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Abstract

Research on video generation has recently made tremendous progress, enabling
high-quality videos to be generated from text prompts or images. Adding con-
trol to the video generation process is an important goal moving forward and
recent approaches that condition video generation models on camera trajecto-
ries make strides towards it. Yet, it remains challenging to generate a video of
the same scene from multiple different camera trajectories. Solutions to this
multi-video generation problem could enable large-scale 3D scene generation with
editable camera trajectories, among other applications. We introduce collabora-
tive video diffusion (CVD) as an important step towards this vision. The CVD
framework includes a novel cross-video synchronization module that promotes
consistency between corresponding frames of the same video rendered from dif-
ferent camera poses using an epipolar attention mechanism. Trained on top of
a state-of-the-art camera-control module for video generation, CVD generates
multiple videos rendered from different camera trajectories with significantly bet-
ter consistency than baselines, as shown in extensive experiments. Project page:
https://collaborativevideodiffusion.github.io/.

1 Introduction

With the impressive progress of diffusion models [22, 51, 28, 44, 46, 43], video generation has
significantly advanced [12, 17, 26, 5, 6, 15, 64, 23, 32], with a transformative impact on digital
content creation workflows. Recent models like SORA [7] exhibit the ability to generate long high-
quality videos with complex dynamics. Yet, these methods typically leverage text or image inputs to
control the generation process and lack precise control over content and motion, which is essential for
practical applications. Prior efforts explore the use of other input modalities, such as flow, keypoints,
and depths, and develop novel control modules to incorporate these conditions effectively, enabling
precise guidance of the generated contents [60, 63, 67, 26, 56, 9]. Despite these advancements, these
methods still fail to provide camera control to the video generation process.

Recent works have started to focus on camera control using various techniques, such as motion
LoRAs [25, 17] or scene flows [63, 67]. Some representative works such as MotionCtrl [60] and
CameraCtrl [18] offer more flexible camera control by conditioning the video generative models
on a sequence of camera poses, showing the feasibility of freely controlling the camera movements
of videos. However, these methods are limited to single-camera trajectories, leading to significant
inconsistencies in content and dynamics when generating multiple videos of the same scene from
different camera trajectories. Consistent multi-video generation with camera control is desirable in
many downstream applications, such as large-scale 3D scene generation. Training video generation
models for consistent videos with different camera trajectories, however, is very challenging, partly
due to the lack of large-scale multi-view dynamic in-the-wild scene data.
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In this paper, we introduce CVD, a plug-and-play module capable of generating videos with different
camera trajectories sharing the same underlying content and motion of a scene. CVD is designed on a
collaborative diffusion process that generates consistent pairs of videos with individually controllable
camera trajectories. Consistency between corresponding frames of a video is enabled using epipolar
attention, introduced by a learnablecross-view synchronization module. To effectively train this
module, we propose a new pseudo-epipolar line sampling scheme to enrich the epipolar geometry
attention. Due to the shortage of large-scale training data for 3D dynamic scenes, we propose ahybrid
training scheme where multi-view static data from RealEstate10k [68] and monocular dynamic data
from WebVid10M [1] are utilized to learn camera control and motion, respectively. To our knowledge,
CVD is the �rst approach to generate multiple videos with consistent content and dynamics while
providing camera control. Through extensive experiments, we demonstrate that CVD ensures strong
geometric and semantic consistencies, signi�cantly outperforming relevant baselines. We summarize
our contributions as follows:

• To our knowledge, our CVD is the �rst video diffusion model that generates multi-view
consistent videos with camera control;

• We introduce a novel module called theCross-Video Synchronization Module, designed to
align features across diverse input videos for enhanced consistency;

• We propose a new collaborative inference algorithm to extend our video model trained on
video pairs to arbitrary numbers of video generation;

• Our model demonstrates superior performance in generating multi-view videos with consis-
tent content and motion, surpassing all baseline methods by a signi�cant margin.

2 Related Work

Video Diffusion Models. Recent efforts in training large-scale video diffusion models have enabled
high-quality video generation [15, 6, 23, 21, 17, 7, 12, 50]. Video Diffusion Model [23], utilizes a
3D UNet to learn from images and videos jointly. With the promising image quality obtained by
text-to-image (T2I) generation models, such as StableDiffusion [44], many recent efforts focus on
extending pretrained T2I models by learning a temporal module. Align-your-latents [6] proposes
to in�ate the T2I model with 3D convolutions and factorized space-temporal blocks to learn video
dynamics. Similarly, AnimateDiff [17] builds upon StableDiffusion [44], adding a temporal module
after each �xed spatial layer to achieve plug-and-play capabilities that allow users to perform
personalized animation without any �netuning. Pyoco [15] proposes a temporally coherent noise
strategy to effectively model temporal dynamics. More recently, SORA [7] shows a great step towards
photo-realistic long video generation by utilizing space-time diffusion with a transformer architecture.

