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Abstract

Generative modelling paradigms based on denoising diffusion processes have
emerged as a leading candidate for conditional sampling in inverse problems. In
many real-world applications, we often have access to large, expensively trained
unconditional diffusion models, which we aim to exploit for improving conditional
sampling. Most recent approaches are motivated heuristically and lack a unify-
ing framework, obscuring connections between them. Further, they often suffer
from issues such as being very sensitive to hyperparameters, being expensive to
train or needing access to weights hidden behind a closed API. In this work, we
unify conditional training and sampling using the mathematically well-understood
Doob’s h-transform. This new perspective allows us to unify many existing meth-
ods under a common umbrella. Under this framework, we propose DEFT (Doob’s
h-transform Efficient FineTuning), a new approach for conditional generation that
simply fine-tunes a very small network to quickly learn the conditional h-transform,
while keeping the larger unconditional network unchanged. DEFT is much faster
than existing baselines while achieving state-of-the-art performance across a variety
of linear and non-linear benchmarks. On image reconstruction tasks, we achieve
speedups of up to 1.6×, while having the best perceptual quality on natural images
and reconstruction performance on medical images. Further, we also provide initial
experiments on protein motif scaffolding and outperform reconstruction guidance
methods.

1 Introduction

Denoising diffusion models are a powerful class of generative models where noise is gradually added
to data samples until they converge to pure noise. The time reversal of this noising process then
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Figure 1: DEFT reverse diffusion setup. The pre-trained unconditional diffusion models�
t and the

�ne-tunedh-transformh�
t are combined at every sampling step. We propose a special network to

parametrise theh-transform including the guidance termr x̂ 0 ln p(y jx̂ 0) as part of the architecture.
Herex̂ 0 denotes the unconditional denoised estimate givens�

t (x t ). During training, we only need
to �ne-tuneh�

t (usually4-9%the size ofs�
t ) using a small dataset of paired measurements, keeping

st
� �xed. During sampling, we do not need to backpropagate through either model, resulting in

speed-ups during evaluation.

allows noise to be transformed into samples. This process has been widely successful in generating
high-quality images [28] and has more recently shown promise in designing protein backbones
that have been validated in experimental protein design work�ows [77]. Recently, there has been
much interest inconditioningthe time reversal process, in order to generate samples that are subject
to an observed condition. Conditional sampling requires the posterior scorer x ln pt (x jY = y),
given some observationy . As diffusion models typically approximate the score of the underlying
distribution, i.e.,s� �

t (x ) � r x ln pt (x ), a pre-trained diffusion model can be leveraged using Bayes'
theorem

r x ln pt (x jY = y) � s� �

t (x ) + r x ln pt (Y = y jx ); (1)

to approximate the posterior score. The time-dependent likelihoodr x ln pt (Y = y jx ) is often
termedguidancedue to its interpretation to guide the reverse process to the conditioned inputs, and is
unfortunately analytically intractable. To tackle this problem, several approximations for theguidance
have been proposed; see, for example, [12, 22, 29, 56, 65, 69] and further discussion in Appendix B.
Instead of relying on the decomposition(1), another line of work aims to learn the posterior score
directly [5, 27], which requires expensive training for new conditional sampling tasks, and access to
large amounts of paired data points.

In the setting of conditional generation with diffusion models, our primary goal is to leverage large
pre-trained foundation models which are prevalent in applications, but which typical front-end users
are not able to backpropagate through, making approaches like [12, 22] infeasible. This might be
due to their prohibitive computation times or because they lie behind an API preventing the usage of
autodiff frameworks.

