplete Echo) are also
challenging for all models, demonstrating the serious threats of sensor failures on HD map models.

2) While Camera-LiDAR fusion methods have shown promising performance by incorporating
information from both modalities [ |, 77], existing methods often assume access to complete sensor
information, leading to poor robustness and potential collapse when sensors are corrupted or missing.

Through extensive benchmark studies, we further unveil crucial factors for enhancing the reliability
of HD map constructors against sensor corruption. The key contributions of this work are three-fold:

* We introduce Bench, making the first attempt to comprehensively benchmark and
evaluate the robustness of HD map construction models against various sensor corruptions.

* We extensively benchmark a total of 31 state-of-the-art HD map constructors and their
variants under three configurations: camera-only, LIDAR-only, and camera-LiDAR fusion.
This involves studying their robustness to 8 types of camera corruptions, 8 types of LIDAR
corruptions, and 13 types of camera-LiDAR corruption combinations for each configuration.

» We identify effective strategies for enhancing robustness, including innovative approaches
that leverage advanced data augmentation and architectural techniques. Our findings re-
veal strategies that significantly improve performance and robustness, underscoring the
importance of tailored solutions to address specific challenges in HD map construction.



2 Related Work

HD Map Construction. The construction of HD maps is a critical yet extensively researched area.
Based on the input sensor modality, existing literature can be categorized into cameratpniy [ 1,

, 42,73, 77, 15], LIDAR-only [ 25, 47], and camera-LiDAR fusion{’, 42, 77] models.Camera-
based methods:5, 43, 41, 74, 11, 50, 42, 7] have increasingly employed the BEV representation
as an ideal feature space for multi-view perception due to its ability to mitigate scale ambiguity and
occlusion challenges. Techniques such as LLS§ Peformable Attention{], and GKT [-] have
been proposed to project perspective view (PV) features into the BEV space by leveraging geometric
priors. However, these methods lack explicit depth information. Consequently, they have come to rely
on higher resolution images or larger backbones to achieve enhanced acdtracy | , I
LiDAR-based methods®, 35, 43, 42, 41, 3] bene t from the accurate 3D geometnc mformatlon
provided by LiDAR inputs but face challenges related to data sparsity and sensing noise.

Multi-Sensor HD Map Construction. Camera-LiDAR fusion-based methazm be roughly divided

into three categories: point-level fusion] 53, 66, 8, 7(], feature-level fusion'{1, 1, &, 7, 4], and
BEV-level fusion [' 1, 42, 77, 17]. Recently, camera-LiDAR feature fusion in the uni ed BEV space

has gained attention. BEV-level fusion integrates features from camera and LIiDAR sensors within
the same BEV space, combining complementary modalities to achieve superior performance over
uni-modal approaches. Despite the progress in HD map construction methods, their resilience to
real-world challenges such as adverse weather and sensor failures remains unclear, raising safety
concerns? ]. In this work, we make the rst attempt to explore the robustness of existing HD

(]

map construction methods under sensor corruptions that occur in real-world environments.

Robustness against Sensor CorruptionsAssessing the robustness of driving perception models
under sensor corruptions has emerged as a crucial researchi@re3 |5, 25, 62, 20]. Recently,
the corruption robustness of BEV perception tasks has been extensively studied. RobaBepth [

] establishes a robustness benchmark for monocular depth estimation under corruptions, while
RoboBEV [>2, 67] introduces a comprehensive benchmark for evaluating the robustness of four
BEV perception tasks, including 3D object detectian, [4£], semantic segmentation’, /4],
depth estimation“], and semantic occupancy predicticii] 24]. However, RoboBEV's analyses
of multi-modal fusion model robustness only consider complete sensor failure, overlooking other
common sensor corruptions and their combinations. Dairad. [ 17] systematically desiga7 types
of common corruptions for 3D object detection in both LIDAR and camera sensors. Meanwhile,
Robo3D [’ 7] benchmarks the robustness of 3D detectors and segmentors against LIDAR corruptions.

Comparison with Existing Works. This work differs from prior literature ithreekey aspects.
Firstly, we focus on the vectorized HD map construction task, distinct from other BEV perception
tasks [.2, 25, 67]. Secondly, we introduce new sensor corruption types that closely mimic real-world
scenarios. Speci cally, we desigt3 new multi-sensor corruption types to benchmark camera-
LiDAR fusion models comprehensively, surpassing the scope of complete sensor failure analysis in
RoboBEV [>7]. Thirdly, we explore distinct data augmentation techniques that are applied to LiDAR
point clouds and RGB images to analyze their impact on enhancing corruption robustness. To the best
of our knowledge)ViapBench serves as the rst study to comprehensively benchmark and evaluate
the reliability of HD map construction methods again single- and multi-modal sensor corruptions.

3 Bench : Benchmarking HD Map Construction Robustness

In this work, we investigate three popular con guratiomns,, -only, LIDAR-only, and
-LIDAR fusion-based HD map construction tasks, and study their robustness to various

sensor corruptions. As illustrated in Fig. 2, the camera/LiDAR corruptions are grouped into exterior

environments, interior sensors, and sensor failure types, covering the majority of real-world cases.

Following the protocol established ifi(]], we considethreecorruption severity levels,e., Easy,
Moderate, andHard, for each type of corruption. Additionally, regarding multi-sensor corruptions,
we use camera/LiDAR sensor failure types to perturb camera and LiDAR sensor inputs separately
or concurrently. Bench is constructed by corrupting thal set of nuScenes:]. We chose
nuScenes since it has been widely utilized among almost all recent HD map construction works.



Figure 2: De nitions of the andLiDAR sensor corruptions inlapBench. Our benchmark
encompasses a total of 16 corruption types for HD map construction, which can be categorized into
exterior, interior, and sensor failure scenarios. Besides, we de ne 13 multi-sensor corruptions by
combining the camera and LiDAR sensor failure types. Kindly refer to our Appendix for more details.

3.1 Sensor Corruptions

Camera Sensor Corruptions.To probe the -only model robustness, we emplByeal-world

camera sensor corruptions from], ranging from three perspectives: exterior environments, interior
sensors, and sensor failures. Speci cally, the exterior environments include various lighting and
weather conditions such &sight , Low-Light , Fog, andSnow The camera inputs might also be
corrupted by interior factors caused by sensors, sudhati®n Blur andColor Quantization

Lastly, we consider the sensor failure cases where cameras crash or certain frames are dropped due to
physical problems, leading ttamera CrastandFrame Lost, respectively. Due to page limits, the
detailed de nitions and visualizations of these corruptions are provided in Sec. A in the Appendix.

LiDAR Sensor Corruptions. To explore the.iDAR-only model robustness, we resort8&iDAR

sensor corruptions in’[/], which are scenarios that have a high likelihood of occurring in real-
world deployments. These corruptions also range from exterior, interior, and sensor failure cases.
The exterior environments encomp&sxy, Wet Ground andSnow which cause back-scattering,
attenuation, and re ection of the LIiDAR pulses. Besides, the LIDAR inputs might be corrupted
by bumpy surfaces, dust, or insects, which often lead to disturbances andviatise Blur and

Beam Missing Lastly, we consider the cases of LIDAR internal sensor failures, suChasstalk |,
possiblelncomplete Echo, andCross-Sensor scenarios. Kindly refer to Sec. A for more details.

Multi-Sensor Corruptions. To explore the -LIDAR fusion model robustness, we desitB

types of camera-LiDAR corruption combinations that perturb both camera and LiDAR input separately
or concurrently, using the aforementioned sensor failure types. These multi-sensor corruptions are
grouped into camera-only corruptions, LiDAR-only corruptions, and their combinations, covering
the majority of real-world scenarios. Speci cally, we des®joamera-only corruptions by utilizing

the “clean” LiDAR point data and three camera failure cases sut¢hasailable Camera (all

pixel values are set teerofor all RGB images)Camera CrashandFrame Lost. Moreover, we
design4 LiDAR-only corruptions by utilizing the “clean” camera data and the corrupted LIiDAR data
as the input. This includes complete LiDAR failure (since no model can work when all points are
absent, we approximate this scenario by only retaining a single point as immatyplete Echo,
Crosstalk , andCross-Sensor. Note that our implementations of complete LiDAR failure are
close to the real-world situation. Lastly, we desoamera-LIiDAR corruption combinations that
perturb both sensor inputs concurrently, using the previously mentioned image/LiDAR sensor failure
types. Due to page limits, more detailed de nitions of multi-sensor corruption are placed in Sec.

3.2 Evaluation Metrics

Inspired by P0, 27, 67], we de ne two robustness evaluation metrics basethé&f¥mean Average
Precision), a commonly-used accuracy indicator for vectorized HD map construction.



Table 1: Benchmarking HD map constructors. Methods are split into groups based tnput
modality,’BEV encoderibackbone, antitraining epochs. “L” and “C” represent LiDAR and camera,
respectively. “Ef -B0”, “R50”, “PP”, and “SEC” are short for Ef cientNet-B0O-[’], ResNet50 [ ],
PointPillars 7], and SECOND §¢]. APdenotes performance on the clean nuSceaéset. The
subscriptd;, p:, andd: are short for thddoundary pedestrian crossinganddivider, respectively.

Method | Venue | Modal | BEV Encoder  Backbone | Epoch | AP,"  APg" AP," mAP" | mRR" mCE#
HDMapNet [35]| ICRA22 | C NVT Ef-BO 30 | 144 217 330 230 | 433 1878
VectorMapNet [43]| ICML23 (] IPM R50 110 361 473 393 409 40:6 1485
PivotNet[11]| ICCV23 | C PersFormer R50 30 | 538 588 536 574 | 452 963
BeMapNet [50]| CVPR23| C IPM-PE R50 30 | 577 623 534 538 | 503 785
MapTR[41]| ICLR23 | C GKT R50 24 | 463 515 531 503 | 493 1000
MapTRv2[47]| arXiv23 | C BEVPool R50 24 | 598 624 624 615 | 514 726
StreamMapNet [72] WACV'24 | C BEVFormer R50 30 | 617 663 621 634 | 544 648
HIMap[77] | CVPR24| C BEVFormer R50 24 | 622 665 679 655 | 566 569
VectorMapNet [22]| ICML'23 L PP 110 | 257 376 386 340 | 634 949
MapTR[41]| ICLR23 | L SEC 24 | 485 537 647 556 | 551 1000
MapTRv2[17]| arXiv23 | L SEC 24 | 566 581 698 615 | 572 746
HIMap [/7] | CVPR?24 | L 5 SEC 24 | 548 647 735 643 | 592 731
MapTR[/1]| ICLR23 | C&L GKT R50&SEC| 24 | 559 623 693 625 | 571 1000
HIMap[/7] | CVPR'24 | C&L | BEVFormer R50&SEC| 24 | 710 724 794 743 | 417 1106

(&) mAPvs.mCE (b) mAPvs.mRR (c) mAPvs.mCE (d) mAPvs.mRR

Figure 3: The correlations of accuraeypAPand robustnessrCE mRRfor the (a) and (b)

andLiDAR (c) and (d) models. The size of the circle represents the number of model parameters.