Controllable Video Generation. The ambiguity of textual conditions often results in weak control
for text-to-video models (T2V). To provide precise guidance, some approaches utilize additional
conditioning signals such as depth, skeleton, and �ow to control the generated videos [12, 59, 26,
48, 27, 8, 53]. Recent efforts like SparseCtrl [65] and SVD incorporate images as control signals for
video generation. To further control motions and camera views in the output video, DragNUWA [63]
and MotionCtrl [60] inject motion and camera trajectories into the conditioning branch, where the
former uses a relaxed version of optical �ow as stroke-like interactive instruction, and the later
directly concatenate camera parameters as additional features. CameraCtrl [18] proposes to over-
parameterize the camera parameters using Plücker Embeddings [39] and achieves more accurate
camera conditioning. Alternatively, AnimateDiff [17] trains camera-trajectory LoRAs [25] to achieve
viewpoint movement conditioning, while MotionDirector [67] also utilizes LoRAs [25] but to over�t
to speci�c appearances and motions to gain their decoupling.

Multi-View Image Generation. Due to the lack of high-quality scene-level 3D datasets, a line
of research focuses on generating coherent multi-view images. Zero123 [35] learns to generate
novel-view images from pose conditions, and subsequent works extend it to multi-view diffu-
sion [11, 36, 37, 49, 54, 55, 62, 31] for better view consistency. However, these methods are only
restricted to objects and consistently fail to generate high-quality large-scale 3D scenes. Mul-
tiDiffusion [3] and DiffCollage [66] facilitates 360-degree scene image generation, while Sce-
neScape [14] generates zooming-out views by warping and inpainting using diffusion models. Simi-
larly, Text2Room [24] generates multi-view images of a room, where the images can be projected via
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Figure 1:An illustration of pairwise collaborative video generation. Existing video diffusion
models generate videos separately, which may result in inconsistent frame contents (e.g., geometries,
objects, motions) across videos (Left); Collaborative video generation aims to produce videos sharing
the same underlying content (Middle); In this work, we train our model on video pair datasets, and
extend it to generate more collaborative videos (Right).

depths to get a coherent room mesh. DiffDreamer [9] follows the setups in In�nite-Nature [34, 33]
and iteratively performs projection and re�nement using a conditional diffusion model. A recent
work, PoseGuided-Diffusion [56], performs novel view synthesis from a single image by training
and adding an epipolar line bias to its attention masks on multi-view datasets with camera poses pro-
vided (RealEstate10k [68]). However, this method by construction does not generalize to in-the-wild
or dynamic scenes, as its prior is solely learned from well-de�ned static indoor data.

A comprehensive survey of recent advances in diffusion models for visual computing is provided by
Po et al. [40].

3 Collaborative Video Generation

Conventionally, video diffusion models (VDMs) aim to generate videos from randomly sampled
Gaussian noise with multiple denoising steps, given conditions such as text prompts, frames, or
camera poses. Speci�cally, letv0 � qdata(v) be a data point sampled from the data distribution;
the forward diffusion process continuously adds noises tov0 to get a series ofv t ; t 2 1; :::; T until
it becomes Gaussian noise. Using the reparameterization trick from Ho et al.[22], the distribution
of v t can be represented asq(v t j v0) = N (v t ;

p
�� t v0; (1 � �� t )I ), where �� t 2 (0; 1] are the

noise scheduling parameters, which are monotonously increasing, and�� T = 1 . The video diffusion
model, typically denoted asp� (v t � 1jv t ), is a model parameterized by� that is trained to estimate the
backward distributionq(v t � 1jv t ; v0). According to Ho et al. [22], the optimization ofp� (v t � 1jv t )
results in minimizing the following loss function:

L = E� ;v 0 ;t;c k� � � � (v t ; t; c)k2; (1)

wherev t =
p

�� t v0 + (1 � �� t )� is the noisy video feature generated fromv0 and a random sampled
Gaussian noise� , � � (v t ; t) is the noise prediction of the VDM, andc is the video condition. During
inference time, one can start from a normalized Gaussian noisevT � N (0; I ) and apply the noise
prediction model� � (v t ; t) multiple times to denoise it untilv0.

Empowered by readily available large-scale video datasets, many state-of-the-art VDMs have success-
fully shown ability to produce temporally consistent and realistic videos [23, 5, 7, 17, 26, 21, 12, 6, 15].
However, one of the key drawbacks of all these existing methods is the inability to generate consis-
tently coherent multi-view videos. As Fig. 1 shows, videos generated from a VDM under the same
textual conditions exhibit content and spatial arrangement disparities. One can use inference-stage
tricks, such as extended attention [8], to increase the semantic similarities between the videos, yet
this does not address the problem of structure consistency. To address this issue, we introduce a novel
objective for VDMs to generate multiple structurally consistent videos simultaneously given certain
semantic conditions and dub itCollaborative Video Diffusion(CVD).
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Figure 2: Architecture of collaborative video diffusion. Left: The model takes two (or more)
noisy video features and camera trajectories as input and generates the noise prediction for both
videos. Note that the image autoencoder of Stable Diffusion is omitted here;Right: OurCross-View
Synchronization Moduletakes the same frames from the two videos along with the corresponding
fundamental matrix as input, and applies a masked cross-view attention between the frames.

