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Abstract

Diffusion models are powerful generative models, and this capability can also be
applied to discrimination. The inner activations of a pre-trained diffusion model can
serve as features for discriminative tasks, namely, diffusion feature. We discover
that diffusion feature has been hindered by a hidden yet universal phenomenon
that we call content shift. To be specific, there are content differences between
features and the input image, such as the exact shape of a certain object. We locate
the cause of content shift as one inherent characteristic of diffusion models, which
suggests the broad existence of this phenomenon in diffusion feature. Further
empirical study also indicates that its negative impact is not negligible even when
content shift is not visually perceivable. Hence, we propose to suppress content
shift to enhance the overall quality of diffusion features. Specifically, content shift
is related to the information drift during the process of recovering an image from
the noisy input, pointing out the possibility of turning off-the-shelf generation
techniques into tools for content shift suppression. We further propose a practical
guideline named GATE to efficiently evaluate the potential benefit of a technique
and provide an implementation of our methodology. Despite the simplicity, the
proposed approach has achieved superior results on various tasks and datasets,
validating its potential as a generic booster for diffusion features. Our code is
available at this url.

1 Introduction

Diffusion models (DMs) [15, 34] are a prevalent family of generative models for various tasks [36, 35,
25]. This strong generative capability can be applied to discrimination [21]. Diffusion Feature (DF),
a popular approach, extracts inner activations from a pre-trained diffusion model as vision features [ 1,
50, 60, 57, 37, 62], similarly to how ResNet [14] serves as a feature extractor. Extracting features
with a vastly pre-trained diffusion model grants this approach strong robustness and generalizability.
Furthermore, it enjoys the philosophy of hitchhiking, a solid research paradigm in the age of large
base models [44]: advancements in diffusion models can all be transformed into better feature quality.
It promises this research direction a bright future.
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Figure 1: Current diffusion features widely suffer from content shift, i.e., content differences between
inputs and features. Due to the inherent connection, content shift can be suppressed with off-the-shelf
generation techniques.

Have we already obtained satisfying diffusion features? The original role of diffusion models,
generation, has provided an inspiring perspective. There is an endless pursuit among AIGC players’
for better control over generation [17, 58, 53, 28]. This implies the inherent difficulty in controlling
diffusion models: their generation results may not be exactly the same as intended. Will this property
of diffusion models also affect the quality of diffusion features? We visualize some diffusion features
in Figure 1 and find that they do contain detail differences from inputs, which might hinder the
performance. We name this phenomenon content shift, i.e., content differences between diffusion
features and the input image. Although we have just shown an example with very obvious content
shift, it is in fact intentionally amplified for observation. Under more practical feature extraction
settings, the magnitude of content shift would be significantly weaker for visual perception. In
Section 4, however, empirical results show that even in such cases, the negative impact of content
shift on discrimination is not negligible, indicating the necessity to suppress it for diffusion features
of better quality.

In pursuit of a method to suppress content shift, we need to further investigate why this phenomenon
exists. We notice in Section 4 that the diffusion backbone reconstructs clean inner representations
from noisy inputs in the middle of UNet before predicting noises based on the reconstructed content.
The diffusion features we are using are in fact the reconstructed representations, which answers
why we can obtain clean features from noisy images. However, since high-frequency details are
potentially blurred out by noises and then recovered by “imagination”, this reconstruction process
inherently suffers from the risk of drifting from the original image. Content shift in diffusion features,
naturally, is the reflection of such drift during reconstruction. Consequently, to suppress content
shift, we need an additional way to directly introduce the original clean image into the reconstruction
process and steer it towards the original image. To our delight, we notice that many off-the-shelf
image generation techniques for diffusion models [58, 28, 53] also work by injecting additional
information into UNet and thus steering the reconstruction. Through careful evaluation of the effect
of generation techniques, we are able to select some techniques that can directly satisfy the goal of
suppressing content shift, which eases the implementation and extension of our method. To guide the
efficient evaluation of generation techniques, we also propose a guideline in Section 5. This method
is denoted as GenerAtion Techniques Enhanced (GATE) diffusion feature and its effect is also shown
in Figure 1.

To validate GATE, we implement it (Section 5) by choosing three techniques from a few highly popular
generation techniques. Since the integrated techniques can benefit from feature amalgamation [24, 62]
more than previous approaches, this method is also adopted in our implementation. Although this
is a very simple implementation, it achieves impressive performance on various tasks and datasets
(Section 6). It demonstrates the effectiveness and potential of GATE, as more techniques can still be
evaluated, and there will be even more as diffusion models develop.

In summary, the contribution of this work is as follows:

2https://civitai.com/
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* To the best of our knowledge, we are the first to reveal and systematically analyze the universal,
harmful, yet hidden phenomenon, content shift, in diffusion features.

* We point out the possibility of utilizing off-the-shelf generation techniques for content shift
suppression and propose the GATE guideline to facilitate technique integration.

* Comprehensive experiments on two discriminative tasks validate the effectiveness of our method.

2 Related Work

The introduction to diffusion models can be found in [6]. In this section, we solely focus on diffusion
features. So far, the research topics in this direction fall into two categories: task exploration and
method improvement, i.e., applying the paradigm to different tasks and studying the approach itself
for better feature quality, respectively.

Task exploration. There have been attempts on semantic segmentation [, 50], semantic correspon-
dence [57, 37, 22], hyperspectral image classification [62], domain generalization [9], training data
synthesizing [45, 55], zero-shot referring image segmentation [30], visual grounding [23], a novel task
involving personalization [47], co-salient object detection [48], and open-world segmentation [38].
This extensive and extending list shows the discriminative capability of DMs.