In this work, we propose a uni�ed framework for conditional generation using Doob'sh-transform, a
well-known result in the stochastic differential equations (SDE) literature [14, 55, 61, 78]. Under
this framework, we propose DEFT(Doob's h-transform Ef�cient FineTuning), an algorithm that
estimates the time-dependent likelihood directly from data, i.e.,h� = r x ln pt (Y = y jx ), while
being able to leverage an existing pre-trained unconditional model. We learn the guidance term
(h-transform) ef�ciently using 1) smaller networks, and 2) a small training dataset of paired data
points and corresponding observations. Furthermore, through connections to stochastic control, we
propose a novel network architecture for general-purpose �ne-tuning, which, in conjunction with our
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proposed loss, achieves competitive results across a series of inverse problems in imaging and protein
design, while having a much lower computational cost.

2 Conditioning diffusions via theh-transform

In this section, we explore the formal mechanism to condition the boundary points of an SDE
mathematically, and connect it to existing methodologies for conditioning diffusions in generative
modelling. For a more rigorous background to denoising diffusion models, see Appendix A. Let us
�rst recap the score-based generative modelling framework of [68]; we start with a forward SDE,
which progressively transforms the target distributionP0 (e.g.P0 = pdata )

dX t = f t (X t ) dt + � t dW t ; X 0 � P 0; (2)

with drift f t and diffusion� t . Under some regular assumptions, there exists a corresponding reverse
SDE with corresponding drift�bt [2], that allows us to take samples fromPT (typically N (0; I )) and
denoise them to generate samples fromP0,

dX t =
�
f t (X t ) � � 2

t r X t ln pt (X t )
�

dt + � t dW t ; X T � P T ; (3)

where the time �ows backwards, and�bt = f t (X t ) � � 2
t r X t ln pt (X t ). The goal of conditional

sampling is to condition the reverse SDE on a particular observation, i.e., to produce samples that
satisfy constraints. For example, we might want to use(3) to generate samples where we already
know some dimensions of the sample (e.g. knowing some pixels of the image a-priori in image
inpainting). Doob'sh-transform [55, 14] provides a formal mechanism for conditioning an SDE to
hit an event at a given time. We will show that existing methods for conditional generative modelling
arise as approximate instances of this proposed framework. Formally, we have:
Proposition 2.1. (Doob'sh-transform [55]) Consider the reverse SDE in Eqn.(3). The conditioned
processX t jX 0 2 B is a solution of

dH t =
�

bt (H t ) � � 2
t r H t ln p0j t (X 0 2 B jH t )

�
dt + � t dW t ; H T � P T ; (4)

with a backward drift bt (H t ) = f t (H t ) � � 2
t r H t ln pt (H t ), such thatLaw (H s jH t ) =

psj t; 0(x s jx t ; x 0 2 B ) andP(X 0 2 B ) = 1 .

Note, that we will refer to the conditional process withH t and to the unconditional process withX t .
Doob'sh-transform shows that by conditioning a diffusion process to hit a particular eventX 0 2 B
at a boundary time, the resulting conditional process is itself an SDE with anadditional drift term
(shown in the blue box above). Furthermore, the resulting SDE will hit the speci�ed event within a
�nite time T. The functionh(t; H t ) , P0j t (X 0 2 B j H t ) is referred to as theh-transform[55, 14].
See also Appendix C.3 for a discussion about the connection to reconstruction guidance methods.

Rather than conditioning an SDE on a deterministic event, one is often interested in a posterior arising
from noisy observations (e.g. noisy inverse problems)

Y = noisy(A (X 0)) ; X 0 � pdata ; (5)

whereA is a forward operator, “noisy” describes a noise process and unlike the classicalh-transform,
we are not enforcing a deterministic condition such asA(X 0) = Y . We typically assume we can
evaluate and sample from the likelihoodp(y jX = x 0). Our goal is to sample from the posterior
p(x 0jY = y ) = p(y jx 0)pdata (x 0)=p(y ). Sampling from the posteriorp(x 0jY = y ) can be
achieved by a generalisation of theh-transform that build on results in [75], given as follows:

Proposition 2.2. (Generalisedh-transform) Given the following backwards SDE with marginalspt

dX t = bt (X t ) dt + � t dW t ; X T � PT ; (6)

then it follows that the backward SDE

H T � Qf t
T [p(x 0jy )] =

Z
pT j0(x jx 0)p(x 0jy )dx 0

dH t =
�

bt (H t ) � � 2
t r H t ln py j t (Y = y jH t )

�
dt + � t dW t ; (7)
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satis�esLaw (H 0) = p(x 0jY = y ) with py j t (Y = y j�) =
R

p(Y = y jx 0)p0j t (x 0j�)dx 0. We

recover guidance based diffusions viabt (H t ) = f t (H t ) � � 2
t r H t ln pt (H t ).