Corruption Error (CE). We de ne CEas the primary metric in comparing models' robustness. It
measures the relative robustness of candidate models compared to a baseline. Given Bl total of
distinct corruption types, theEandmCHEmean Corruption Error) scores are calculated as follows:

P (1 mAR) 1 X
CE = pi=t . mCE - CE; )
|3=1 (1 mAR9 N

wherei denotes the corruption type ahi the severity IevelmAﬁ,ﬁseis the baseline's accuracy score.

Resilience Rate (RR)We de neRRas the relative robustness indicator for measuring how much
accuracy a model can retain when evaluated on the corruption sets, which are calculated as follows:

P3
L, MAR LR
W, mRRE N RR; 2)
i=1

RR =
wheremAPea"denotes thenARcore of a candidate model on the “clean” evaluation set.

4 Experimental Analysis

4.1 Benchmark Con guration

Candidate Models. Our Bench encompasses a total 81 HD map constructors and their
variants,i.e, HDMapNet [25], VectorMapNet [ -], PivotNet [ 1], BeMapNet £(], MapTR [41],
MapTRv2 [17], StreamMapNet [Z] and HIMap [/ /]. The code of some other HD map methods
[36,64,22, 74,67, 47,4, 25,65, 72, 55] are not open source, thus will not be considered in this work.

Model Con gurations. We report the basic information of different models in Tab. 1, including input
modality, BEV encoder, backbone, training epoch, and their performance on the of cial nuScenes



Table 2: Ablation on the use of BEV encoders. 1apje 3: Ablation on the use of temporal fusion.

Method | Encode | AP, APy APy, mAP | mRR | mCE
MapTR 437 498 526 487 | 493 | 1000

Method | Temp | AP, APg. APy, mAP | mRR | mCE

BEVFormer

' . ' Y StreamMap 7 172 226 316 238 | 471 | 1000
D e e o e ey TR MR ‘21:4 274 352 280 ‘ 55:5 | 85:9
(a) Corruptc + Cleant. (b) CorruptL + Clean< (c) Corrupt< + CorruptL
Figure 4: The results cf -LIDAR fusion methods [4 1, 77] under multi-sensor corruptions.

validation set. Note that the LIiDAR-only models here take temporally aggregated LiDAR points as
the input, hence themARN “clean” data are much higher than those from other tables or gures,
where single-scan LiDAR points are utilized for a fair comparison with the corrupted data.

Evaluation Protocol. To ensure fairness, we use of cial model con gurations and public checkpoints
provided by open-sourced codebase whenever applicable, or re-train the model following default
settings. Furthermore, we report metrics for each corruption type by averaging over three severity
levels. We adopt MapTR/[|] under different con gurations (see Tab. 1) as our baseline for calculating
themCHnetric in Eq. 1, considering its wide adoption among state-of-the-art methods.

4.2 Camera-Only Benchmarking Results

We show the camera sensor corruption robustne8samera-only HD map models in Fig. = (a)-(b).

Our ndings indicate that existing HD map models exhibit varying degrees of performance declines
under corruption scenarios. Overall, the corruption robustness is highly correlated with the original
accuracy on the “clean” data, as the modelg{ StreamMapNet -], HIMap [7/]) with higher
accuracy also achieve better corruption robustness. We further show the accuracy comparisons of
camera-only methods under different corruption severity levels in Fig. 6. Based on the empirical
evaluation results, we draw several important ndings, which can be summarized as follows:

We observe that among all camera corrupti@sowdegrades performance the most, which poses
a signi cant threat to driving safety. The main reason is ®abwwill cover the road, causing the
map element to be unrecognizable. Besii@game LostandCamera Crashare also challenging
for all models, demonstrating the serious threats of camera sensor failures on camera-only models.

2) As shown in Fig. 2 (a)-(b), the two most robust models are StreamMapiNeafid HIMap [/ 7].
Although they achieve better robustness under various camera corruptions than other studied models,
the overall robustness of existing models is still relatively low. Speci callyntiRRRanges fromd0%

to 60% and the best HIMap/[/] model only yields56:6%. For more detailed experimental results in
terms of class-wis€ EandRR kindly refer to Tab. 14 to Tab. 17 in Sec. D in the Appendix.

4.3 LiDAR-Only Benchmarking Results

We report the LIDAR sensor corruption robustnesd 6fDAR-only HD map constructors in Fig.
(c)-(d) and Fig. ©. Similar to the observations of camera-only models, LIiDAR-only models that have
higher accuracy on the “clean” set generally achieve better corruption robustness. Key aspects are:

Among all corruptions,Snowand Cross-Sensor impair performance the most, posing a
signi cant threat to the robustness of LIDAR-only methods. More speci cally, B&tiowand
Cross-Sensor lead to more thaB0% performance drops for all LiDAR-only methods. The main
reason is thabnowcauses laser pulse re ections in LIDAR data. Besid&imss-Sensor shows that
the domain gap caused by variant LiDAR con gurations/devices reduces the performance greatly.



Figure 5: Qualitative assessment of camera-LiDAR fusion-based HD map construction under the
andLiDAR combined sensor corruptions. Kindly refer to Sec. - for additional examples.

2) Most models exhibit negligible performance drops undepmplete Echo. This corruption
type primarily affects data from vehicles or objects with dark colarg, [whereas the HD map
construction task concerns more on static map elements. Besides, although VectorMapNet [
achieves the bestRRnetric, it is not less accurate in termsroARompared to HIMap [77].

4.4 Camera-LiDAR Fusion Benchmarking Results

To systematically evaluate the reliability of camera-LiDAR fusion-based methods, we d&digres

of multi-sensor corruptions that perturb camera and LiDAR inputs separately or concurrently. The
results are presented in Fig. 4. Our ndings indicate that the camera-LiDAR fusion model exhibits
varying degrees of performance declines on different corruption combinations. The experimental
results reveal several interesting ndings, and we provide detailed analyses as follows:

In scenarios whera data is missing, thenARf MapTR [/ 1] and HIMap [/ /] dropped
by 40:0% and68:9%, respectively, posing a signi cant threat to safe perceptions. Bedtdasie
Lost causes a worse effect th@amera Crashin the performance of sensor fusion-based methods.
These observations verify that camera sensor failures signi cantly threaten HD map fusion models.

2) In scenarios whereiDAR data is missing, themARf MapTR [£1] and HIMap [/ 7] dropped by
42:1% and41:5%, respectively, showing the indispensability of the LiDAR sensor. Moreover, the
LiDAR Crosstalk andCross-Sensor corruptions affect the performance of camera-LiDAR fusion
the most. In contrast, the LiDARcomplete Echo corruption does not show a substantial impact
on model performance, which is consistent with the observation under LIDAR-only con gurations.

The results of -LiDAR combined corruptions lead to worse performance than its both
single-modality counterparts, highlighting the signi cant threats posed by both camera and LiDAR
sensor failures to HD map construction tasks. Moreover, regardless of the type of LIDAR corruption
combinedfFrame Lost has a more signi cant impact on the fusion model performance Gemera
Crash, underscoring the importance of multi-view inputs from the camera sensor. Among the three
types of LiDAR corruptionsCross-Sensor corruption affects the fusion model performance the
most. This pattern remains consistent even when combined with various types of camera corruptions,
illustrating the substantial threat posed by cross-con guration or cross-device LIDAR data input. We
provide some qualitative examples of HD map construction under various camera-LiDAR corruption
combinations in Fig. 5, which shows the performance decline under various corruptions.



Table 4: Ablation on the use of backbone nets.Table 5: Ablation on different training epochs.

Method | Back AP, APy AP, mAP mRR mCE Method | Epoch AP, APg. AP, mAP | mRR mCE
PivotNet R50 538 588 596 574 | 452 1000 MapTR 24 | 463 515 531 503 | 493 1000
PivotNet Ef-BO | 539 597 610 582 | 499 874 MapTR 110 56:2 59:8 60:1 58:7 | 49:3 80:9
PivotNet SwinT 58:7 63:8 64:9 62:5 50:8 77:8 PivotNet 30 | 587 638 649 625 | 508 1000

BeMapNet R50 577 623 594 598 | 50:3 1000 PivotNet 110 62:6 68:0 69:7 66:8 | 49:9 90:2
BeMapNet | Ef-BO | 560 622 590 591 | 539 940 BeMapNet 30 | 613 644 616 625 | 579 1000
BeMapNet SwinT 61:3 64:4 61:6 625 57:9 759 BeMapNet 110 64:6 689 675 670 | 56:7 89:2

Figure 6: ThemARnetrics of state-of-the-art HD map constructors under each of the three severity
levels Esay, Moderate, andHard) in different andLiDAR sensor corruption scenarios.

It is worth noting that although the performance of HIMap][is better than that of MapTR[]

under “clean” conditions, its robustness under corruption is relatively poorer. These observations
necessitate further research focused on enhancing the robustness of camera-LiDAR fusion methods,
especially when one sensory modality is absent or both the camera and LiDAR are corrupted.

5 Observation & Discussion

In this section, we analyze and discuss the impact of different model con gurations and techniques
that affect the robustness of HD map constructors, including different backbone networks, BEV
encoders, temporal information, training epochs, data augmentation enhancement, and so on.

Backbones.We rst comprehensively investigate the impact of backbone networks, with results pre-
sented in Tab. 4. Speci cally, we use three different backbones in PivoiNgapd BeMapNet (],
respectively. The results demonstrate that Swin Transforiigs[gni cantly retains model robust-

ness. As an example, compared with ResNet:5) the Swin Transformer/{-] backbone improves

the mCBf PivotNet [L1] and BeMapNet (] with 22:2% and24:1% absolute gains, respectively.