Method improvement. The way to enhance diffusion features can be divided according to the three
important factors of a diffusion model: prompt, layer, and timestep. In a basic pipeline, the prompt is
manually designed and simple, the layer only refers to the activations between convolutional blocks,
and the timesteps are manually set. (i) To enhance the use of prompt, a typical improvement is prompt
tuning [50, 60, 57, 22], which equivalently fine-tunes the text encoder along with the downstream
discriminative task. Another novel method is auto-captioning [19], replacing manual prompt design
with an automatic captioner. (ii) To dig more information out of UNet layers, researchers choose to
additionally take attention layers into consideration. However, we find that cross-attention is more
frequently used [50, 60, 57, 30] while self-attention is less popular [47]. (iii) As for better usage of
timesteps, [62] proposes to extract features from many timesteps and dynamically assign weights to
them, while [52] employs reinforcement learning for better timestep selection.

Of the two directions, our work aims for better methods instead of new tasks. Furthermore, most
existing diffusion feature approaches suffer from content shift, an example of which is the visualization
of attention features in Figure 1. Therefore, our GATE can serve as a generic performance booster to
other diffusion feature approaches, showing its potential for broad application.

3 Preliminaries: Diffusion Feature

Diffusion models consist of a neural network module and a diffusion scheduler. The network is
an end-to-end network, which can be formally denoted as , where is the parameters. The
diffusion scheduler is the core of diffusion models. With the scheduler, diffusion models generate
images progressively, during which the network module is re-used on each timestep, each time only
predicting an incremental noise. Generally, we use a smaller / larger timestep to indicate less /
more noises. A typical generation process starts from t = T (total noises) and ends at t = 0 (clean
images).

Next, we will explain how features are extracted using a common pipeline for diffusion features, with
the visual illustration in Figure 2. Given an input image X 2 R® "™ W where h; w are height and
width, the extraction process includes: (i) A pre-trained VAE encodes the input image into the latent
space, inducing Xy 2 R* h" W 45 a common practice presented in [34, 33]. (ii) X acts as the input
of the forward diffusion process, i.e., timestep t = 0. As suggested in [1], it is beneficial to extract
diffusion features at non-zero timestep. Following this practice, we set t = 50 and get X¢. (iii) X¢,
along with the timestep t and a textual prompt C, is sent into the pre-trained diffusion UNet , i.e.,

(X¢; t; ). The generation techniques selected by our method are also applied here to modify ;c.
(iv) Convolutional and attention features are gathered during the computation of the backbone. For
convolutional features, we gather the output activations of each resolution in the upsampling stage of
the UNet. For attention features, we obtain the mean value of the similarity maps between query and
key in all cross-attention layers.
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Figure 2: The overall process of feature extraction. The original image is first processed into UNet
inputs via VAE and noise addition. Afterward, we collect the output activations of each resolution in
the upsampling stage as convolutional features. At the same time, the cross-attention layers of UNet
produce similarity maps, which are averaged over all upsampling layers as attention features.
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Figure 3: The averaged results over three repeats with quality prompts. Horse-21 (high quality) and
CIFAR10 (low quality) benefit from prompts closer to the image quality, suggesting the negative
effect of content shift at small timesteps.

4 Exploration of Content Shift

4.1 Impact of Content Shift

In Figure 1, we can qualitatively observe content shift from feature visualization. However, this
visualization is intentionally amplified for better observation by extracting features at large timesteps.
Now we aim to examine the impact of content shift on quantitative performance under more practical
scenarios, i.€., when timesteps are small. To this end, we need to toggle the magnitude of content
shift in features. Describing the quality of the image is a widely adopted way to control generation.
A prompt accurately describing the quality of input images is considered to suppress content shift,
while intentionally describing something different from the image will cause more severe content
shift. We select the semantic segmentation task [1] as an example of high-quality images and image
classification on CIFAR10 [20] for low-quality images. The results in Figure 3 seem counter-intuitive
at first glance, as low-quality prompts surprisingly can improve the performance on CIFAR10, but
this in fact complies with the quality of input images. Therefore, these results can demonstrate the
negative impact of content shift on feature quality at small timesteps.
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Figure 4: Content shift is caused by the reconstruction process within diffusion model activations.
This visualization consists of activations obtained during a single network forward pass.

4.2 Cause of Content Shift

After the negative impact of content shift is confirmed, we next aim to find its cause. Unlike
more conventional feature extractors such as ResNet [14], the inputs to diffusion models are not
the original image (Figure 4(a)), but its noisy version (Figure 4(b)), as enforced by the diffusion
process [15]. The early layers of diffusion models even further add more noise to the feature maps
(Figure 4(c)). However, the diffusion UNet gains the ability from vast pre-training to reconstruct
clean inner representations from noisy inputs (Figure 4(d)), roughly at the middle of the UNet
structure. Additionally, the shortcut structures in UNet also help the reconstruction by passing
some high-frequency details. Afterward, the diffusion UNet will further predict noises based on the
reconstructed representations (Figure 4(e)).

Notably, the diffusion features we are using are in fact the reconstructed representations, which
answers why clean diffusion features can be obtained even though the inputs are noisy. Despite the
reconstruction ability, however, many high-frequency details are potentially blurred out by input
noises, and thus their reconstruction is mostly based on “imagination". This leads to possible drift
from the original image during reconstruction [7]. Naturally, the content shift phenomenon in
extracted diffusion features reflects the drift during reconstruction. Consequently, content shift is
an inherent characteristic of diffusion models and diffusion features, which suggests its broad
existence across models and timesteps.