In contrast to conventional video diffusion models, CVD seeks to �nd an arbitrary number of
videosv i ; i 2 1; :::; M that comply with the unknown data distributionqdata(v1;:::;M ) given separate
conditionsc1;:::;M . Similarly, the CVD model can be represented asp� (v1;:::;M jc1;:::;M ). An example
includes multi-view videos synchronously captured from the same dynamic 3D scene. Similarly, the
loss function for a collaborative video diffusion model is de�ned as:

L CVD = E� 1;:::;M ;v 1;:::;M
0 ;t;c k� 1;:::;M � � � (v1;:::;M

t ; t; c1;:::;M )k2: (2)

In practice, however, the scarcity of large-scale multi-view video data prevents us from directly
training a model for an arbitrary quantity of videos. Therefore, we build our training dataset of
consistent video pairs (i.e.,M = 2 ) from existing monocular video datasets, and train the diffusion
model to generate pairs of videos sharing the same underlying contents and motions (see details
in Secs. 4.1 and 4.2). Our model is designed to accommodate any number of input video features,
however, and we develop an inference algorithm to generate an arbitrary number of videos from our
pre-trained pairwise CVD model (see Sec. 4.3).

4 Collaborative Video Diffusion with Camera Control

We seek to build a diffusion model that takes a text prompty and a set of camera trajectories
cam1;:::;M and generates the same number of collaborative videosv1;:::;M . To ease the generation of
consistent videos, in this work we train our model with video pairs (M = 2 ), we make the assumption
that the videos are synchronized (i.e., corresponding frames are captured simultaneously), and set the
�rst pose of every trajectory to be identical, forcing the �rst frame of all videos to be the same.

Inspired by [18, 17], our model is designed as an extension of the camera-controlled video model
CameraCtrl [18]. As shown in Fig. 2, our model takes two (or more) noisy video feature inputs
and generates the noise prediction in a single pass. The video features pass through the pretrained
weights of CameraCtrl and are synchronized in our proposedCross-View Synchronization Modules
(Sec. 4.1). The model is trained with two different datasets: RealEstate10K [68], which consists of
camera-calibrated video on mostly static scenes, and WebVid10M [1], which contains generic videos
without poses. This leads to our two-phase training strategy introduced in Sec. 4.2. The learned
model can infer arbitrary numbers of videos using our proposed inference algorithm, which will be
described in Sec. 4.3.

4.1 Cross-View Synchronization Module

State-of-the-art VDMs commonly incorporate various types of attention mechanisms de�ned on the
spatial and temporal dimension: works such as AnimateDiff [17], SVD [5], LVDM [ 19] disentangles
space and time and applies separate attention layers; the very recent breakthrough SORA [7] processes
both dimensions jointly on its 3D spatial-temporal attention modules. Whilst the operations de�ned
on the spatial and temporal dimensions bring a strong correlation between different pixels of different
frames, capturing the context between different videos requires a new operation: cross-video attention.
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Thankfully, prior works [10, 8] have shown that the extended attention technique, i.e., concatenating
the key and values from different views together, is evidently ef�cient for preserving identical
semantic information across videos. However, it refrains from preserving the structure consistency
among them, leading to totally different scenes in terms of geometry. Thus, inspired by [56], we
introduce theCross-View Synchronization Modulebased on the epipolar geometry to shed light on
the structure relationship between cross-video frames during the generation process, aligning the
videos towards the same geometry.

Fig. 2 demonstrates the design of our cross-view module for two videos. Taking a pair of feature
sequencesz1

1;::;N ; z2
1;::;N of N frames as input, our module applies a cross-video attention between

the same frames from the two videos. Speci�cally, we de�ne our module as:

out1k = ff (Attn (W Q z1
k ; W K z2

k ; W V z2
k ; M 1;2

k )) ; 8k 2 1; :::; N; (3)