The results demonstrate that larger pretrained models tend to help enhance the robustness of feature
extraction under out-of-domain data, which is in line with the observation drawrvjr?[ 13, 10, 57].

Different BEV Encoders. We study several popular 2D-to-BEV transformation methods and show
the results in Tab. 2. Speci cally, we adopt the BEVForm&t][ BEVPool [46], and GKT [5] for

the camera-only MapTR![] model. The results demonstrate that MapTR] is compatible with
various 2D-to-BEV methods and achieves stable robustness performance. MoreoveRRbgults

of BEVPool [/ (] are inferior to those of BEVForme#r{] and GKT [1], verifying the effectiveness

of transformer-based BEV encoders on improving HD map model robustness. “pKdhjeves the
bestmCEwhich is possibly due to the integration of both geometry and view transformer methods.

Temporal Information. We investigate the impact of utilizing temporal cues on the robustness of
HD map models and show the results in Tab. 2. We examine two variants of StreamMagiNehp

with and one without the temporal fusion module. The results demonstrate that the temporal fusion
module can signi cantly enhance the robustness. miAdtesults here differ from those in Tab.

since StreamMapNet [] was retrained following the default settings of a new train/validation split,
whereas the results in Tab. 1 were obtained using the old train/validation split. It can be observed that
the model with temporal cues achiev&24% and14:1% absolute gains on theRRndmCHnetrics,



Table 6: Ef cacy of -based data augmerfable 7: Ef cacy of LIDAR-based data augmenta-
tation techniques on HD map model robustnes®mn techniques on HD map model robustness.

Method ‘ AP, APy AP,, mAP mRR ‘ mCE Method ‘ AP, APy AP, mAP ‘ mRR ‘ mCE

None| 456 501 523 493 | 411 | 1000 None | 266 317 418 334 | 551 | 1000

Rotate [27]| 446 505 540 497 | 381 | 1051 Dropout[9] | 284 310 425 339 | 569 98:9
Flip[37] | 447 530 534 504 | 387 | 1025 RTS-LIDAR [7] | 283 327 441 350 | 570 | 940
PhotoMetric [2]| 46:3 51:5 53:1 50:3 49:3 | 845 PolarMix [61] | 30:1 33:0 46:1 36:4 | 55:2 | 9355

respectively. This veri es that temporal fusion can provide additional complementary information
under sensor corruptions, thereby enhancing robustness against different sensor corruptions.

Training Epochs. In this setting, we study three HD map models (MapTH[PivotNet [ ], and
BeMapNet p(]) trained with different numbers of epochs, with results shown in Tab. 5. It can be
observed that training for more epochs signi cantly improves both performance on the “clean” set and
robustness to corruptions. For example, utilizing a longer training schedule enhances robustness in
mCHnetrics: MapTR {1] (+19:1%), PivotNet [ 1] (+9:8%), and BeMapNet'{(] (+10:8%). Notably,

the performance of these models on the “clean” set also improves as the training schedule lengthens,
suggesting that extended training allows the model to better learn the inherent patterns from the
dataset, thereby achieving better generalization performance on corrupted data [21].

Data Augmentations to Boost Corruption RobustnessWe investigate the effect of various data
augmentation techniques on the robustness of HD map models. As multi-modal data augmentation
remains an open issue, in this work, we focus on investigating the effects of image and LiDAR data
augmentation techniques. Speci cally, we study three distinct image data augmentation methods,
i.e. Rotate [ 7], Flip [27], and PhotoMetric{], and three distinct LiDAR-based data augmentation
methodsj.e. Dropout [)], RTS-LIDAR (Rotate-Translate-Scale for LiDAR} {], and PolarMix [>1].

For -based data augmentations, we choose MapTR-RA@E the baseline and show
results in Tab. 6. It can be observed that image augmentation methods moderately improve model
performance on the “clean” set. However, they do not consistently enhance model robustness. For
example, PhotoMetric[7] improves the robustness metricaRRANd mCEby 8:2% and 15:5%,
respectively, whereas Rotate/] and Flip [27] weaken the robustness. This discrepancy likely arises
from the fact that PhotoMetric:[] functions similarly to corruption augmentation for certain types,
such aBright andLow-Light , differing from other augmentation methods.

2) For LIDAR-based data augmentations, we choose the MapTR-LiDARrhodel due to its
superior robustness among all LiDAR-only models. The results of different LIDAR augmentations
are presented in Tab. 7. We observe that all LIDAR augmentations signi cantly improve the model
performance on the “clean” set. In particular, PolarMix][achieves 8:0% absolute performance

gain. Moreover, all LIDAR augmentation techniques are effective in enhancing the model robustness,
reducing the absoluteCEalues byl:1% for Dropout [’], 6:0% for RTS-LiDAR [27], and6:5% for
PolarMix [51], respectively. These results demonstrate the effectiveness of LIDAR augmentation
methods in improving the corruption robustness of LiDAR-only HD map construction methods.

6 Conclusion

In this work, we conducted the rst study of benchmarking and analyzing the reliability of HD
map construction methods under sensor corruptions that occur in real-world driving environments.
Our results reveal key factors that coped closely with the out-of-domain robustness, highlighting
crucial aspects in retaining satisfactory accuracy. We hope our comprehensive benchmarks, in-depth
analyses, and insightful ndings could help better understand the robustness of HD map construction
tasks and offer useful insights into designing more reliable HD map constructors in future studies.

Potential Limitation. While our benchmark encompasses an abundant number of sensor corruption
types, it is hard to cover the entirety of out-of-distribution contexts in real-world applications due to
their unpredictable complexity. Furthermore, our experiments con rm the ef cacy of standard data
augmentation techniques in enhancing robustness, offering promising results. Nonetheless, further
explorations into more advanced methods and network designs are warranted for future research.
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Appendix

This technical appendix provides additional details of the propo&sgeBench, as well as experi-
mental results that are omitted from the main body of this paper due to the page limit.

Speci cally, this appendix is organized as follows:

» Sec. A presents the detailed de nitions of our sensor corruption types.
» Sec. B provides additional implementation details of multi-sensor corruptions.
» Sec. C presents additional results on the temporally-aggregate LiDAR-only benchmark.

» Sec. D offers detailed experimental results in terms of the class@#aadRRscores for
camera-based and LiDAR-based HD map construction models.

» Sec. & provides the full benchmark con gurations.

» Sec. - displays additional qualitative examples of HD map construction under the camera
and LiDAR sensor corruptions.

» Sec. G discusses the limitation and potential societal impact of this work.

» Sec. H follows the NeurlPS Dataset & Benchmark guideline to document necessary infor-
mation about the proposed datasets and benchmarks.

» Sec. | acknowledges the use of public resources, during the course of this work.

A Sensor Corruption De nition

In this section, we provide detailed descriptions and con gurations of the camera and LIiDAR sensor
corruptions used in our benchmark. These corruptions are designed to simulate various real-world
conditions that autonomous driving systems may encounter.

A.1 Camera Sensor Corruptions

We detail the descriptions and severity level setup8fiypes of camera sensor corruptions][in
Tab. 8. These corruptions are:

» Bright andLow-Light : Simulate various lighting conditions to test the robustness of HD
map constructors in different illumination scenarios.

» FogandSnow Represent visually obstructive forms of precipitation, simulating extreme
weather conditions that can obscure the camera's view.

» Color Quantization : Reduces the number of colors in an image while preserving its
overall visual appearance, challenging the model's ability to handle color variations.

» Motion Blur : Occurs when the camera moves quickly, causing blurring in the captured
images.

e Camera CrashSimulates continuous loss of images from certain viewpoints due to camera
failure.

» Frame Lost: Represents random loss of frames over time, testing the model's resilience to
intermittent data loss.

Visualization examples of camera sensor corruptions under different severity EEasls Moderate,
andHard) are shown in Figure

A.2 LiDAR Sensor Corruptions

The detailed descriptions and severity level setup8 fgpes of LIDAR corruptions? /] are illustrated
in Table 9. These corruptions include:

» Fog Causes back-scattering and attenuation of LiDAR points, simulating foggy weather
conditions.
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Table 8: De nitions and severity level setups for the
the proposed

sensor corruption simulations in
Bench. A total of 8 distinct types of camera corruption are illustrated, includ-
ing 1Bright , 2Low-Light (Dark),3Fog, *Snow®°Color Quantization
(Motion), “Camera CrashCamera), an8Frame Lost (Frame).

(Quant),®Motion Blur

Type | Description | Parameter | Easy | Moderate | Hard
varying daylight | adjustmentin HSV 0:2 0:4 05
intensity space
varying daylight scale factor 0:5 04 0:3
intensity
a visually (thickness, (2:0, 2:0) (25, 1.5) (3:0, 1:4)
obstructive form smoothness)
of precipitation
a visually (mean, std, scale, (0:1, 0:3, (0:2,0:3,2, | (0:55,0:3, 4,
obstructive form | threshold, blur radius  3:0, 0:5, 0:5, 12, 4, 0:9, 12 8,
of precipitation blur std, blending 1G:0, 4:0, 0:7) 0:7)
ratio) 0:8)
reducing the bit number 5 4 3
number of colors
moving camera (radius, sigma) (15, 5) (15,12 (20, 15)
quickly
dropping view number of dropped 2 4 5
images cameras
dropping probability of frame 2= 4= 5=
temporal frames dropping

Wet Ground Results in signi cantly attenuated laser echoes due to water height and mirror

refraction rate.

Snow Similar toFog, it leads to back-scattering and attenuation of LIiDAR points.
Motion Blur : Caused by vehicle movement, blurring the LiDAR point cloud.
Beam Missing Simulates the loss of certain laser beams due to occlusion by dust and

insects.

Crosstalk : Creates noisy points within the mid-range areas between two (or multiple)
sensors, simulating interference.

Incomplete Echo: Represents incomplete LiDAR readings in some scan echoes.

Cross-Sensor : Arises due to the large variety of LIDAR sensor con gurations (e.g., beam
number, eld-of-view, and sampling frequency).

Visualization examples of LIDAR sensor corruptions under different severity lekaksy( Moderate,

andHard) are shown in Figure

B Multi-Sensor Corruptions

In this section, we provide detailed descriptions and con gurations of the combined camera-LiDAR

sensor corruptions used in our benchmark. These combined corruptions simulate scenarios where
both camera and LiDAR sensors are simultaneously affected by adverse conditions, providing a

comprehensive evaluation of the robustness of camera-LiDAR fusion models.