5 Suppression of Content Shift

5.1 Utilization of Generation Techniques

According to the cause of content shift, we need to steer the reconstruction process back to the
original image to suppress content shift. While it is viable to design new methods for this purpose,
we find it also possible and more efficient to adopt off-the-shelf generation techniques. Specifically,
as an inherent characteristic of diffusion models, content shift affects not only features but also the
original generative purpose of diffusion models. Hence, there have been techniques for generation
that are already capable of toggling content shift by steering reconstruction [7, 58]. For example,
ControlNet [58] introduces an additional reference image and steers reconstruction by directly
modulating activations, pushing the reconstructed representation towards the reference image. It
inspires us to utilize ControlNet in a different way: we can set the same input image simultaneously
as the reference image, enforcing the recovered image to be more similar to the input one and thus
suppressing content shift. Similarly, it is possible to adopt other generation techniques to suppress
content shift.

Furthermore, utilizing off-the-shelf generation techniques is more consistent with the intuition of
diffusion feature than designing a new method. Specifically, this field is dependent on the generative
capability of diffusion models, and thus it is important to stay updated with new advancements in
the generation field. Utilizing techniques from the generation field helps with this goal, while a
method that is newly designed solely for diffusion feature might hinder it. Considering it, we decide
not to devise new methods, but to develop more detailed guidelines for suitably integrating these
off-the-shelf generation techniques.

We next illustrate the guidelines for utilizing off-the-shelf generation techniques. In the field of
generation, the abundant techniques may not all be suitable for suppressing content shift, suggesting
the necessity of examining the effect of a given technique on feature quality. Although it is possible



Figure 5: Overview of the GATE guideline and our implementation. GATE evaluates if a technique
can suppress content shift based on the result of Img2lmg generation. If a techniqgue makes the result
more similar to the input, it is considered to be potentially helpful. We further implement GATE by
choosing three off-the-shelf generation techniques and amalgamating features obtained with different
combinations of the techniques.

to make empirical and quantitative examinations on discriminative tasks, a more ef cient evaluation
protocol would be preferable. To this end, we propose the GATE guideline for technique evaluation,
which is presented in Figure 5 along with other components of the framework. To avoid having
to integrate a technique into the feature extraction pipeline before knowing its potential, we utilize
Img2Ilmg generation as an alternative for evaluation:

(i) Gather an Img2Img generation result as the reference image, done with high repainting strength
to amplify content divergence for observation.

(i) Apply the technigue to be evaluated and perform another Img2lmg generation. If the technique
requires parameters, they should be set such that the output could be more similar to the input.

(i) If the new output is more similar to the input than the reference image, the technique is
considered able to suppress content shift in diffusion features.

5.2 Quantitative Evaluation

We have also developed a quantitative metric for evaluating generation techniques. We set feature
extracted at = 0 as referencEEAT s 2 R® " W asiitis less affected by noises. Then we use the
Laplacian operator to evaluate the contour difference between fdai#d and the reference:
X w
diff = jkLaplacian (FEAT ref ;i;j )k, k Laplacian (FEAT;i;j )k,j2 (1 ;1] (1)
isj
We then set a feature with stronger content shift as an anchor and codiffaggnor With other

features. (dif? dif )
ITT anchor I
- 2
diff anchor @

Score = 1 means an exact match, and a smaller value indicates more shift. In this way, we can
measure the extent of content shift in extracted features using different generation techniques and
thus evaluate the suppression effect of techniques. Noticeably, the evaluation of this quantitative
metric can be well approximated by the previously proposed qualitative evaluation, so we recommend
the qualitative evaluation if ef ciency is desired.

Score=

5.3 Selected Generation Techniques

We select three generation techniques as our implementation of GATE. Their Img2Img generation
results are provided in Figure 6. Integrating the techniques only slightly impacts ef ciency, which
will be discussed in Appendix A along with technique details. Additionally, we analyze two failed



Figure 6: Img2Ilmg generation results according to the GATE guideline, validating the potential of
the three selected techniques for suppressing content shift.

Figure 7: The rst row shows features extracted at different timesteps. The second row is from
different combinations of generation technigques and shows stronger diversity.

techniques in Appendix B, which might help better understand how generation techniques in uence
content shift.

Fine-Grained Prompts. Prompts are a description of expected image content in natural language.
For example, “a single horse running in a sports eld, with a well-equipped rider on its back, high
quality, highly realistic, masterpiece”. Modern diffusion models are inherently trained to generate
images conditioned on the given prompig]l Hence, by describing the content of the input image in
prompts, it is possible to steer the reconstruction to stay close to the input. The result of ne-grained
prompts in Figure 6 is not signi cantly better than the reference, but this technique enjoys the
advantage of being a built-in function of diffusion models, requiring no code modi cation.

ControlNet. Quite often, the control via prompts is too ambiguous. This is when ControfiSet [

can be helpful. ControlNet is a plug-in module for diffusion models, designed to take an additional
control image input and push the reconstructed representation toward the control image. ControlNet
presents an outstanding control effect over generation among the three techniques, as shown in
Figure 6, implying its potential for suppressing content shift.

LoRA. LoRA [17] is an ef cient replacement for model ne-tuning, which bears a similar effect to
ne-tuning, thus showing to be highly effective for capturing image styles. By injecting additional
knowledge of image styles of the given dataset into model weights, LORA enables reconstruction to
end with stronger similarity to the input image. From Figure 6, we can observe that although LoRA
does not provide as strong a control effect as ControlNet, it can signi cantly promote image quality,
which is believed to bring some unique advantages.