HereQf t
T [� (x 0)] =

R
pT j0(x jx 0)� (x 0)dx 0 is the transition operator of the forward process. Note,

that the initial distributionQf t
T [p(x 0jy )] of the controlled SDE differs from the unconditional SDE.

However, in Proposition G.2 we show that for the VP-SDE the difference between them gets
exponentially small for increasingT. To summarise, the above result gives a generalisation of the
h-transform that allows sampling from posteriors; notice that it recovers the traditionalh-transform
in the no-noise setting. Whilst this more general formulation of theh-transform has been explored in
unconditional generative modelling [78], this is the �rst work to cast conditional generative modelling
in this light. We refer to the term in blue as thegeneralisedh-transformhenceforth.

Proposition 2.2 provides theoretical backing to methodologies such as DPS [12] or � GDM [65],
in which the reverse SDE(7) is used to solve noisy inverse problems. For a careful derivation of
Proposition 2.2 see Appendix D. While prior works have explored using Bayes' rule to decompose the
conditional score, we provide rigorous arguments for intermediate steps, and carefully formalise the
connection between conditional generative modelling and theh-transform, providing a concise result.
This framework is �exible enough to also encompass prior work on conditional score matching, see
e.g., [5, 27], and the discussion Appendix H.

3 Learning the generalisedh-transform

Prior works either learn the posterior score from scratch, see e.g. [5, 27], or use approximations to
the generalisedh-transform, see e.g. [12, 32]. Instead, we propose a method to learn the generalised
h-transform. We refer to this process as �ne-tuning, as the pre-trained unconditional network remains
unchanged and only the approximation to the generalisedh-transform is learned. Our main result is
given in the following theorem, where we give several representations of the generalisedh-transform.

Theorem 3.1. (Representations of conditional SDE sampling) For a giveny � noisy(A (x 0)) , let
Q be the path measure of the conditional SDE

dH t =
�
f t (H t ) � � 2

t (r H t ln pt (H t ) + ht (H t ))
�

dt + � t dW t ; (8)

whereH T � Qf t
T [p(x 0jy )]. The generalisedh-transforms admits the following representations:

1) The path measure induced by theh-transformed SDE satis�esdQ� = d Pdp(x 0 j y )
dP0

, whereP
is the path measure of the unconditioned SDE andP0 is it's time0 marginal.

2) Theh-transform admits adenoising score matchingrepresentation

h�
t = arg min

h t 2H
L y

SM(ht )

L y
SM(ht ) := E

X 0 � p(x 0 j y )
t � U(0 ;T ) ;H t � pt j 0 (x t j x 0 )

� 




 (ht (H t )+ r H t ln pt (H t )) �r H t ln pt j0(H t jX 0)








2
�

3) Theh-transform admits the followingstochastic controlformulation

h�
t = arg min

h t 2H

(

L y
SC(ht ) := EQ

"
1
2

Z T

0
� 2

t jjht (H t )jj2dt

#

� EH 0 � Q0 [ln p(y jH 0)]

)

;

whereQ is the path measure for the conditional SDE being controlled.

4) The path measure induced by theh-tranformed SDE solves the a Schrödinger bridge
problem with boundary conditionsQ0 = Qf t

T [p(x 0jy )] � N (0; I ), QT = p(x 0jy ) and
with the unconditional processP as its reference.