B.1 Camera-Only Corruptions

For

-only corruptions, we design three combinations to evaluate the impact on models when

only the camera input is affected:
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Figure 7: Visualizations of differerit sensor corruptions under three severity leviets,
Easy, Moderate, andHard, in our benchmark. Best viewed in color and zoomed in for details.

1. Unavailable Camera and Clean LIDAR Data This scenario simulates a complete
failure of the camera sensor while the LIDAR sensor remains fully operational.

2. Camera Crash and Clean LIiDAR Datdn this setup, the camera experiences intermit-
tent crashes, leading to continuous loss of images from certain viewpoints, while LiDAR
data remains unaffected.

3. Camera Frame Lost and Clean LiDAR Datarhis corruption simulates random loss
of camera frames over time, with the LiDAR sensor providing clean data.

The results of these experiments are shown in Tab. (a) and Tab. (a). Our ndings indicate
that camera-LiDAR fusion models exhibit varying degrees of performance decline under different
camera-only corruption scenarios.

Speci cally, when data is completely unavailable, theARf MapTR [/ 1] and HIMap [/ /]
dropped by40:0% and68:9%, respectively, highlighting the signi cant impact of camera sensor
failure on safe perception. Moreovérame Lostcauses a more severe performance degradation
compared taCamera Crashn fusion-based methods. For instance, whesme Lost corruption
occurs, the absolute decreases inrtifenetrics of MapTR { 1] and HIMap [/ /] are 26:2% and
48:1%, respectively. These observations underscore the vulnerability of HD map fusion models to
camera sensor failures.

B.2 LiDAR-Only Corruptions

For LIDAR-only corruptions, we design four combinations to assess the impact when only the LiDAR
input is affected:

1. Unavailable LIDAR and Clean Camera Data This scenario simulates a complete
failure of the LiDAR sensor while the camera sensor remains fully operational.

2. LIDAR Incomplete Echo and Clean Camera DataThis setup simulates incomplete
LiDAR readings in some scan echoes, with the camera providing clean data.

3. LIDAR Crosstalk and Clean Camera Data In this con guration, the LIiDAR sensor
experiences crosstalk, creating noisy points within the mid-range areas between multiple
sensors, while the camera data remains clean.
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Table 9: De nitions and severity level setups for thé&DAR sensor corruption simulations in
Bench. A total of 8 distinct types of LIDAR corruption are illustrated, in-
cluding *Fog, ?Wet Ground(Wet), 2Snow *Motion Blur (Motion), >Beam Missing (Beam),

5Crosstalk , “Incomplete Echo (Echo), and®Cross-Sensor (Sensor).

the proposed

Type | Description | Parameter | Easy | Moderate | Hard
Fog back-scattering beta 0:008 0:05 0:2
and attenuation o
LiDAR points
Wet signi cantly (water height, noise| (0:2, 0:2) (2:0, 0:3) (2:2,0:7)
attenuated laser oor)
echoes
Snow back-scattering (snowfall rate, (0:5, 2.0 (2:0, 1:6) (25, 1:6)
and attenuation of terminal velocity)
LiDAR points
Motion blur caused by trans std 0:2 0:3 0:4
vehicle
movement
Beam loss of certain | beam number to dro 8 16 24
light impulses
Crosstalk light impulses percentage 0:03 0:07 0:12
interference
Echo incomplete drop ratio 0:75 0:85 0:95
LiDAR readings
Sensor | cross sensor dat§ beam number to drof 8 | 16 | 20

4. LIDAR Cross-Sensor and Clean Camera Data This corruption simulates cross-
sensor issues due to varying LiDAR sensor con gurations (e.g., beam number, eld-of-view,
and sampling frequency), with the camera data being clean.

The results are presented in Tab. (b) and Tab. (b). WhehaR data is completely un-
available, themARf MapTR [£1] and HIMap [/ /] dropped by42:1% and 41:5%, respectively,
demonstrating the critical importance of LiDAR sensors in HD map construction. Additionally,
LiDAR Cross-Sensor andCrosstalk corruptions have the most signi cant impact on the per-
formance of camera-LiDAR fusion models. For instance ni#g¢metrics forCross-Sensor and
Crosstalk show absolute decreases2#9% and21:0% in the MapTR model, respectively. In
contrast, th&iDAR Incomplete Echo corruption does not substantially impact model performance,
aligning with observations under LiDAR-only con gurations.

B.3 Camera-LiDAR Corruption Combinations

We design six types of combined -LIDAR corruption scenarios that perturb both sensor
inputs concurrently, using the previously mentioned image and LiDAR sensor failure types:

1. Unavailable Camera and Unavailable LiDAR : Both camera and LiDAR sensors are
completely unavailable.

2. Camera Crash and LiDAR Crosstalk Simulates intermittent camera crashes and Li-
DAR crosstalk.

3. Camera Frame Lost and LIiDAR Incomplete EchoRepresents random loss of cam-
era frames and incomplete LIDAR echoes.

4. Low-Light Camera and LiDAR Cross-Sensor. Combines low-light conditions for the
camera and cross-sensor issues for LIDAR.

5. Motion Blur Camera and LiDAR Motion Blur: Both camera and LiDAR sensors ex-
perience motion blur.

6. Foggy Camera and Foggy LiDABoth sensors are affected by fog.
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Figure 8: Visualizations of differeritiDAR sensor corruptions under three severity leviets, Easy,
Moderate, andHard, in our benchmark. Best viewed in color and zoomed in for details.

The experimental results are shown in Tab. 10 (c) and Tab. 11 (c). The results indicate that combined
camera-LiDAR corruptions generally result in more severe performance degradation compared to
camera-only or LiDAR-only corruptions, demonstrating the compounded threats of sensor failures to

HD map construction tasks.

Moreover, in scenarios involving camera corruptidiigme Lost has a signi cantly worse impact

on fusion model performance th&amera Crashhighlighting the importance of continuous multi-

view inputs from the camera sensor. This impact is consistent across various LIiDAR corruption
types. Similarly, among the LIiDAR corruptionSross-Sensor affects fusion model performance

the most, irrespective of the camera corruption type, underscoring the substantial threat posed by
cross-con guration or cross-device LiDAR data input.

As shown in Tab. 10 (a)-(c) and Tab. 11 (a)-(c), camera-LiDAR fusion models consistently exhibit
superior robustness to corruptions compared to single-modality models, regardless of whether one or
both modalities are corrupted. These ndings highlight the necessity for further research focused on
enhancing the robustness of HD map camera-LiDAR fusion models, especially when one sensory
modality is compromised or both are affected by adverse conditions.

C Additional Results of Temporally-Aggregated LiDAR-Only Benchmark

In this section, we report the robustness of LIDAR sensor corruptions using temporally aggregated
LiDAR points as the input for three LiDAR-only HD map models. The detailed results are presented
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Table 10: The results of the MapTR ] model under different model con gurations and multi-sensor
corruptions in Bench.

Method | Modality | Camera | LiDAR | APped:  APgiy;  APpo:  MAP
MapTR[41]| C&L | X | X | 559 623 693 625
MapTR [41] C X 46:3 515 531 503
MapTR [41] C Camera Crash 180 145 124 15.0
MapTR [41] C Frame Lost 139 151 134 14:2

(a) MapTR [41]| C&L 7 X 150 182 344 225
MapTR[41]| C&L Camera Crash X 325 365 484 391
MapTR[41]| C&L Frame Lost X 291 337 461 363
MapTR [ ] L X 266 317 418 334
MapTR [41] L Incomplete Echo 26:3 299 40:6 323
MapTR [41] L Crosstalk 136 15.0 20:3 16:3
MapTR [41] L Cross-Sensor 35 6:6 89 6:4

(b) MapTR [41]| C&L X 7 20:7 274 131 204
MapTR [41]| C&L X Incomplete Echo 47:9 552 622 551
MapTR [41] C&L X Crosstalk 36.7 425 453 415
MapTR[41]| C&L X Cross-Sensor | 339 429 420 396
MapTR[41]| C&L Camera Crash} Incomplete Echo 324 356 478 386
MapTR[41]| C&L Camera Crash Crosstalk 197 216 269 227

(c) MapTR [41]| C&L Camera Crash Cross-Sensor | 184 208 232 208
MapTR[41]| C&L Frame Lost | Incomplete Echo 289 328 455 358
MapTR[41]| C&L Frame Lost Crosstalk 16:9 199 255 208
MapTR [41] C&L Frame Lost Cross-Sensor | 158 194 222 191

in Tab. 12 and Tab. 12. Notably, each table lists two mean Average PreaisidPvalues for each
model: the rst value corresponds to our re-trained model, and the second value is directly sourced
from the original paper. Our re-trained models generally perform better than or on par with the
originally reported results, validating the effectiveness of our re-training process. Since the authors of
the original models have not shared their pre-trained models, our re-trained versions are utilized in all
subsequent experiments.

To simulate corruptions, we independently corrupt each LiDAR frame and then temporally aggregate
the corrupted frames, mirroring the aggregation process used for clean data. However, it is important
to note that this method does not ensure temporal consistency, introducing a potential bias compared
to real-world corruptions. Temporally-aggregated LiDAR data were generated for ve types of
corruptions:Fog, Motion Blur , Beam Missing Crosstalk , andCross-Sensor. The remaining

three corruption types were not generated due to the unavailability of necessary information, such as
semantic labels for the LiDAR points.

Tab. 12 and Tab. 12 reveal that LiDARosstalk andCross-Sensor corruptions have the most
signi cant impact on the performance of LiDAR-only models. Consistent with observations from
single-frame LiDAR pointsCross-Sensor corruption impairs the models the most, highlight-
ing the substantial threat posed to the robustness of LiDAR-only HD map models. The LiDAR
Cross-Sensor corruption demonstrates that the domain gap caused by variations in LiIDAR con gu-
rations and devices signi cantly reduces model performance.

Moreover, the use of temporally inconsistent aggregated data does not fully align with real-world
scenarios, indicating an open issue in the generation of multi-moment LiDAR corruption data.
Addressing this gap is crucial for developing more realistic and effective benchmarks for evaluating
the robustness of LIDAR-only HD map models under temporal aggregation.