5.4 Feature Amalgamation

The three techniques above are able to improve feature quality individually and can be applied
simultaneously for stronger suppression effects. While this can lead to a single high-quality feature,
it is a common practice in previous diffusion feature approaches to amalgamate multiple features for
further improvement], 24, 62, 29]. The conventional way extracts features at different timesteps

to obtain more diverse information. We nd that, compared to the conventional amalgamation of
timesteps, the amalgamation of different combinations of generation techniques can bring stronger
diversity, as indicated in Figure 7. Therefore, we additionally amalgamate features obtained with



various generation technique combinations to harness further enhancement. More details of how
feature amalgamation is implemented are provided in Appendix A.

6 Experimental Validation

6.1 Experimental Settings

Task & Dataset. Typically, diffusion feature studiesl] 50, 60] prefer ne-grained pixel-level

tasks for evaluation. Following this practice, we select three tasks for experiments: semantic
correspondence using SPair-72k]dataset, label-scarce semantic segmentation using Bedroom-
28 [54] and Horse-21%4] datasets, and standard semantic segmentation using ADEZ]Kr{d
CityScapes [5] datasets.

Evaluation Metrics. (i) For semantic correspondend@CK@0.lng(") andPCK@0.Lpox(") are

used, following the widely-adopted protocol reported4d][ (We omit @0.1 to save some space in
Table 1.) These two metrics mean the percentage of correctly predicted keypoints, where a predicted
keypoint is considered to be correct if it lies within the neighborhood of the corresponding annotation
with a radius 0f0:1  max(h; w). For PCK@0.Jmg/PCK@0.Lpox h; w denote the dimension of

the entire image/object bounding box, respectively. (i) For semantic segmentation, we use mloU
metric, which is the mean over the loU performance across all semantic clagkesdr each image,

loU (Intersection over Uniort}) is de ned by #(overlapped pixels between the prediction and the
ground truth) / #(union pixels of them). In addition, we also use aAcc and mAcc, where aAcc is the
classi cation accuracy of all pixels and mAcc averages the accuracy over categories.

Feature Extraction. All tasks extract features at= 50. When ControlNet is applied, except for
standard semantic segmentation, we additionally start multi-step denoising fr@®@. For feature
amalgamation, we extract multiple convolutional features and one attention feature per image:

(i) Semantic correspondence: We obtain six in total convolutional features using individual ne-
grained prompt, ControlNet, and LoRA techniques, and one attention feature using a prompt
including all object categories, with ControlNet and LoRA.

(i) Label-scarce semantic segmentation: We obtain one convolutional feature using ne-grained
prompts, one convolutional feature using ControlNet, and one (Bedroom-28) to two (Horse-
21) features using different LORA weights. One attention feature is extracted with all three
techniques applied.

(iii) Standard semantic segmentation: One convolutional feature is obtained using only ne-grained
prompts and two more are extracted additionally with ControlNet and different LORA weights.
One attention feature is extracted with all three techniques applied.

Notably, the ADE20K dataset for standard semantic segmentation contains images of varying scenes,
which can test how well the ne-grained prompt technique can generalize in this scenario. To this
end, we use a prompt that can cover different scenarios: “a highly realistic photo of the real world. It
can be an indoor scene, or an outdoor scene, or a photo of nature. high quality". This prompt covers
various scenes for generalizability and describes image quality for ne-grained effect.

For more experimental settings, including more detailed feature extraction methods and implementa-
tion details, please refer to Appendix C.

6.2 Comparison with SOTA

The experimental results are shown in Table 1 and Table 2. For most SOTA competitors, we borrow
the reported results from their original studies. However, MaskC&]&ijd ODISE p0] only provide

results on ADE20K and it is hard to extend their implementations to CityScapes, so their results
on CityScapes are missing. Furthermore, the original results reported by &PBré based on
full-scale ne-tuning of diffusion UNet, which is not fair as we do not train the diffusion model.
Therefore, we re-evaluated VPD with the diffusion UNet frozen and reported our results.

Semantic Correspondencelt is a pity that the related studies do not perform experiments under
exactly the same setting. For fairness, we mainly compare GATE against a baseline method, which
uses one feature extracted without any technique, under a uni ed setting. For reference, we still



Table 1: The results of semantic correspondence (left, PCK@0.1) and label-scarce semantic segmen-
tation (right, mloU). Red for the best result andiue for the runner-up.

Method PCKng" PCKgpox"  Method Bedroom-28 Horse-21
DINO 51.68 41.04  ALAE 20.0+1.0 -
Non-DF  Sbr 5508 4263 GANInversion 139+06 17.7+0.4
GAN Encoder 224+1.6 26.7+0.7
DF DIFT - 5290  SwAV 41.0+23 51.7+05
DHF 72.56 64.61  SwAVW2 424+17 54.0+0.9
MAE 450+2.0 634+14
Baseline ™M 61.15 51.66  patasetGAN 31.3+27 454+1.4
conv 73.96 65.74  patasetbDPM  47.9+2.9 60.8+1.0
an 64.47 5570 DDPM 49.4+19 65.0+0.8
GATE  omw 76.60 69.10  GATE 53.1+2.7 67.2+1.1

Table 2: Results on the two standard semantic segmentation datasets, ADE20K and CitySeapes.
for the best result anldlue for the runner-up.

ADE20K CityScapes
mloU" aAc¢" mAcc' mloU" aAccd mAcc

MaskCLIP  23.70 - - - - -

Category Method

SOTA ODISE 29.90 - - - - -
VPD 37.63 79.16 50.08 55.06 90.14 68.96
Ours GATE 40.51 79.68 54.90 64.20 92.83 76.98

provide the results from four state-of-the-art methods: DINahd DHPF P7] as non-DF methods,
as well as DIFT [37] and DHF [24] as DF methods. The results are in the left part of Table 1.