M 1;2
k (x1; x2) = 1(xT

2 F1! 2
k x1 < � epi) (4)

wherek is the frame index,W Q ; W K ; W V are the query, key, value mapping matrices,M is the
attention mask,Attn (Q; K; V; M ) is the attention operator introduced from the Transformer [58],
ff is the feed-forward function andF1! 2

k is the fundamental matrix betweencam1
k andcam2

k . The
attention maskM between any two pixelsx1; x2 is determined by the epipolar distance betweenx1
andx2, i.e. the shortest distance betweenx1 and the epipolar line ofx2 in x1 's frame, which is set
to 1 if the epipolar distance is smaller than a given threshold� epi (set to3 in all of our experiments)
and vise versa. The outputs of these modules are used as residual connections with corresponding
original inputs to ensure no loss of originally learned signals. The key insight of this module is as
the two videos are assumed to be synchronized to each other, the same frame from the two videos
is supposed to share the same underlying geometry and hence can be correlated by their epipolar
geometry de�ned by the given camera poses. For the �rst frames where the camera poses are set
to be identical since the fundamental matrix is unde�ned here, we generate pseudo epipolar lines
for each pixel with random slopes that go through the pixels themselves. In the scenario where
multi-view datasets are available, the modules can be further adapted to more videos by extending
the cross-view attention from 1-to-1 to 1-to-many. Our study shows that epipolar-based attention
remarkably increases the geometry integrity of the generated video pairs.

4.2 Hybrid Training Strategy from Two Datasets

Figure 3:Two-Phase Hybrid Training. We use
different data processing schemes to handle the two
datasets (Top) and apply separate model structures
to train in corresponding phases (Bottom).

Considering the fact that there is no available
large-scale real-world dataset for video pairs,
we opt to make use of the two popular monoc-
ular datasets, RealEstate10K [68] and Web-
Vid10M [1], to develop a hybrid training strat-
egy for video pair generation models.

RealEstate10K with Video Folding.
The �rst phase of the training involves
RealEstate10K [68], a dataset consisting of
video clips capturing mostly static indoor scenes
and corresponding camera poses. We sample
video pairs by simply sampling subsequences
of 2N � 1 frames from a video in the dataset,
then cutting them from the middle and reversing
their �rst parts to form synchronized video pairs.
In other words, the subsequences are folded into
two video clips sharing the same starting frame.

WebVid10M with Homography Augmentation. While RealEstate10K [68] provides a decent
geometry prior, training our model only on this dataset is not ideal since it does not provide any
knowledge regarding dynamics and only contains indoor scenes. On the other hand, WebVid10M, a
large-scale video dataset, consists of all kinds of videos and can be used as a good supplement to
RealEstate10K. To extract video pairs, we clone the videos in the dataset and then apply random
homography transformations to the clones. Nonetheless, The WebVid10M dataset contains no camera
information, making it unsuitable for camera-conditioned model training. To address this problem,
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we propose a two-phase training strategy to adapt both datasets (with or without camera poses) for
the same model.

Two-Phase Training. As previously mentioned, our model is built upon the existing camera-
controlled VDM CameraCtrl [18]. It is an extended version of AnimateDiff [17] that adds a pose
encoder and several pose feature injectors for the temporal attention layers to the original model.
Both AnimateDiff [17] and CameraCtrl [18] are based on Stable Diffusion [44]. This implies that
they incorporate the same latent space domain, and thus, it is feasible to train a module that can be
universally adapted. Therefore, our training procedure follows a two-phase scheme Fig. 3 shows.
Speci�cally, we build a hybrid dataset that combines the data from both sources. Then in each training
iteration, if the training data is from RealEstate10K, we use CameraCtrl with LoRA �ne-tuned on
RealEstate10K as the backbone and applying the ground truth epipolar geometry in the cross-video
module. Otherwise, we use AnimateDiff with LoRA �ne-tuned on WebVid10M as the backbone, and
apply the pseudo epipolar geometry (the same strategy used for the �rst frames in RealEstate10K
dataset) in the cross-video module. The two training phases are applied alternatively to the same
instance of CVSM in a single training procedure. Experiments show that the hybrid training strategy
greatly helps the model generate videos with synchronized motions and great geometry consistency.

4.3 Towards More Videos

With the CVD trained on video pairs, during inference, we can generate multiple videos (for example,
M videos whereM > 2) that share consistent content and motions. To achieve that, we start from
M individual gaussian noise maps and denoise them in multiple steps. At each denoising step
t, we selectP feature pairsP = f v i 1 ;j 1

t ; v i 2 ;j 2
t ; :::; v i P ;j P

t j i 1;:::;P ; j 1;:::;P 2 1; :::; M g among all
M video features. We then use the trained network to predict the noise of each feature pair, and
averaging them w.r.t. each video feature. That is, the output noise for thei th video feature is de�ned
as:� out (v i

t ) = Avgv i;j 2P (� i
� (v i;j

t ; t; cami;j )) , where� i
� (v i;j

t ; t; cami;j ) is the noise prediction for
v i

t given the video pair inputv i;j
t . For pair selection, we propose the following strategies:

• Exhaustive Strategy: Select allM (M � 1)=2 pairs.

• Partitioning Strategy: Randomly divideM noisy video inputs intoM2 pairs.

• Multi-Partitioning Strategy: Repeat the Partitioning Strategy multiple times and combine all
selected pairs.