D Class-Wise CE and RR Results for Camera and LiDAR Models

In this section, we present detailed experimental results in terms of class-wise CalibratiorCEyrror (
and Robustness Rati®B for camera-based and LiDAR-based HD map construction models, as
shown in Tab. 14 to Tab. 17. Based on the empirical evaluation results, we derive several important
ndings, summarized as follows:

20



Table 11: The results of the HIMap [] model under different model con gurations and multi-sensor

corruptions in Bench.

Method | Modality | Camera | LiDAR | APped:  APgiy:  APpoy;  MAP
HIMap[/7]| C&L | X | X | 710 724 794 743
HIMap [/ 7] C X 622 66:5 679 655
HIMap [77] C Camera Crash 273 194 116 194
HIMap [/ 7] C Frame Lost 217 191 161 190

(@ HIMap[/7]| C&L 7 X 40:9 464 747 507
HIMap [77] C&lL Camera Crash X 36:3 277 209 283
HIMap [77] C&lL Frame Lost X 299 250 238 262
HIMap [77] L X 54:8 64:7 735 643
HIMap [77] L Incomplete Echo 354 41:1 52:7 431
HIMap [77] L Crosstalk 20:9 238 353 267
HIMap [77] L Cross-Sensor 7:8 10:2 144 10:8

(b)HIMap[/7]| C&L X 7 30:7 387 290 328
HIMap [77] C&lL X Incomplete Echo 59:1 637 699 64:2
HIMap [77] C&L X Crosstalk 54:1 575 634 583
HIMap [77] Cé&L X Cross-Sensor | 442 507 508 485
HIMap [77] C&L Camera Crashl Incomplete Echg 36:2 269 205 279
HIMap [77] C&lL Camera Crash Crosstalk 292 193 129 205

(c)HIMap [77] C&lL Camera Crash Cross-Sensor | 231 138 59 143
HIMap [77] C&lL Frame Lost | Incomplete Echg 299 244 235 259
HIMap [77] C&lL Frame Lost Crosstalk 236 189 180 202
HIMap [77] C&L Frame Lost Cross-Sensor | 17:7 143 112 144

For sensor corruption§nowcorruption signi cantly degrades model performance, posing

a major threat to autonomous driving as snow covers the road, rendering map elements unrecognizable.
Additionally, Frame Lost andCamera Crashcorruptions are highly challenging for all models,
underscoring the serious threats posed by camera sensor failures to camera-only HD map models.

2) For LIDAR sensor corruption§§nowandCross-Sensor corruptions notably impact robustness
performance. This indicates that weather conditions and sensor failure corruptions pose signi cant
threats to the robustness of LIiDAR-based HD map models. However, most models exhibit negligible
performance drops undémcomplete Echo corruption, primarily due to the minimal relevance
between this type of corruption and the HD map construction task.

Overall, our ndings highlight thaSnowcorruption among all camera and LiDAR corruptions
signi cantly degrades model performance. This corruption obscures the road, rendering map elements
unrecognizable and posing a substantial threat to autonomous driving. Additionally, sensor failure
corruptions, such asrame LostandIncomplete Echo, present serious challenges for all models,
demonstrating the critical threats that sensor failures pose to HD map models.

E Full Benchmark Con gurations

In this section, we provide the complete benchmarking results of the studied models. We report the
basic information for each model in Tab. 15, including input modality, BEV encoder, backbone, train-
ing epochs, and their performance on the clean nuScenes validation set. The detailed benchmarking
results are shown in Tab. 19 to Tab.

Generally, models with higher accuracy on the clean set tend to achieve better corruption robustness.
Speci cally, StreamMapNet[-] and HIMap [/ /] demonstrate the best robustness among camera-
only and LiDAR-only models, respectively. However, the overall robustness across all models
remains relatively low.

We hope that our comprehensive benchmarks, in-depth analyses, and insightful ndings will help
researchers better understand the robustness challenges in HD map construction tasks and provide
valuable insights for designing more reliable HD map constructors in future studies.
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Table 12: TheCECorruption Error) oLiDAR-only HD map modelstéking temporally-aggregated
LiDAR points as input) in Bench. Underlinedvalues are directly from the original paper.

Method | mAP | mCE | Fog | Motion | Beam | Crosstalk | Sensor
MapTR [41] | 56:2/55:6 | 1000 | 1000 | 1000 | 1000 | 1000 | 10000

VectorMapNet [43]| 40:5/34:0 | 1244 | 1794 | 633 1905 711 1175
MapTRv2 [42] | 61:0/615 | 897 | 809 1145 61:3 1168 74.8
HIMap[/7] | 643/643 | 701 | 633 770 54:3 831 731

Table 13: TheRR(Resilience Rate) dfiDAR-only HD map modelst@king temporally-aggregated
LiDAR points as input) in Bench. Underlinedvalues are directly from the original paper.

Method | mAP | mRR | Fog | Motion | Beam | Crosstalk | Sensor

MapTR[41] | 56:2/556 | 497 | 665 | 335 | 903 | 180 | 400
VectorMapNet [42]| 405/34.0 | 655 | 61.0 | 757 96:3 49:1 453
MapTRv2[42] | 610/615 | 489 | 669 25.0 954 9:2 483
HIMap[/7] | 643/643 | 545 | 702 | 393 931 234 46:4

F Qualitative Assessments

In this section, we provide additional qualitative examples of HD map construction under various
camera and LiDAR sensor corruptions in Fig. 9 - Fig. 17. These examples offer a visual comparison
of the performance of different models and highlight the impact of sensor corruptions on HD map
construction tasks. We include visualizations for several corruption types, demonstrating how
each type affects the perception and mapping capabilities of the models. The qualitative examples
are presented for both -only andLiDAR-only con gurations, as well as fof -

LIDAR fusion models. This comprehensive visual analysis aims to complement the quantitative
results discussed in the main paper and provide deeper insights into the robustness of HD map
construction models. Based on the qualitative results, we draw several important ndings, which can
be summarized as follows:

Among all qualitative examples of andLiDAR sensorSnowcorruption signi cantly
degrades model performance; it covers the road, rendering map elements unrecognizable and posing
a major threat to autonomous driving. Besides, sensor failure corrupgansHrame Lostand
Incomplete Echo) are also challenging for all models, demonstrating the serious threats of sensor
failures on HD map models.

2) The qualitative results ¢f -LIDAR combined corruptions lead to worse performance than

its both single-modality counterparts, highlighting the signi cant threats posed by both camera and
LiDAR sensor failures to HD map construction tasks. These observations necessitate further research
focused on enhancing the robustness of camera-LiDAR fusion methods, especially when one sensory
modality is absent or both the camera and LiDAR are corrupted.

G Limitation and Potential Societal Impact

In this section, we elaborate on the limitations and potential societal impact of this work.

G.1 Potential Limitations

While Bench provides a comprehensive benchmark for evaluating the robustness of HD map
construction methods, there are several limitations to consider:

» Scope of Corruptions: Although our benchmark includ&® types of sensor corruptions,
it may not cover all possible real-world scenarios. There could be additional adverse
conditions or sensor anomalies that were not included in this study, potentially limiting the
generalizability of our ndings.
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Table 14: TheCE(Corruption Error) ofcamera-onlyHD map models iriiapBench.

# | Method | mAP | mCE | Camera | Frame | Quant | Motion | Bright | Dark | Fog | Snow
- MapTR[41]| 5G:3 | 1000 | 1000 | 1000 | 1000 | 10000 | 1000 | 1000 | 1000 | 1000
1 HDMapNet [35] | 23:.0 | 1878 1421 1378 | 2032 1149 3355 | 1652 | 3080 | 955
2 | VectorMapNet[43]| 409 | 1485 1038 1075 1469 791 2394 | 1732 | 2347 | 1031
3 PivotNet [11] | 57:4 | 96:3 93.0 90:9 90:8 623 1027 | 1279 | 1053 | 976
4 PivotNet [11] | 582 | 841 94:5 92:6 75:2 51:5 826 1149 | 765 954
5 PivotNet [11] | 625 | 747 90:5 86:1 67:6 44:4 64:3 1005 | 555 889
6 PivotNet [11] | 66:8 | 689 829 793 62:3 350 52.0 1036 | 4438 90:9
7 BeMapNet [50]| 598 | 785 87:2 84:2 81:3 585 685 99:1 657 831
8 BeMapNet [50]| 591 | 736 884 874 76.9 430 687 77:8 748 719
9 BeMapNet [50]| 625 | 605 735 76:8 50:4 323 552 | 838 | 47:3 | 647
10 BeMapNet [50]| 67:7 | 548 69:2 721 | 474 26:2 409 | 77:3 | 384 | 665
11 MapTR [41] | 493 | 1254 1021 1006 1398 89:6 1879 | 1345 | 1494 | 993
13 MapTR [41] | 497 | 1334 107:6 1044 1418 81:8 2143 | 1519 | 1656 | 1000
14 MapTR [41] | 50:4 | 1284 1135 1077 1373 833 1944 | 1422 | 1460 | 1028
15 MapTR [41] | 587 | 809 820 831 59:3 833 56:6 1117 | 56.0 | 1053
16 MapTR [41] | 487 | 1030 1087 1062 1037 99.0 1072 | 978 | 1002 | 1012
17 MapTR [41] | 50:1 | 1022 1026 1006 1032 1088 1002 | 966 995 | 1058
18 MapTRv2 [42] | 615 | 726 87.0 851 585 711 526 65:9 514 | 1090
19 | StreamMapNet[/2] 634 | 648 1058 94:4 50:2 375 455 548 | 462 | 842
20 | StreamMapNet [/3] 238 | 1838 1402 1349 | 2185 1568 3151 | 1553 | 2477 | 1021
21 | StreamMapNet [/2] 280 | 1555 | 1177 1084 | 1794 1287 2626 | 1390 | 2025 | 1059
22 HIMap [/7] | 655 | 569 844 820 396 40:9 345 441 | 337 | 959

Table 15: TheRR(Resilience Rate) afamera-onlyHD map models invlapBench.