Semantic SegmentationThe strong generalizability of a pre-trained diffusion model can ensure
good discriminative performance even when labeled training data is scarce. For this scenario,
we show the results in the right part of Table 1. The SOTA diffusion feature method for this
setting, DDPM [], serves as the major competitor. We also include other segmentation methods:
DatasetGAN }9], DatasetDDPM, MAE 3], SWAV [2], GAN Inversion 0], GAN Encoder,
VDVAE [4], and ALAE [37]. We further validate our method on the more common setting of
semantic segmentation using standard datasets: ADE2Qand CityScapesy], with the results
presented in Table 2. The competitors are MaskCBIPQDISE [50], and VPD [(], where VPD is
re-evaluated with the diffusion model frozen for fairness.

Generally, GATE outperforms competitors by large margins on all datasets. It demonstrates that
previous diffusion feature approaches have been hindered by content shift, and GATE has a promising
application as a generic booster for feature quality.

6.3 Qualitative Analysis

In Figure 8, we provide feature visualization for qualitative analysis of GATE. The visualization is
obtained using PCA analysis, reducing the channels of features to 3, which are regarded as RGB for
visualization. We can observe: (i) The attention features become clearer and closer to the input image
when more generation techniques are applied according to GATE, showing the suppression effect
on content shift. (ii) Notably, for the second image where a person is riding a horse, the baseline
attention feature fails to follow the instructione., attending only to the horse and ignoring the
person. In contrast, generation techniques applied according to GATE help attention features attend
to the correct object. (iii) From convolutional features, we can see the application of generation
techniques brings stronger diversity.



Figure 8: Effect of GATE without feature amalgamation. Images with various scenes are shown for
generalizability. In the second image, the attention feature is asked to focus on the horse and ignore
the rider. The mloU performance is on a single Horse-21 split, wiitiblue for the best/worst.

6.4 Ablation Study: Effect without Feature Amalgamation

For ablation study, we aim to evaluate the effect of selected techniques without feature amalgamation.
The discriminative performance is shown at the bottom line of Figure 8, which is obtained on a
single Horse-21 split instead of ve random repeats for faster evaluation. We can observe: (i) Every
individual technique can improve feature quality over baseline. (ii) When multiple techniques are
applied simultaneously, stronger improvement can be obtained. This demonstrates that all three
selected techniques can bene t feature quality, and their bene ts can be combined together.

7 Conclusion and Future Work

In this paper, we reveal a phenomenon named content shift that has been causing degradation in
diffusion features. Based on the analysis of its cause, we propose to suppress it with off-the-shelf
generation techniques, which allows hitchhiking the advancements in generative diffusion models.
This approach, while enjoying simplicity, is experimentally demonstrated to be generically effective.

However, the effectiveness of GATE relies on the selected techniques, for which we propose both
a qualitative evaluation guideline and a quantitative metric. Though we selected three effective
techniques and reported failed cases, there still is more to explore, which might potentially lead to
more effective implementations. Furthermore, we only experimented with three tasks, so the full
potential of GATE might remain under-explored.
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A Implementation Details and Ef ciency Concerns

In this section, we will explain the implementation details of each selected technique and feature
amalgamation. Further discussion will also be provided on how these techniques manage to suppress
content shift and the ef ciency impact of our implementation.

A.1 Fine-Grained Prompts

Fine-grained prompts can be integrated into diffusion feature very simply. We only need to replace
the simple and short prompts, such as “a photo of a horse” in most DF approaches/b, 55, 21],

with more complex ones. Since prompts are a built-in function of current diffusion models, the
only required integration of ne-grained prompts is to generate these prompts. To ful Il our goal,
we need detailed descriptions of the image content, and many image captioning models can serve
this purpose, such as Kosmos=]. It is also possible to manually design prompts that can cover
various images, which is found to be almost as effective as auto captioners. When this approach
is used, our observation is only in the training set to avoid data leaks. While this is effective for
convolutional features, attention features require more consideration. To be speci ¢, using speci ¢
prompts for each image causes inconsistency in the structure of attention features. To Il this gap, we
always use manual and xed prompt for attention features, even when convolutional features utilize
auto-captioners. This xed prompt is designed by observing images and describing the common
objects. For example, “bedroom, a bed, some bedroom furniture, lights, a door, ceiling, oor, walls,
pillow, quilt, chair and table, window, in good quality”.

Regarding the ef ciency of integrating ne-grained prompts, we do not make any changes to the
original feature extraction pipeline but only introduce the overhead of image captioning. Theoretically,
this is still linear complexity. In practice, the actual time consumption depends on what auto-captioner
is used. Moreover, these prompts can be re-used for the extraction of many groups of features, further
reducing the proportion of overhead in the total time.

A.2 ControlNet

ControlNet requires a parameter, the control signal, which should be set as the input image itself to
suppress content shift. More speci cally, the control image ControlNet requires is not an ordinary
image, but a specially processed one, such as a depth image or a canny image. Among all control
image types, we nd that canny images are exceptionally ef cient because their process does not use
any neural network model. Therefore, we use canny as the sole control type for feature extraction.

Although the simple usage is already yielding satisfying results, we nd an additional way to further
exploit ControlNet. It is reported that taking multiple denoising steps before feature extraction can
make the attention feature less bluriyi]. However, taking multiple denoising steps is not a common
practice for diffusion features, as it also brings severe performance drops caused by content shift.
With ControlNet, it becomes possible to harness this good property without failing to suppress content
shift. We only do this for attention features, so convolutional features are still extracted in a one-step
manner.