Here, 4) and 1) follow directly from [7, 73]. For the proof 2) see Appendix D.2 and for 3) see
Appendix G. Under appropriate conditions on the likelihood, the space of admissible controlsH
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can be taken to be the set ofC1-vector �elds with linear growth in space; see [48]. In the following
sections, we will discuss the representations in 2) and 3) in more detail.

3.1 DEFT: Fine-tuning by score matching

The score matching objective in Theorem 3.1 2) offers a simulation-free loss function to estimate the
generalisedh-transform. While the theorem's formulation focuses on learning theh-transform for
a speci�c measurementy , this loss function can naturally be extended and amortized over the full
range of measurements, i.e.,

min
h2H

Ey � Y [L y
SM(h)]; (9)

to obtainh�
t (x ; y ) = r x ln pt (y jx ). Further, for settings where the operator may vary, we can

additionally amortise over the forward operatorA � p and learnh�
t(x ; y ; A ) = r x ln pt (y jx ; A ).

We exploit this to amortise over inpainting masks, see Section 4.1, and motif scaffolding, see
Section 4.3. For the DDPM [28] discretisation of the SDE and a pre-trained epsilon matching model
� � �

t , the �ne-tuning objective (9) reduces to

min
�

E(X 0 ;Y ) ;�;t

h
k(h�

t (H t ; Y ) + � � �

t (H t )) � � k2
i

; (10)

with H t =
p

�� t X 0 +
p

1 � �� t � , (X 0; Y ) � p(x 0; y ); � � N (0; I ), whereh�
t represents the neural

network used to approximate the generalisedh-transform. Note that the loss function(10) only
requires evaluation of the pre-trained model, without needing to backpropagate through the weights
� � , which is often quite expensive and sometimes impossible in closed APIs. Training under the
DDPM discretisation can be performed according to Algorithm 5. Sampling with DEFT is further
explained in Algorithm 6, and pictorially represented in Figure 1. As an additional insight into the
behaviour of theh-transform that makes it more �exible and capable of modelling non-linear tasks
than standard reconstruction guidance methods, we show that theh-transform can be interpreted as a
correction term for the Tweedie estimate [20]. We can express the conditional Tweedie's estimate as

E[x 0jx t ; y ] � x̂ 0(x t ; y )

=
x t �

p
1 � �� t

�
h� �

t (x t ; y ) + � � �

t (x t )
�

p
�� t

= x̂ 0(x t ) �
p

1 � �� tp
�� t

h� �

t (x t ; y );
(11)

wherex̂ 0(x t ) is the unconditional Tweedie estimate. Equation(11)highlights that theh-transform
can also be interpreted as a correction factor to the unconditional denoised estimate, similar to [52, 80].

3.2 Connections to variational inference and stochastic control

A limitation to the �ne-tuning objective with DEFT is that it requires a small dataset of paired
datapoints and measurements. In this section, we propose an alternative approach by expressing
the solution to the conditional sampling problem as a stochastic optimal control objective, which is
highlighted in Theorem 3.1 3). This allows us to learn theh-transform by optimising a variational
inference-type problem. Importantly, this stochastic control objective only requires the availability
of a single noisy observationy instead of a paired �ne-tuning dataset. Further, the stochastic
control objective can even be used in other conditional sampling tasks, for example in reward tilted
distributions, i.e. where the goal is to sample from� (x ) / er (x ) pdata(x ). Hereer (x ) serves the same
purpose as the likelihood, but there is no explicit measurementy [18].

However, the stochastic control objective is not directly applicable for high-dimensional training, as
the complete chainf H t gt must be kept in memory and backpropagated through or adjoint methods
have to be used [36]. In Appendix G.3, we discuss several alternatives and present experiments
for scaling up the above objective, e.g., methods like VarGrad [53] and Trajectory Balance [42].
VarGrad allows to detach the trajectory from the gradient computation, drastically reducing the
memory footprint. We discuss concurrent work in G.1 and G.2. Further, we show initial experiments
for conditional sampling in G.4. The stochastic control objective serves as a conceptual bridge
between sampling from unnormalised densities using diffusion models [74, 75, 81] and conditional
score-based generative modelling.