# | Method mAP mRR | Camera | Frame | Quant | Motion | Bright | Dark | Fog | Snow
- MapTR[41]| 503 | 493 | 299 | 283 | 707 | 470 | 887 | 455 | 769 | 7.7
1 HDMapNet [35] | 23:0 | 433 17:4 194 717 79.0 636 352 | 404 | 199
2 | VectorMapNet [43]| 409 | 406 331 293 631 70.6 59.9 186 | 435 | 638
3 PivotNet [11] | 57:4 | 452 299 292 637 59:8 761 290 | 655 | 81
4 PivotNet [11] | 582 | 499 288 280 70:5 66:4 821 330 | 757 | 149
5 PivotNet [11] | 625 | 50:8 289 291 69:3 66:5 837 366 | 802 | 121
6 PivotNet[11] | 66:8 | 499 304 301 653 681 825 328 | 796 | 102
7 BeMapNet [50]| 59:8 | 50:3 31:3 309 63:8 59.0 84:8 387 | 77:8 | 159
8 BeMapNet [50]| 59:1 | 539 30:7 297 67:2 711 857 485 | 747 | 231
9 BeMapNet [50]| 625 | 579 368 332 76:9 759 868 434 | 835 | 264
10 BeMapNet [50]| 67:7 | 567 36:5 331 719 754 87:2 431 | 825 | 236
11 MapTR [41] | 493 | 411 293 285 554 537 62:6 30:7 | 60:3 8:2
13 MapTR [41] | 497 | 381 26.0 262 539 57.3 554 235 | 549 | 76
14 MapTR [41] | 504 | 387 226 240 54:7 558 593 270 | 600 | 58
15 MapTR [41] | 587 | 493 344 31:8 71:2 46:2 90:9 333 | 830 37
16 MapTR [41] | 487 | 493 26.0 257 711 488 884 481 | 790 71
17 MapTR [41] | 50:1 | 481 284 279 69:2 426 884 474 | 770 | 41
18 MapTRv2 [42] | 615 | 514 30:6 297 738 50:5 89:4 526 | 825 1.7
19 | StreamMapNet[/3] 634 | 544 21:2 244 75.8 69:9 90:.0 570 | 826 | 143
20 | StreamMapNet [73] 238 | 47:1 21.0 241 714 50:7 78.0 469 | 711 | 134
21 | StreamMapNet [/2] 280 | 555 36.7 431 795 62:9 833 51:3 | 798 | 710
22 HIMap[/7] | 655 | 56.6 297 29.0 794 64:9 93.0 620 | 87:2 7:8

» Simulation vs. Real-World Data: The corruptions applied in our benchmark are simulated
to replicate real-world conditions. However, there may be discrepancies between simulated
corruptions and actual real-world sensor failures or adverse weather conditions, which could
affect the applicability of our results in real-world settings.

* Model and Dataset Diversity: Our benchmark include3l state-of-the-art HD map con-
structors, but it may not encompass the full diversity of available models and datasets. Future
work could expand the benchmark to include more varied models and datasets to provide a
more comprehensive evaluation.

» Temporal and Spatial Consistency:The benchmark focuses on the performance of models
under speci ¢ corruptions applied at individual frames. Evaluating the temporal and spatial
consistency of models under continuous adverse conditions remains an open challenge that
is not fully addressed in this work.
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Table 16: TheCE(Corruption Error) olLiDAR-only HD map models iriviapBench.

# | Method | mAP | mCE Fog | Wet | Snow | Motion | Beam | Crosstalk | Echo | Sensor
24 | MapTR[41] | 334 | 1000 | 1000 | 1000 | 1000 | 1000 | 10000 | 1000 | 1000 | 1000
25 MapTR[41] | 339 | 989 | 972 | 1003 | 964 989 1005 96:1 1021 995
26 MapTR[41] | 350 | 940 | 937 | 971 97.7 757 97.0 97:9 938 99:3
27 MapTR[41] | 364 | 935 | 991 | 925 | 1001 87:6 91:3 92:0 885 97:1
23 | VectorMapNet [43]| 316 | 949 | 1159 | 958 80:4 935 90:8 88:3 1043 90:3
28 MapTRv2 [42] | 453 | 746 | 697 | 659 97:6 64:8 64:1 1028 54:5 772
29 HIMap [77] | 443 | 731 | 757 | 803 | 798 63:2 735 66.6 595 862

Table 17: TheRR(Resilience Rate) dfiDAR-only HD map models iriiapBench.

# | Method | mAP | mRR | Fog | Wet | Snow | Motion | Beam | Crosstalk | Echo | Sensor
24 | MapTR[41]| 334 | 551 | 596 | 57:1 | 286 | 8L1 | 495 | 488 | 967 | 191
25 MapTR [41] | 339 | 569 | 629 | 57:8 | 324 832 49:8 52:8 96:8 198
26 MapTR [41] | 350 | 57:0 | 615 | 56:7 | 293 96:.0 495 479 96:4 188
27 MapTR[41] | 364 | 552 | 550 | 580 | 26:2 831 521 51:3 96:2 20.0
23 | VectorMapNet [42]| 316 | 634 | 496 | 641 | 503 91.0 60:9 624 99:2 30:0
28 MapTRv2 [42] | 453 | 572 | 630 | 650 | 227 814 615 340 987 309
29 HIMap [77] | 443 | 592 | 600 | 556 | 36:3 844 552 60:2 97:2 24:4

« Computation and Resource RequirementsRunning extensive benchmarks on multiple
models and corruption types is computationally intensive and resource-demanding. This
limitation may restrict the accessibility of the benchmark to research groups with signi cant
computational resources.

G.2 Potential Negative Societal Impact

While the development of robust HD map construction methods has the potential to signi cantly
advance autonomous driving technology, there are potential negative societal impacts that must be
considered:

» Privacy Concerns: HD maps rely on detailed environmental data, which may include
sensitive information about individuals and private properties. Ensuring the privacy and
security of collected data is crucial to prevent misuse and protect individuals' rights.

» Safety Risks: While our benchmark aims to enhance the robustness of HD map models,
there is a risk that reliance on these models could lead to overcon dence in autonomous
systems. Ensuring that these systems are deployed with appropriate safety measures and
human oversight is critical to prevent accidents and ensure public safety.

« Environmental Impact: The computational resources required to train and evaluate HD
map models have a signi cant environmental footprint. Promoting the use of energy-ef cient
algorithms and sustainable computing practices is important to mitigate the environmental
impact of this research.

* Bias and Fairness:The performance of HD map models may vary across different environ-
ments and conditions, potentially leading to biases in autonomous driving systems. Ensuring

that these models are trained and evaluated on diverse datasets is crucial to promote fairness
and prevent discriminatory outcomes.

H Datasheets

In this section, we follow the NeurlPS Dataset and Benchmark guideline and use the template from
Gebruet al. [14] to document necessary information about the proposed datasets and benchmarks.
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Table 18: Complete list ad81 HD map construction models evaluated\irapBench. Basic in-
formation of different models includes input modality, BEV Encoder, backbone, training epoch,
and performance on the clean nuScenes validation set. “L” and “C” represent LiDAR and camera,
respectively. “Ef -B0”, “R50”, “PP”, and “Sec” are short for Ef cientNet-BCG:[], ResNet50 [ ],
PointPillars 37] and SECOND §¢], respectivelyy denotes the result is reproduced with the released
model.z means that we modify the public code and obtain results with the model trained by ourselves.
ped; div:, andbou:are short for pedestrian-crossing, divider, and boundary, respectively.

# Method | Modal | Encoder | DataAug | Temp | Back Epoch APpeq:  APgy:  APpoy;.  MAP
1 HDMapNet [35]| C NVT 7 7 Ef-BO 30 144 217 330 230
2 VectorMapNet [/ 2] (3 IPM 7 7 R50 110 361 473 393 409
3 PivotNet [11] C PersFormer 7 7 R50 30 538 588 596 574
4 PivotNet [11] C PersFormer 7 7 Ef-BO 30 539 597 610 582
5 PivotNet [11] C PersFormer 7 7 SwinT 30 587 638 649 625
6 PivotNet [11] C PersFormer 7 7 SwinT 110 62:6 680 697 668
7 BeMapNet [50] C IPM-PE 7 7 R50 30 577 623 594 598
8 BeMapNet [50] (3 IPM-PE 7 7 Ef-BO 30 56.0 622 590 591
9 BeMapNet [50]| C IPM-PE 7 7 SswinT 30 613 644 616 625
10 BeMapNet [50] (3 IPM-PE 7 7 SwinT 110 64:4 690 697 677
11 MapTR:[41]| C GKT 7 7 R50 24 456 501 523 493
12 MapTR [41] (3 GKT PhotoMetric 7 R50 24 46:3 515 531 503
13 MapTR%[41]| C GKT Rotate 7 R50 24 446 505 540 497
14 MapTR%$ [41] C GKT Flip 7 R50 24 447 530 534 504
15 MapTR [41] C GKT PhotoMetric 7 R50 110 56:2 598 601 587
16 MapTR* [41] Cc BEVFormer | PhotoMetric 7 R50 24 437 498 526 487
17 MapTRt[41]| C BEVPool | PhotoMetric| 7 R50 24 449 51:9 535 501
18 MapTRv2 [47] (3 BEVPool PhotoMetric 7 R50 24 59:8 624 624 615
19 | StreamMapNet[/3] C BEVFormer | PhotoMetric| 7 R50 30 617 663 621 634
20 | StreamMapNett [ C BEVFormer | PhotoMetric 7 R50 30 17:2 226 316 238
21 | StreamMapNet¥ [ C BEVFormer | PhotoMetric| X R50 30 214 274 352 280
22 HIMap [/ 7] C BEVFormer | PhotoMetric 7 R50 24 62:2 665 67.9 655
23 VectorMapNet [+ ] L — 7 7 PP 110 257 376 386 340
24 MapTR [41] L — 7 7 Sec 24 485 537 647 556
25 MapTR%t [41] L — Dropout 7 Sec 24 495 553 664 57.0
26 MapTR$ [41] L — RTS-LiDAR 7 Sec 24 487 56:2 66:9 573
27 MapTR$ [41] L — PolarMix 7 Sec 24 537 575 695 60:2
28 MapTRv2 [47] L — 7 7 Sec 24 56:6 581 69:8 615
29 HIMap¥ [/ /] L — 7 7 Sec 24 548 64:7 735 64:3
30 MapTR [71]| C&L GKT PhotoMetric 7 R50 & Sec 24 559 623 69:3 625
31 HIMap[//] | C&L | BEVFormer| PhotoMetric 7 R50 & Sec 24 710 724 794 743

H.1 Motivation

The questions in this section are primarily intended to encourage dataset creators to clearly articulate
their reasons for creating the dataset and to promote transparency about funding interests. The latter
may be particularly relevant for datasets created for research purposes.