Regarding ef ciency, processing an image into a canny image takes a very small overhead, So
the major overhead introduced by ControlNet should be extracting attention features with multiple
denoising steps. Whilst this does take obviously longer time than one-step feature extraction, its
impact is limited due to two factors: (i) We empirically nd that the optimal effect comes with
less than 10 denoising steps. If more steps are taken, attention features will meet unacceptable
content shift even with ControlNet applied. (ii) Different from the diversity effect in convolutional
features, attention features do not see obvious enhancement when amalgamated. Therefore, we only
extract one attention feature per image and concatenate it to the amalgamation result of convolutional
features. Considering the two factors, taking multiple denoising steps does not in fact contain many
steps and its use is relatively rare in the overall feature extraction process. Thus, the ef ciency impact
of integrating ControlNet is small.



A.3 LoRA

The integration of LORA is also simple. Integrating LORA into feature extraction only requires
switching the base model weights to LORA weights, so the major effort might be training a good
LoRA weight. Fortunately, the community has offered many handy tools for ordinary users, such as
kohya_s$, which can be directly utilized for our purpose. Following the tradition from the community,
we choose 30 random images from the training set to train a LORA weight. Speci cally, we choose
the LoContype of LORA, which additionally inserts trainable parameters between convolutional
layers, and follow the corresponding guides for training.

The major overhead introduced by LORA is its training. As a popular tool for AIGC players, the
training for LORA is feasible even on personal computers, showing its ef ciency. In our experiments,
training one LORA weight usually takes less than 30 minutes. Moreover, the trained LORA weights
can be re-used, further reducing the proportion of overhead in the feature extraction process.

A.4 Regularized Weight Assignment for Feature Amalgamation

Feature amalgamation can be accomplished by simply concatenating different features together.
However, this is found suboptimal, leading to a superior strategy for feature amalgamation, which
is weight assignmen®t}, 62]. Roughly, it assigns weights to each feature and amalgamates the
features via a linear combination according to the weights. We next formalize this process. We have
bfeature maps;ro; ;rp 2 RC W " for each image, witke; w; h being channel, width, and
height, respectively. Weight assigners are simple MLP or CNN networks parameterizexhtycan

be denoted ak( ; ). Considering that the downstream task might bene t from various perspectives,

there aren assigners. Assigning weighl\g1 is denoted as:

) , ) X
wh=fl(r; 2R st w=1;j=1; ;n ()
i=1
Afterward, we take the linear combinations of features and concatenate them as the nal feature:
xXb xb xb

r = Concat w'ri;  wiri; o w'ry) 4
i=1 i=1 i=1

We notice that this weight assignment strategy is suboptimal. To be speci c, the assigners tend to
converge to a trivial solution, where they assign weights almost equally to all features and different
assigners share a similar prediction. To tackle this issue, we introduce two extra regularization terms.
The rst one encourages sparsity, meaning the assigners should concentrate on only a few features.
The second one, named diversity, promotes a larger discrepancy between the predictions of different
weight assigners. Formally, the loss function is:

X _ , XX

Lin =L 1 w2

5 whoowk (5)
j=1 i=1 k6

2

wherel is the original loss of the downstream task; and , are the hyper-parameters of the
regularization termsv! = (wj;wh;  ;wi)T, andk k, denotes thé,-norm. Appendix D.5 will
visualize the direct effect of the proposed regularization on weight distribution.

Since attention features do not show the same diversity effect as convolutional features, the two types
of features are processed differently. To be speci ¢, we obtain many convolutional features but only
one attention feature per image. Feature amalgamation is conducted among convolutional features,
while the attention feature is concatenated to the nal amalgamation result.

Next, we aim to explain why the two proposed regularization terms can achieve their design purpose.
Note that the weights of all features are restricted to sum up to 1, which meansribem ofw

is always 1. For a vector with a xeth-norm, a larger,-norm means concentrating on less axes
among all dimensions. Therefore, we use the negative value gfiterm as sparsity regularization

to promote a larger,-norm. As for diversity regularization, it simply measures and promotes the
discrepancy among the predictions of different weight assigners.

Shttps://github.com/bmaltais/kohya_ss



Figure 9: Img2Img generation results of classi er-free guidance according to the GATE guideline,
showing no obvious effect for suppressing content shift.

Table 3: Experimental results comparing the in uence on suppressing content shift of ControlNet
and IP-Adapter.

Method mloU

DDPM 65.0+ 0.8
GATE (Only IP-Adapter) 65.8+ 1.3
GATE (Only ControlNet) 66.2 + 1.2
GATE (Full) 67.2+1.1

Compared with previous weight assignment approach&s5p], we only add two regularization

terms, thus introducing negligible overhead. Weight assignment itself does trade ef ciency for
performance. However, since this approach has already been adopted in previous approaches, we
think it is rational to only consider the additional ef ciency impact of our proposed regularization
terms.

B Classi er-Free Guidance and IP-Adapter: Failed Case

Classi er-free guidancel[f] is a widely adopted generation technique in current diffusion models.
Its design purpose is to sacri ce diversity for better delity, similar to low-temperature sampli#ig [
in other generative models.

We rst show its Img2Ilmg generation results according to the GATE guideline in Figure 9. Itis clear
that it makes little difference to the similarity between outputs and the input, already suggesting
that it lacks the potential for suppressing content shift. Since it can also be implemented simply,
we integrate it into feature extraction as well and actually examine its effect, leading to the same
conclusion as the previous quick evaluation following the GATE guideline.

Why is classi er-free guidance unable to suppress content shift? It is designed to gain delity at the
cost of diversity. While better delity is irrelevant to content shift, it might be helpful to lower the
diversity of reconstruction given the blank caused by noises. However, the less diverse reconstruction
is still not guaranteed to be centered on the original content. Therefore, even though classi er-free
guidance can reduce diversity, content shift will not be suppressed. We hope this failed case can
provide more insights into how generation techniques affect content shift and how to select them.