5



3.3 Likelihood-informed inductive bias

If the likelihood is differentiable, we can impose an inductive bias on theh-transform approximation.
Speci�cally, the generalizedh-transform can be expressed as an expectation, and we can apply the
DPS approximation [12] as follows

r x t ln py j t (y jx t ) = r x t ln Ex 0 � p(x 0 j x t ) [p(y jx 0)] � r x t ln p(y jE[x̂ 0jx t ])

� r x t ln p(y jx̂ 0(x t )) ;

where we use Tweedie's estimate based on the pre-trained unconditional diffusion model in the last
step. The DPS approximation has been validated in many different conditional sampling tasks, so it
would make for a good initialisation of the learnedh-transform. However, the DPS approximation
requires the Jacobian of the unconditional model, which is expensive to compute and known to be
poorly conditioned. Further, in applications where we only have access to the forward pass of the
unconditional model, the Jacobian is infeasible to compute. Similar to [50], we found that omitting
this term still leads to an expressive architecture, while greatly reducing the computational cost. Thus,
we propose the following network architecture

h�
t (x t ; y ) = NN�

1 (x t ; x̂ 0(x t ); r x̂ 0 ln p(y jx̂ 0(x t )) ; t) + NN�
2 (t)r x̂ 0 ln p(y jx̂ 0(x t )) ; (12)

to parametrise theh-transform, where the last layer ofNN�
1 is initialised with0 andNN�

2 is initialised
to output1. This initialisation provides a computationally ef�cient approximation to theh-transform,
which still guides the sampling.

This type of network architecture has been proposed within the sampling community to apply
diffusion models to normalising constant estimation [49, 74, 81]. The theoretical connection to
stochastic control in Section 3.2, motivates us further to adapt the architectures from the sampling
�eld to the conditional generative modelling setting. We ablate the different components of our
proposed architecture in Appendix F.1 and �nd that the additional components greatly improve
performance empirically.

4 Experiments

We evaluate the DEFT framework from Section 3.1 on both linear and non-linear natural and medical
image reconstruction tasks, as well as the motif scaffolding problem in protein design. Further, in
Appendix H.2 we provide a comparison of the conditional training framework with DEFT on the
FLOWERS [47] image dataset. We provide our codehttps://github.com/alexdenker/DEFT .

4.1 Image reconstruction

We test a wide variety of both linear and non-linear image reconstruction tasks on the256� 256px
ImageNet dataset [58]. We make use of a pre-trained unconditional diffusion model with� 500M
parameters [16]2. We perform all our evaluations on a1k subset of the validation set3. For all inverse
problems under consideration, theh-transform was trained on a separate1k subset of the validation
set. For linear inverse problems, we compare against� GDM [65], DDRM [32], DPS [12] and
RED-diff [44]. Additionally, we evaluate I2SB [39]. The performance of I2SB can be seen as an
upper-bound to DEFT, as it is a conditional diffusion trained on the complete ImageNet dataset. For
non-linear tasks, we only compare against DPS and RED-diff as both� GDM and DDRM are not
directly applicable to non-linear forward operators. For DEFT we make use of the DDIM sampling
scheme with100time steps [64]. For the comparison methods we used the same hyperparameters as
in [44] without further tuning, including the number of sampling steps (1000 for DPS and RED-Diff,
20 for DDRM and 100 for� GDM).

We compute PSNR and SSIM, which are commonly used distortion measures, along with perceptual
metrics such as Learned Perceptual Image Patch Similarity (LPIPS) [83], Kernel Inception Distance
(KID) [ 8], and top-1 classi�er accuracy of a pre-trained ResNet50 model [26]. There is a well-known
tradeoff between optimising distortion metrics versus perceptual quality, and depending on the task,
one may wish for better performance along one axis at the cost of the other. For natural image tasks

2Checkpoints are available athttps://github.com/openai/guided-diffusion
3https://bit.ly/eval-pix2pix
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