1.“For what purpose was the dataset created?”

The dataset was created to facilitate relevant research in the area of HD map construction
robustness under out-of-distribution sensor corruptions.

2.“Who created the dataset (e.g., which team, research group) and on behalf of which entity?”

The dataset was created by:
- Xiaoshuai Hao (Samsung R&D Institute China—Beijing),
- Mengchuan Wei (Samsung R&D Institute China—Beijing),
- Yifan Yang (Samsung R&D Institute China—Beijing),
- Haimei Zhao (The University of Sydney),
- Hui Zhang (Samsung R&D Institute China—Beijing),
- Yi Zhou (Samsung R&D Institute China—Beijing),
- Qiang Wang (Samsung R&D Institute China—Beijing),
- Weiming Li (Samsung R&D Institute China—Beijing),
- Lingdong Kong (National University of Singapore),
- Jing Zhang (The University of Sydney).

3.“Who funded the creation of the dataset?”

The creation of the dataset is funded by related af liations of the authors in this work,
i.e, Samsung R&D Institute China—Beijing, the National University of Singapore, and the
University of Sydney.
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Table 19: ThanARnetrics of differentamera-onlyHD map models iriapBench.

17 MapTRT [ 50:1 14:2 14:.0 34:7 213 443 237 | 386 | 20
18 | MapTRv2 [4”]| 615 | 188 | 182 | 453 | 310 549 | 323 | 507
19 | StreamMapNet[/3] 634 134 155 481 44:3 57.0 361 | 524 | 91

# | Method | Clean | Camera | Frame | Quant | Motion Bright | Dark | Fog | Snow
1| HDMapNet[35]| 230 | 46 | 51 | 189 | 208 | 167 | 93 | 106 | 52
2 | \VectorMapNet[42]| 409 | 139 | 123 | 266 | 297 252 | 7.8 | 183 | 29
3 PivotNet [11] | 57:4 17:1 16:7 364 341 435 165 | 374 4.6
4 PivotNet [11] | 582 16:6 16:2 40:7 384 475 191 | 437 | 86
5 PivotNet [11]| 625 17:8 18.0 428 41.0 517 226 | 495 75
6 PivotNet [11] | 66:8 20:2 200 434 452 54:8 21:8 | 529 6:8
7 BeMapNet [50]| 59:8 188 185 381 353 50:7 232 | 465 9:6
8 BeMapNet [50]| 591 18:2 17:6 397 42.0 50:7 287 | 442 | 137
9 BeMapNet [50]| 625 22:9 20:7 48.0 47:4 54:2 271 | 521 | 165
10 BeMapNet [50]| 67:7 245 22:2 482 505 584 289 | 553 | 159
11 MapTR% [41] | 493 14:5 141 273 265 30:9 151 | 297 | 4.0
12 MapTR [41] | 50:3 15.0 14:2 354 235 44:3 227 | 385 3.8
13 MapTR% [41]| 497 12:9 130 26:8 285 275 117 | 273 | 38
14 MapTRt [41] | 504 11:4 121 276 281 299 136 | 30:2 2:9
15 MapTR [41] | 587 204 189 423 274 539 197 | 492 2:2
16 MapTRt [41] | 487 12.7 125 34:6 238 431 234 | 385 | 34

]

1

=
[

20 | StreamMapNett [ 238 5:0 5:7 17:.0 12:1 186 11:2 | 169 | 32
21 | StreamMapNett [ 280 10:3 121 22:3 17:6 233 144 | 223 2.0
22 | HIMapt[//]| 655 | 194 | 190 | 520 | 425 609 | 406 | 571 | 51

H.2 Composition

Most of the questions in this section are intended to provide dataset consumers with the information
they need to make informed decisions about using the dataset for their chosen tasks. Some of the
guestions are designed to elicit information about compliance with the EU's General Data Protection
Regulation (GDPR) or comparable regulations in other jurisdictions. Questions that apply only to
datasets that relate to people are grouped together at the end of the section. We recommend taking a
broad interpretation of whether a dataset relates to people. For example, any dataset containing text
that was written by people relates to people.

1.“What do the instances that comprise our datasets represent (e.g., documents, photos, people,
countries)?”

The instances that comprise the dataset are mainly images and LiDAR point clouds
captured by the camera and LIiDAR sensors, respectively, providing visual representations
of outdoor driving scenes observed.

2.“How many instances are there in total (of each type, if appropriate)?”

The dataset contains a total 28 types of corruptions that occur from cameras and
LiDAR sensors, including types of camera corruption8 types of LiDAR corruptions, and
13types of multi-sensor corruptions.

3.“Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set?”
Yes, our dataset contains all possible instances that have been collected so far.
4."ls there a label or target associated with each instance?”
Yes, each instance in our dataset is associated with a label for either the RGB image or
LiDAR point cloud.
5.“Is any information missing from individual instances?”
No.
6.“Are relationships between individual instances made explicit (e.g., users' movie ratings,
social network links)?”
Yes, the relationship between individual instances is explicit.
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Table 20: TheAReq: metric of differentcamera-onlyHD map models iri Bench.

# Method | Clean | Camera | Frame | Quant | Motion = Bright | Dark | Fog | Snow
1| HDMapNet [35]| 144 | 95 | 69 | 152 | 158 | 127 | 82 | 81 | 37
2 | \VectorMapNet[42]| 361 | 166 | 126 | 242 | 271 232 | 66 |166| 09
3 PivotNet [11] | 538 242 19:2 339 319 40:8 125 | 350 1.8
4 PivotNet [11] | 539 230 178 384 353 44:6 142 | 418 | 27
5 PivotNet [11] | 587 252 20:3 40:.0 36.0 489 189 | 473 | 22
6 PivotNet [11] | 626 290 236 40:6 399 51:8 182 | 512 | 33
7 BeMapNet [50]| 57:7 245 211 357 317 477 17:8 | 439 54
8 BeMapNet [50]| 56:0 22.8 19.0 37.0 369 473 237 | 401 4.4
9 BeMapNet [50]| 613 26:5 225 448 436 526 238 | 509 | 123
10 BeMapNet [50]| 644 290 242 44:6 46.0 559 248 | 533 | 101
11 MapTR% [41] | 456 184 147 22:7 24:6 26:3 122 | 258 | 22
12 MapTR [41] | 46:3 180 139 312 220 396 17.8 | 348 2.0
13 MapTR% [41]| 446 174 136 221 26.7 233 72 | 241 | 30
14 MapTR% [41] | 447 16:9 124 22:8 265 24:2 90 | 260| 23
15 MapTR [41] | 56:2 229 188 384 26.6 498 144 | 46:3 0:5
16 MapTRt [41] | 437 17:3 134 30:6 24:2 391 194 | 351 | 27
17 MapTRt [41] | 449 183 14:.0 293 201 389 185 | 334 1:2
18 | MapTRv2 [4”]| 598 | 258 | 200 | 438 | 310 535 | 294 | 497 | 06
19 | StreamMapNet[/3] 617 20:6 177 46:3 42:8 557 336 | 51.,5 6:9
20 | StreamMapNett [ 17:2 4:4 4:0 11:8 6:8 11:3 54 | 129 | 08
21 | StreamMapNett [ 21:4 8:3 10:3 177 12:8 157 109 | 187 0:9
22 | HIMapt[/7] | 622 | 273 | 217 | 486 | 412 574 | 364 | 533 | 26

7."“Are there recommended data splits (e.qg., training, development/validation, testing)?”
Yes, we provide detailed data splits for our dataset.
8.“Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)?”
Yes, our datasets are self-contained.
9.“Does the dataset contain data that might be considered con dential (e.g., data that is

protected by legal privilege or by doctor—patient con dentiality, data that includes the
content of individuals' non-public communications)?”

No, all data are clearly licensed.
10."Does the dataset contain data that, if viewed directly, might be offensive, insulting, threaten-
ing, or might otherwise cause anxiety?”
No.

H.3 Collection Process

In addition to the goals outlined in the previous section, the questions in this section are designed to
elicit information that may help researchers and practitioners create alternative datasets with similar
characteristics. Again, questions that apply only to datasets that relate to people are grouped together
at the end of the section.

1.“How was the data associated with each instance acquired?”
Please refer to the details listed in Sec.
2.“What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses
or sensors, manual human curation, software programs, software APIs)?”
Please refer to the details listed in Sec.
3.“If the dataset is a sample from a larger set, what was the sampling strategy (e.g., determin-
istic, probabilistic with speci ¢ sampling probabilities)?”
Please refer to the details listed in Sec.
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Table 21: TheAR;,: metrics of differentamera-onlyHD map models ini Bench.

# | Model | Clean | Camera | Frame | Quant | Motion Bright | Dark | Fog | Snow
1| HDMapNet [35]| 217 | 34 | 46 | 164 | 177 | 140 | 65 | 89 | 42
2 | \VectorMapNet[42]| 473 | 173 | 153 | 304 | 344 290 | 88 |222| 37
3 PivotNet [11] | 588 158 16:2 355 334 426 190 | 375 | 58
4 PivotNet [11] | 597 175 17.0 400 387 470 21:7 | 433 | 108
5 PivotNet [11] | 638 177 181 42:4 424 524 244 | 496 | 86
6 PivotNet [11] | 680 197 20.0 435 471 556 240 | 534 8.2
7 BeMapNet [50]| 623 181 182 384 36:5 52:9 26:3 | 491 9:6
8 BeMapNet [50]| 622 16.6 16:7 40:3 44:3 533 308 | 461 | 167
9 BeMapNet [0]| 64:4 216 201 50:1 49:8 558 292 | 540 | 176
10 BeMapNet [50]| 69:0 22:5 21:6 50:1 533 59:8 319 | 566 | 184
11 MapTR% [41] | 501 157 154 283 258 318 158 | 3L1| 46
12 MapTR [41] | 515 145 151 365 232 462 244 | 399 4.7
13 MapTR% [41] | 505 128 139 271 283 26:8 130 | 283 | 40
14 MapTR% [41] | 530 111 138 289 282 314 162 | 320 | 33
15 MapTR [41] | 59:8 211 201 435 271 556 21:8 | 51.9 2.5
16 MapTRt [41] | 498 125 131 34:8 234 431 251 | 396 | 35
17 MapTRt [41]| 519 145 15:2 361 221 459 26:2 | 409 1:6
18 MapTRv2 [47]| 624 181 186 451 306 547 331 | 505 | 1.0
19 | StreamMapNet[/2] 66:3 141 169 505 46.7 60:2 396 | 557 | 97
20 | StreamMapNett [ 22:6 5:7 6:1 16:3 133 17:9 124 | 168 | 31
21 | StreamMapNett [ 274 10:3 11:4 215 184 236 150 | 224 1.9
22 | HIMapt[//]| 665 | 194 | 191 | 530 | 431 622 | 429 | 597 | 61

H.4 Preprocessing, Cleaning, and Labeling

The questions in this section are intended to provide dataset consumers with the information they
need to determine whether the “raw” data has been processed in ways that are compatible with their
chosen tasks. For example, text that has been converted into a “bag-of-words" is not suitable for tasks
involving word order.