IP-Adapter is a generation technique designed for image variation, which shares a similar architecture
to ControlNet. By inputting images, IP-Adapter helps generate new images with some elements taken
from the reference one. Since the goal of IP-Adapter is image variation instead of strict control, it is
less effective in mitigating content shift than ControlNet. The weaker effectiveness of IP-Adapter
is experimentally demonstrated on the Horse-21 dataset, as shown in Table 3. IP-Adapter is not
entirely ineffective for content shift, but less effective than ControlNet and thus not included in our
implementation.

C Experimental Details

C.1 Implementation Details

For the diffusion model to extract features, we choose Stable Diffusion $4]5q be consistent with
SOTA competitors. For semantic correspondence, two settings are examined: (i) directly performing



nearest neighbor algorithré§] (nn), (ii) adding an extra convolutional layer after each assigoan.

For label-scarce semantic segmentation, the downstream model follows the framewdrkéeping
hyper-parameters unchanged. For standard semantic segmentation, we instead use W#erNet [
as the downstream model; and », the hyper-parameters for the proposed regularization terms,
are tuned for each dataset. Choosing the number of weight assigners is mainly a tradeoff between
ef ciency and performance (Appendix D.4). We use less than three based on our resources.

C.2 Feature Extraction Details for Each Task

C.2.1 Semantic Correspondence
Convolutional features include two features per setting under different random seeds:

() Two with ne-grained prompt “a photo of aeroplane, bicycle, bird, boat, bottle, bus, car, cat,
chair, cow, dog, horse, motorbike, person, potted plant, sheep, train, tv monitor, high quality,
best quality, highly realistic, masterpiece, high resolution”.

(i) Two with LoRA.
(iii) Two with ControlNet.

Attention features are obtained using a prompt including all object categories, with ControlNet
(denoising front = 60) and LoRA also applied.

C.2.2 Semantic Segmentation on Horse-21
Convolutional features include:
(i) A feature using ne-grained prompt “a horse, high quality, best quality, highly realistic,
masterpiece”.

(i) A feature using ControlNet, with a simple prompt “a horse”.

(i) Two features using different LORA weights and a simple prompt. The rst LORA weight
is trained to generate high-quality images, while the second LoRA weight is trained until it
slightly over ts.

Attention features are obtained using a prompt “a photo of a single horse running in a sports eld,
with a well-equipped rider on its back, seems they are in a competition, high quality, best quality,
highly realistic, masterpiece”, with ControlNet and the rst LORA weight applied. Additionally, we
concatenate the output feature of amalgamation with a feature extracted using DDPM [1].

C.2.3 Semantic Segmentation on Bedroom-28
Convolutional features include:

(i) A feature using ne-grained prompt “a photo of a tidy and well-designed bedroom”. It is found
that quality prompts such as "high quality” will be interpreted as the quality of the room instead
of the image, so such prompts are not utilized.

(i) A feature using ControlNet, with a simple prompt “a bedroom”.

(iii) One feature using LORA weight, which is moderately trained to generate high-quality images.
Attention features are obtained using a prompt “bedroom, a bed, some bedroom furniture, lights, a
door, ceiling, oor, walls, pillow, quilt, chair and table, window, in good quality”. ControlNet and

LoRA are also applied. Additionally, we concatenate the output feature of amalgamation with a
feature extracted using DDPM [1].

C.2.4 Semantic Segmentation on ADE20K
Convolutional features include:

(i) One feature using only ne-grained prompt “a highly realistic photo of the real world. It can
be an indoor scene, or an outdoor scene, or a photo of nature. high quality” plus all category
labels.



Table 4: Examining GATE on SDXL features. The best result is markedcad-or Baseling three
basic feature maps are used. For other settings, one or two basic feature maps are replaced with
technique-enhanced ones, keeping the total number of features unchanged.

Category  Basic Prompt ControlNet mIdU

Baseline X 53.40

.. X X 53.61
Individual X X 5366
Combined X X X 53.96

(ii) Two features using the same prompt as above and additionally ControlNet and LoRA. The
two features use two different LORA weights, where one is moderately trained and the other
slightly over ts.

No attention features are used. We nd that in very complex scenes attention features can be of low
quality and bring slight degradation instead of enhancement.

C.2.5 Semantic Segmentation on CityScapes
Convolutional features include:

(i) One feature using only ne-grained prompt “An urban street scene with multiple lanes, various
buildings, traf c lights, cars in the lanes, and pedestrians, highly realistic”.

(ii) Two features using the same prompt as above and additionally ControlNet and LoRA. The
two features use two different LORA weights, where one is moderately trained and the other
slightly over ts.

No attention features are used, based on the same observation as for ADE20K.

C.3 Details for Exploration of Content Shift

For CIFAR10, high-quality and low-quality prompts are as follows:

“cinematic shot photo taken by ARRI, photo taken by sony, incredibly detailed, sharpen,
masterpiece, best quality, realistic, HD, raytracing, CG uni ed 8K wallpapers”

“low quality, low resolution, blurry, draft, grainy, dis gured, deformed, low contrast,
underexposed, overexposed, bad art”

J

For semantic segmentation, they are:

(“a horse, high quality, best quality, highly realistic, masterpiece”
“a horse, low quality, worst quality, deformation, broken shape, blurry”

D Additional Experiments

D.1 Additional Qualitative Results

Besides the feature visualization in Figure 8, we provide additional visualization here in Figure 10.