The exhaustive strategy has a higher computational complexity ofO(M 2) compared to the partitioning
one (O(M )) but covers every pair amongM videos and thus can produce more consistent videos.
The multi-partitioning strategy, on the other hand, is a trade-off between the two strategies. We also
embrace the recurrent denoising method introduced by Bansal et al. [2] that does multiple recurrent
iterations on each denoising timestep. We provide the pseudo-code of our inference algorithm and
detailed mathematical analysis in our supplementary.

5 Experiments

5.1 Qualitative Results

5.1.1 Comparison with Baselines

Qualitative comparisons are shown in Fig. 4. Following our quantitative comparisons in Sec. 5.2,
we compare against CameraCtrl [18] and its combination with SparseCtrl [16], MotionCtrl [60] and
its combination with SVD [5]. The results indicate our method's superiority in aligning the content
within the videos, including dynamic content such as lightning, waves, etc. More qualitative results
are provided in our supplemental material and video.

5.1.2 Additional results for arbitrary views generation

We also show the results of arbitrary view generation shown in Fig. 5. Using the algorithm introduced
in Sec. 4.3, our model can generate groups of different camera-conditioned videos that share the same
contents, structure, and motion. Please refer to our supplementary video for animated results.
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5.2 Quantitative Results

We compare our model with two state-of-the-art camera-controlled video diffusion models for
quantitative evaluation: CameraCtrl [18] and MotionCtrl [60]. Both of the two baselines are trained
on the RealEstate10K [68] for camera-controlled video generation. We conduct the following
experiments to test the geometric consistency, semantic consistency, and video �delity of all models:

Table 1:Quantitative Results on Geometry Consistency.Following SuperGlue [47], we report
the area under the cumulative error curve (AUC) of the predicted camera rotation and translation
under certain thresholds (5� ; 10� ; 20� ), and the precision (P) and matching score (MS) of the Super-
Glue correspondences. We feed the models with prompts from RealEstate10K [68] (RE10K) and
WebVid10M [1] (WV10M) in two experiments separately. For RealEstate10K scenes, we also run
SuperGlue on the original RealEstate10K [68] frames as reference. Our model achieves the highest
scores on all metrics compared to baselines.

Scenes Methods Rot. AUC" Trans. AUC" Prec." M-S. "(@5� =10� =20� ) (@5� =10� =20� )

RE10K

Reference 61.4 / 77.2 / 87.8 6.9 / 17.5 / 41.0 60.2 36.5
CameraCtrl [18] 34.8 / 55.2 / 72.4 2.3 / 6.6 / 17.0 50.8 27.3
MotionCtrl [60] 49.0 / 68.0 / 81.2 3.4 / 10.2 / 25.0 64.6 38.9

Ours 55.5 / 71.8 / 83.3 5.6 / 15.9 / 33.2 76.9 42.3

WV10M
CameraCtrl [18]+SparseCtrl [16] 6.2 / 14.3 / 25.8 0.5 / 1.7 / 4.7 16.5 5.4

MotionCtrl [60]+SVD [5] 12.2 / 28.2 / 48.0 1.2 / 4.9 / 13.5 23.5 12.8
Ours 25.2 / 40.7 / 57.5 3.7 / 9.6 / 19.9 51.0 23.5

Table 2:Quantitative Results for semantic & �delity metrics. The semantic metrics are evaluated
on WebVid10M [1] and the �delity metrics are performed on RealEstate10k [68]. As shown in the
table, our method is better than or on par with all prior work regarding semantic matching with the
prompt, cross-video consistency, and frame �delity.

Semantic Consistency Fidelity
CLIP-T " CLIP-F " FID # KID # FVD #

MotionCtrl [60]+SVD [5] - 0.81 - - -
CameraCtrl [18] 0.28 0.79 32.10 0.79 277

AnimateDiff [17]+SparseCtrl [16] 0.29 0.86 51.97 1.86 327
CameraCtrl [18]+SparseCtrl [16] 0.29 0.85 61.68 2.47 430

Ours 0.30 0.93 32.90 0.61 285

Per-video geometric consistency on estate scenes.Following CameraCtrl [18], we �rst test the
geometry consistency across the frames in the video generated from our model, using the camera
trajectories and text prompts from RealEstate10K [68] (which mostly consists of static scenes).
Speci�cally, we �rst generate 1000 videos from randomly sampled camera trajectory pairs (two
camera trajectories with the same starting transformation) and text captions. All baselines generate
one video at a time; our model generates two videos simultaneously. For each generated video, we
apply the state-of-the-art image matching algorithm SuperGlue [47] to extract the correspondences
between its �rst frame and following frames and estimate their relative camera poses using the
RANSAC [13, 42] algorithm. To evaluate the quality of correspondences and estimated camera poses,
we adopt the same protocol from SuperGlue [47], which 1) evaluates the poses by the angle error of
their rotation and translation and 2) evaluates the matched correspondences by their epipolar error
(i.e., the distance to the ground truth epipolar line). The results are shown in Tab. 1, where our model
signi�cantly outperforms all baselines. More details are provided in our supplementary materials.