1.“Was any preprocessing/cleaning/labeling of the data done (e.qg., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)?”

Yes, we preprocessed and cleaned data in our dataset.
2.“"Was the ‘raw' data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)?”
Yes, raw data is accessible.

3."Is the software that was used to preprocess/clean/label the data available?”
Yes, the necessary software used to preprocess and clean the data is publicly available.

H.5 Uses

The questions in this section are intended to encourage dataset creators to re ect on tasks for which
the dataset should and should not be used. By explicitly highlighting these tasks, dataset creators can
help dataset consumers make informed decisions, thereby avoiding potential risks or harms.

1.“Has the dataset been used for any tasks already?”
No.

2.“Is there a repository that links to any or all papers or systems that use the dataset?”
Yes, we provide such links in our GitHub repository.

3.“What (other) tasks could the dataset be used for?”

The dataset could be used for relevant perception, tracking, and planning tasks based on
camera and LiDAR sensors.
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Table 22: TheAR,o,: metric of differentcamera-onlyHD map models iri Bench.

# Method | Clean | Camera | Frame | Quant | Motion = Bright | Dark | Fog | Snow
1| HDMapNet[35]| 330 | 08 | 38 | 249 | 288 | 236 | 131 | 148 | 738
2 | VectorMapNet[42]| 393 | 80 | 91 | 251 | 277 235 | 81 |161| 40
3 PivotNet [11] | 59:6 11:2 14:6 397 371 47.0 181 | 397 6:1
4 PivotNet [11] | 610 94 138 439 411 50:8 21:4 | 462 | 124
5 PivotNet [11] | 64:9 10:6 155 46.0 44:8 538 245 | 51,5 | 117
6 PivotNet [11] | 697 117 16:5 461 48.6 56.9 232 | 540 8.9
7 BeMapNet [50]| 594 136 16:2 40:3 37.8 51:5 254 | 466 | 137
8 BeMapNet [50]| 590 150 169 | 419 | 449 51:4 | 316 | 463 | 199
9 BeMapNet [50]| 616 20:6 195 49:2 486 541 283 | 51:14 | 195
10 BeMapNet [50]| 697 22.0 20:8 498 523 594 300 | 560 | 191
11 MapTR% [41]| 523 9:4 12:0 310 290 34:5 174 | 323 | 54
12 MapTR [41] | 531 12:4 134 383 252 473 26.0 | 407 4.8
13 MapTR% [41]| 540 8:6 115 31:2 30:4 325 148 | 294 | 43
14 MapTR% [41] | 534 6:1 101 3L1 29:8 341 157 | 326 | 32
15 MapTR [41] | 60:1 17:1 17:8 449 284 56:3 231 | 494 3.5
16 MapTRt [41] | 526 8:3 11:0 385 237 47.0 258 | 408 | 41
17 MapTRt [41] | 535 10.0 12:8 386 218 48.0 265 | 415 3:3
18 | MapTRv2 [47]| 624 | 125 | 161 | 471 | 314 56:6 | 345 | 51.8 | 1.6
19| StreamMapNet[/3] 621 | 55 | 119 | 474 | 435 | 553 | 352 | 499 | 105
20 | StreamMapNett [ 316 4.9 7.0 22:8 16.0 265 157 | 21:2 56
21 | StreamMapNett [ 352 122 145 277 217 307 173 | 259 | 32
22 \ HIMapt [77] \ 67:9 \ 11:6 \ 16:1 \ 54:5 \ 433 632 \ 424 \ 584 \ 6:6

4."|s there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses?”

N/A.

5.“Are there tasks for which the dataset should not be used?”
N/A.

H.6 Distribution

Dataset creators should provide answers to these questions prior to distributing the dataset either
internally within the entity on behalf of which the dataset was created or externally to third parties.

1.“Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created?”

No.
2.“"How will the dataset be distributed (e.g., tarball on website, API, GitHub)?”
Very likely to be distributed by website, API, and GitHub repository.
3.“When will the dataset be distributed?”
The datasets are publicly accessible.
4.“Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?”
Yes, the dataset is under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License.
5.“Have any third parties imposed IP-based or other restrictions on the data associated with
the instances?”
No.
6.“Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances?”
No.
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Table 23: ThéAReq: , ARiv: , ARyou: , andmARmetrics ofLiDAR-only models in Bench.

# | Method | Metric | Clean | Fog | Wet Snow | Motion Beam | Crosstalk | Echo Sensor
23 | VectorMapNett [43]| APpeg; | 26:8 | 133 | 146 | 109 24:8 14:9 152 272 6:6
23 | VectorMapNett [43]| APgiy: 325 | 163 | 221 | 170 296 212 205 319 109
23 | VectorMapNett [43]| APpou: 354 | 174 | 241 | 199 320 217 235 34:8 10:8
23 | VectorMapNett [43]] mAP 316 | 157 | 20:3 | 159 288 192 197 313 9.5
24 MapTR¥ [41] | APpeg: 266 | 158 | 134 57 217 11:3 136 26:3 35
24 MapTR% [41] | APgiyv: 317 | 194 | 178 83 254 157 15.0 29.9 6:6
24 MapTR% [41] | APpou: 41:8 | 245 | 260 148 34:2 22:6 20:3 40:6 8.9
24 MapTR% [41]| mAP 334 | 199 | 191 9:6 271 16:5 16:3 32.3 6:4
25 MapTR% [41]| APpeq: | 2714 | 17:6 | 138 | 6:8 229 12:6 12:8 271 4:9
25 MapTR% [41] | APgiy: 300 | 188 | 17:2 83 24:3 14:3 155 279 5:8
25 MapTR% [41] | APpou: 415 | 256 | 259 | 169 349 22:3 237 405 8:8
25 MapTR% [41]| mAP 339 | 207 | 190 | 107 274 16:4 17:4 318 6:5
26 MapTR% [41] | APpeg: 283 | 177 | 141 6:4 27:1 125 136 27:6 4:4
26 MapTR% [41] | APgiv: 327 | 204 | 187 8.7 312 16:1 151 30:8 6:8
26 MapTR% [41] | APpou: 441 | 264 | 268 159 42:4 234 215 42:8 85
26 MapTR%f [41]| mAP 350 | 215 | 198 103 336 17:3 16:8 337 6:6
27 MapTR% [41] | APpeg: 301 | 179 | 160 6:3 257 14.0 159 299 4:4
27 MapTR% [41] | APgiv: 330 | 183 | 187 71 26:4 16:8 156 30:8 6:7
27 MapTR% [41] | APpou: 46:1 | 238 | 286 | 151 385 26:1 245 44:3 107
27 MapTR% [41]| mAP 364 | 200 | 211 9.5 30:2 19.0 187 350 7.3
28 MapTRv2% [47] | APpeg: 385 | 239 | 217 6:4 319 21:4 11:4 39.0 9:3
28 MapTRv2t [42] | APgiy: 435 | 27.0 | 288 6:4 336 26:3 116 41.9 12.:6
28 MapTRv2% [42] | APpou: 540 | 346 | 379 181 45.0 358 232 532 20:1
28 MapTRv2% [42]| mAP 453 | 285 | 295 103 369 279 154 447 14.0
29 HIMapt [77] | APpeg: 358 | 230 | 166 85 314 186 20:9 354 7.8
29 HIMapt [77] | APgy- 433 | 262 | 237 | 148 35:2 22:8 238 411 10:2
29 HIMapt [/ 7] | APpou: 540 | 305 | 336 | 251 456 319 353 52.7 144
29 HIMapt [/7] | mAP 443 | 266 | 246 | 161 374 24:4 26.7 431 10:8

H.7 Maintenance

As with the questions in the previous section, dataset creators should provide answers to these
guestions prior to distributing the dataset. The questions in this section are intended to encourage
dataset creators to plan for dataset maintenance and communicate this plan to dataset consumers.

1.“Who will be supporting/hosting/maintaining the dataset?”
The authors of this work serve to support, host, and maintain the datasets.
2.“"How can the owner/curator/manager of the dataset be contacted (e.g., email address)?”
The curators can be contacted via the email addresses listed on our webpage
3.“Is there an erratum?”
There is no explicit erratum; updates and known errors will be speci ed in future versions.
4.“Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)?”
No, for the current version. Future updates (if any) will be posted on the dataset website.
5.“Will older versions of the dataset continue to be supported/hosted/maintained?”
Yes. This is the rst version of the release; future updates will be posted and older
versions will be replaced.
6.“If others want to extend/augment/build on/contribute to the dataset, is there a mechanism
for them to do so?”
Yes, we provide detailed instructions for future extensions.
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Figure 9: Qualitative assessment of camera-only HD map construction undesthera sensor
corruptions. Best viewed in color and zoomed in for details.
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Figure 10: Qualitative assessment of LiDAR-only HD map construction underifheR sensor
corruptions. Best viewed in color and zoomed in for details.
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Figure 11: Qualitative assessment of camera-LiDAR fusion-based HD map construction under the
andLiDAR combined sensor corruptions. Best viewed in color and zoomed in for details.
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Figure 12: Qualitative assessment of camera-only HD map construction undésiinea sensor
corruptions. Best viewed in color and zoomed in for details.
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Figure 13: Qualitative assessment of LiDAR-only HD map construction underifheR sensor
corruptions. Best viewed in color and zoomed in for details.
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Figure 14: Qualitative assessment of camera-LiDAR fusion-based HD map construction under the
andLiDAR combined sensor corruptions. Best viewed in color and zoomed in for details.
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Figure 15: Qualitative assessment of camera-only HD map construction undésiinea sensor
corruptions. Best viewed in color and zoomed in for details.
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