D.2 Demonstration for Generalizability

We would like to further demonstrate the generalizability of GATE by applying it to a different
diffusion model, SDXL B3]. The architecture of SDXL has been signi cantly modi ed to include
more complicated attention structures while its overall upsampling blocks are simpli ed. Due to the
architecture change, the previous method for feature extraction cannot fully exploit the potential of
SDXL, thus making the performance lower than Stable Diffusion v1.5. Nevertheless, it is enough to



Figure 10: Additional feature visualization for qualitative analysis with different types of images,
showing the effectiveness of GATE on both convolutional features and attention features.

Table 5: Results on Horse-21 to study the effect of feature amalgamation, using the same setting as
Figure 8. Each column corresponds to a group of featlBasic* is extracted at a different timestep
with other settings remaining the sameBasic

Basic Basic* Prompts ControlNet LoRA mloU

58.13
X 59.44
X 60.12

60.02

X 60.27
X X X 60.74

XXX XX X
X

demonstrate the generalizability of GATE. Furthermore, since LoRA training for SDXL is different
and requires more investigation, we have excluded this technigue from this small experiment.

Observing the results in Table 4, we can again con rm the bene t of GATE. Both techniques can
enhance performance. Moreover, combining two techniques is able to bring further improvement.
This demonstrates the generalizability of GATE as it can be integrated into different diffusion models.



Figure 11: Sensitivity analysis of the regularization terms, whefe, is for sparsity/diversity. These
results validate the necessity of these regularization terms.

D.3 Effect of Feature Amalgamation

Now we aim to examine the effect of our regularized weight assignment strategy for feature amalga-
mation. We will rst demonstrate that amalgamating many features leads to better performance than
a single feature. Then we will conduct an analysis of the hyper-parameter sensitivity regarding the
proposed regularization terms.

The rst experiment is conducted on the same Horse-21 split as Figure 8. In addition, this experiment
only applies techniques individually, not simultaneously, for a simpler setting. The following
observations can be made from Table 5:

(i) Amalgamating many features is generally superior to a single feature. Even if we simply use
features obtained from different timesteps, it is bene cial.

(i) If the features are from different technique combinations rather than simply different timesteps,
the performance will be higher. This shows that applying various techniques can yield more
diverse diffusion features.

(iii) If more features are used, the performance will be better than when only two are used.

To analyze the sensitivity property of the two regularization terms, we perform a grid search on the
semantic correspondence task. The reported metRCK@0.1ny(") and the model type ian.

Based on Figure 11, we can conclude that both regularization terms contribute to the performance
gain, but they need tuning. We have tuned them for the results in Table 1.

D.4 Ablation Study on Number of Weight Assigners

In this part, we provide a supplementary ablation study on the number of weight assigners. The results
in Table 6 show that when we increase the number of weight assigners, the overall performance will
improve gradually. However, we have two following concerns:

(i) More weight assigners will take a longer time to converge. The training steps that are enough
for fewer assigners to fully converge are insuf cient for more assigners, indicated by that
the the performance of more assigners still improves with more training steps.

(ii) Increasing the number of weight assigners will bring more memory usage and more time
consumption, which will affect ef ciency.

Consequently, choosing the number of weight assigners is mainly a tradeoff between performance
and ef ciency.



Table 6: Results (mloV) to reveal the impact of adjusting the number of weight assigners. The best
result is marked ased.

Num 1 Training Steps 2 Training Steps  Gain

1 64.58 63.91 -0.67
2 65.39 65.68 0.29
3 65.44 65.84 0.40

4 65.19 65.73 0.54

Table 7: Experimental results on image classi cation in comparison to both ResNet and a diffusion
feature baseline without GATE.

Method Acc(%)

ResNet-50 93.62
Baseline 94.55
GATE 95.21

D.5 Impact of Regularization on Weights

We aim to visualize the impact of our proposed regularization terms on weight distribution, to show
that their effect aligns with the design purpose. The statistics are shown in Figure 12. We select the
semantic correspondence task unaiesetting with two weight assigners.

The rst four gures visualize the impact of sparsity. The rst two show the Gaussian probability
density tted to the mean and variance of top-1 and top-2 weights. The other two show the average
value of all weights. Without regularization, top-1 weights will be rather small. With regularization,
top-1 weights will become much larger, showing that the prediction of assigners becomes more
concentrated.

The last two gures look into diversity. We compare the predictions of two assigners. If no overlap
is observed in top-1 nor top-2 weights, it countsnasoverlap which is the best case. If overlap
occurs in top-1 weights, it is regarded@aserlap @ top-11f overlap only occurs when we consider
both top-1 and top-2 weights, thisdserlap @ top-2 It is clear that diversity regularization can
effectively force assigners to focus on different feature maps, thus providing information from various
perspectives.

D.6 Image Classi cation

Although image-level tasks are not typically utilized for the evaluation of diffusion features, we have
used this task for early empirical studies. Hence, in Table 7, we provide some results on CIFAR1O0, in
comparison to a standard ResNet backfiarel a baseline where diffusion features are used without
GATE.

E Future Direction

Long tail and out-of-distribution scenarios are challenging problems for discrimination, where a
model that works well under i.i.d. settings can degrade signi cantl}.[There have been a few
attempts to apply diffusion models to such challenging scenatipglp, 56], but more efforts are

still considered helpful. Recently, there has been a stlidythat might open more opportunities to

this topic. To be speci ¢, AUC is a useful metric and loss function for long tail and out-of-distribution
studies {11, 47], but it used to be not applicable to pixel-level tasks such as semantic segmentation.
This recent study, however, has successfully introduced a new AUC-based tool that can be applied to
segmentation as well, enabling more future studies in this direction.

*https://github.com/kuangliu/pytorch-cifar
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