Cross-video geometric consistency on generic scenes.Aside from evaluating the consistency be-
tween frames in the same video, we also test our model's ability to preserve the geometry information
across different videos. To do that, we randomly sample 500 video pairs (1000 videos in total) using
camera trajectory pairs from RealEstate10K [68] and text prompts from WebVid10M's captions [1].
To the best of our knowledge, there is no available large video diffusion model that is designed to
generate multi-view consistent videos for generic scenes. Hence, we modify the CameraCtrl [18] and
MotionCtrl [60] to generate video pairs as baselines. Here, we use the text-to-video version of each
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Figure 4:Qualitative comparison. Our method maintains consistency across videos for static and
dynamic scenes, while no prior work can generate synchronized different realizations. * Despite our
best efforts, we are incapable of getting MotionCtrl [60]+SVD [5] to generate any motion beyond the
simplest static camera zooming in-and-out. Please refer to our supplemental video for illustration.

model to generate a reference video �rst, then take its �rst frame as the input of their image-to-video
version (i.e., their combination with SparseCtrl [16] and SVD [5]) to derive the second video. We use
the same metrics as in the �rst experiment but instead evaluate between the corresponding frames
from the two videos. Results are shown in Tab. 1, where our model greatly outperforms all baselines.

Semantic and �delity evaluations. Following the standard practice of prior works [17, 61, 29, 9,
10, 8], we report CLIP [41] embedding similarity between1) each frame of the output video and the
corresponding input prompt and2) pairs of frames across video pairs. The former metric, denoted
as CLIP-T, is to show that our model does not destroy the appearance/content prior of our base
model, and the latter, denoted as CLIP-F, is aimed to show that the cross-view module can improve
the semantic and structural consistency between the generated video pair. For these purposes, we
randomly sample 1000 videos using camera trajectory pairs from RealEstate10K, along with text
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captions from WebVid10M (2000 videos generated in total). To further demonstrate our method's
ability to maintain high-�delity generation contents, we report FID [20] and KID [4] � 100using the
implementation [38], and FVD [57]. We do not compare against models that do not share the same
base model as us for FID [20], KID [ 4] and FVD [57], since these metrics are strongly in�uenced
by the abilities of the base models. Following prior work [18], we evaluate these two metrics on
RealEstate10k [68] because of the strong undesired bias, e.g., watermarks, on WebVid10M [1]. As
shown in Tab. 2, our model surpasses all baselines for the CLIP [41]-based metrics. This proves our
model's ability to synthesize collaborative videos that share a scene while maintaining and improving
�delity according to the prompt. Our model also performs better than or on par with all prior works
on �delity metrics, which indicates robustness to the appearances and content priors learned by our
base models.

5.3 Ablation Study

Table 3:Ablation Study conducted on generic scenes (prompts from WebVid10M [1]), where we
deactivate each of our introduced modules. Results indicate that our full pipeline outperforms the
ablation settings for both geometric and semantic consistencies.

Rot. AUC Trans. AUC Semantic Consistency
(@5� =10� =20� ) (@5� =10� =20� ) CLIP-T " CLIP-F "

Ours w/o Epi 16.8 / 31.8 / 49.1 1.5 / 5.4 / 13.7 0.30 0.91
Ours RE10K only 17.9 / 29.8 / 43.3 1.7 / 5.3 / 13.2 0.29 0.90

Ours w/o HG 22.0 / 35.5 / 50.5 2.3 / 6.1 / 14.5 0.29 0.92
Ours 1 Layer 22.7 / 37.8 / 54.3 3.1 / 8.5 / 19.2 0.29 0.92

Ours 25.2/ 40.7/ 57.5 3.7/ 9.6/ 19.9 0.30 0.93

We perform a thorough ablation study in Tab. 3 to verify our design choices, where the variants
are: 1) No epipolar line constraints (Ours w/o Epi), where we perform a normal self-attention
instead of epipolar attention in ourCross-View Synchronization Module; 2) No mixed training
(Ours RE10K only), where we follow the setups in CameraCtrl [18] and train the model only on
RealEstate10k [68]; 3) No homography augmentation (Ours w/o HG), where we switch off the
homography transformations applied to WebVid10M [1] videos during training; and4) using only 1
Cross-View Synchronization Moduleinstead of 2 (Ours 1 Layer). The ablation study indicates that
while we can get semantically consistent outputs without epipolar constraints, they are essential to
gain geometrical consistency. We also observe that the mixed training strategy and homography
augmentation greatly improve all metrics, including semantic consistency, further verifying their
purpose of closing the gap between static training scenes and desired dynamic outputs. We believe
there are two reasons why our full model outperforms the model trained on RealEstate10K [68]. The
�rst reason is our epipolar attention design. In the WebVid10M [1] training stage, while there are
no camera poses available, we use pseudo-gt epipolar lines (i.e. lines calculated from homography
matrix H. The line of pixel x in the warped frame goes through the pixel Hx) to describe the spatial
relationship between video frames. This enhances the model's ability to generate videos that satisfy
the given line conditions. Hence, in a camera-control setting, the full model is more constrained
to the epipolar lines and generates videos that align better with the camera poses. Secondly, since
RealEstate10K [68] mostly consists of static indoor scenes, models trained on RealEstate10K [68]
may suffer from data bias and may not perform well on general scenes, thus resulting in poor
evaluation performance in this experiment.

6 Discussion

We introduce CVD, a novel framework facilitating collaborative video generation. It ensures seamless
information exchange between video instances, synchronizing content and dynamics. Additionally,
CVD offers camera customization for comprehensive scene capture with multiple cameras. The core
innovation of CVD is its utilization of epipolar geometry, derived from reconstruction pipelines, as a
constraint. This geometric framework �ne-tunes a pre-trained video diffusion model. The training
process is enhanced by integrating dynamic, single-view, in-the-wild videos to maintain a diverse
range of motion patterns. During inference, CVD employs a multi-view sampling strategy to facilitate
ef�cient information sharing across videos, resulting in a "collaborative diffusion" effect for uni�ed
video output. To our knowledge, CVD represents the �rst approach to tackle the complexities of

9



Figure 5:Multi-view Video Generation. Left: The cameras move towards 4 directions, while all
cameras are looking at the same 3D point;Right: The trajectories are interpolated from one trajectory
(1st Row) to another (4th Row).

multi-view or multi-trajectory video synthesis. It signi�cantly advances beyond existing multi-view
image generation technologies, such as Zero123 [35], by also ensuring consistent dynamics across all
videos produced. This breakthrough marks a critical development in video synthesis, promising new
capabilities and applications.

6.1 Limitations

CVD faces certain limitations. Primarily, the effectiveness of CVD is inherently linked to the
performance of its base models, AnimateDiff [17] and CameraCtrl [18]. While CVD strives to
facilitate robust information exchange across videos, it does not inherently solve the challenge of
internal consistency within individual videos. As a result, issues such as uncanny shape shifting
and dynamic inconsistencies that are presented in the base models may persist, affecting the overall
consistency across the video outputs. Additionally, it cannot synthesize videos in real time, owing to
the computationally intensive nature of diffusion models. Nevertheless, the �eld of diffusion model
optimization is rapidly evolving, and forthcoming advancements are likely to enhance the ef�ciency
of CVD signi�cantly.

6.2 Broader Impacts

Our approach represents a signi�cant advancement in multi-camera video synthesis, with wide-
ranging implications for industries such as �lmmaking and content creation. However, we are
mindful of the potential misuse, particularly in creating deceptive content like deepfakes. We
categorically oppose the exploitation of our methodology for any purposes that infringe upon ethical
standards or privacy rights. To counteract the risks associated with such misuse, we advocate for the
continuous development and improvement of deepfake detection technologies.

Acknowledgement This project was partly supported by Google and Samsung.
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A Appendix / supplemental material

A.1 More Analysis on Collaborative Video Generation.

For simplicity, the video conditions are omitted in this section without loss of generality. In the
paper, we describe the collaborative video diffusion model as a multivariate denoising function
p� (v1;:::;M

t ) that estimates the real distributionq(v1;:::;M
t � 1 jv1;:::;M

t ; v1;:::;M
0 ). Following Ho et.al. [22],

the problem can be transformed into the optimizing a noise prediction network� � (v1;:::;M
t ) to predict

� t = 1p
1� �� t

v1;:::;M
t �

p
�� tp

1� �� t
v1;:::;M

0 . On the other hand, Song et.al. [52] demonstrated the relation

between noise prediction and the score functions� (v1;:::;M
t ; t) � r logq(v1;:::;M

t ) is:

s� (v1;:::;M
t ; t) = �

� � (v1;:::;M
t ; t)

p
1 � �� t

: (5)

As discussed in the paper, directly trainings� (v1;:::;M
t ; t) for an arbitraryM is intractable due to the

lack of multi-view datasets, so we reduce the problem into generating video pairs (M = 2 ) instead.
Speci�cally, we train a score functions� (v i;j ) using video pair datasets and apply it to infer allM
videos. Our collaborative video score function, denoted assCVD(v1;:::;M ), is de�ned as:

sCVD(v1;:::;M ) _=
X

( i;j )2P

wi;j
i s� (v i;j ) i + wi;j

j s� (v i;j ) j ; (6)

whereP is the set of all selected video pairs, ands� (v i;j ) i = ei s� (v i;j ) represents thei 'th video
component of the score function. Note that the order ofi; j is irrelevant.In essence, we utilize the
weighted sum of video pair score functions to depict the score function of all videos. We demonstrate
that the de�ned score functionsCVD(v1;:::;M ) can estimate the real score functionr logq(v1;:::;M ),
only if

P
( i;j )2P wi;j

i = 1 for all i 2 1; :::; M .

Lemma A.1. Let S be a subset off 1; :::; M g, andq(vS
t ) be the density function of a set of video

featuresvS
t = f vk

t jk 2 Sg derived from the forward diffusion process, that is,q(vS
t j vS

0 ) =
N (vS

t ;
p

�� t vS
0 ; (1 � �� t )I ). Thenr v k

t
logq(vS

t j vS
0 ) = 1(k2 S)

1� �� t
(
p

�� t vk
0 � vk

t ), where1(k 2 S)
equals to1 if k 2 S and 0 otherwise.

Proof.

r v k
t

logq(vS
t jvS

0 ) = r v k
t

log(N (vS
t ;

p
�� t vS

0 ; (1 � �� t )I )) (7)

= r v k
t

� (vS
t �

p
�� t vS

0 )2

2(1 � �� t )
(8)

=
1(k 2 S)
1 � �� t

(
p

�� t vk
0 � vk

t ) (9)

Lemma A.2 (Updated Tweedies's Formula). Let S be a subset off 1; :::; M g, andq(vS
t ) be the

density function of a set of video featuresvS
t = f vk

t jk 2 Sg derived from the forward diffusion
process, thenr v k

t
logq(vS

t ) = 1(k2 S)
1� �� t

(
p

�� t E q(vk
0 jvS

t ) � vk
t ).
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Proof.

r v k
t

logq(vS
t ) =

r v k
t
q(vS

t )

q(vS
t )

(10)

=
r v k

t
E v S

0
(q(vS

t jvS
0 ))

q(vS
t )

(11)

=
E v S

0
(r v k

t
q(vS

t jvS
0 ))

q(vS
t )

(12)

=
Z

q(vS
0 )

q(vS
t )

r v k
t
q(vS

t jvS
0 ) dvS

0 (13)

=
Z

q(vS
0 jvS

t )r v k
t

logq(vS
t jvS

0 ) dvS
0 (Bayes' Theorem) (14)

=
Z

q(vS
0 jvS

t ) �
1(k 2 S)
1 � �� t

(
p

�� t vk
0 � vk

t ) dvS
0 (Lemma. A.1) (15)

=
1(k 2 S)
1 � �� t

(
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�� t

Z
q(vS

0 jvS
t )vk

0 dvS
0 � vk

t ) (16)

=
1(k 2 S)
1 � �� t

(
p

�� t

Z
q(vS

0 jvS
t )vk

0 dvS
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t ) (17)

=
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q(vk
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t )vk
0 dvS
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t )vk
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=
1(k 2 S)
1 � �� t

(
p

�� t

Z
q(vk

0 jvS
t )q(vS=k

0 jvk
0 ; vS

t )vk
0 dvS

0 � vk
t ) (21)

=
1(k 2 S)
1 � �� t

(
p

�� t

Z
q(vk

0 jvS
t )vk

0

Z
q(vS=k

0 jvk
0 ; vS

t ) dvS=k
0 dvk

0 � vk
t ) (22)

=
1(k 2 S)
1 � �� t

(
p

�� t

Z
q(vk

0 jvS
t )vk

0 dvk
0 � vk

t ) (23)

=
1(k 2 S)
1 � �� t

(
p

�� t E q(vk
0 jvS

t ) � vk
t ) (24)

Theorem A.3. The functionsCVD(v1;:::;M
t ) can be an unbiased approximation of the real score

functionr logq(v1;:::;M
t ) for all timestepst 2 1; :::; T , only if

P
( i;j )2P wi;j

i = 1 for all i 2 1; :::; M .

Proof. For anyk 2 1; ::; M , thek'th component ofsCVD(v1;:::;M
t ) can be written as:

sCVD(v1;:::;M
t )k (25)

=(
X

( i;j )2P

wi;j
i s� (v i;j ) i + wi;j

j s� (v i;j ) j )k (26)

=
X

(k;j )2P

wk;j
k s� (vk;j )k (27)

�
X

(k;j )2P

wk;j
k r v k logq(vk;j ) (Score Matching) (28)

=
1

1 � �� t

X

(k;j )2P

wk;j
k (

p
�� t E q(vk

0 jvk;j
t ) � vk

t ) (Lemma. A.2) (29)
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To unbiasedly estimater x k
t

logq(v1;:::;M
t ) = 1

1� �� t
(
p

�� t E q(vk
0 jv1;:::;M

t ) � vk
t ) from Eq. 29 w.r.t.

all t andvk
t , there must be

P
(k;j )2P wk;j

k vk
t = vk

t , which means
P

(k;j )2P wk;j
k = 1 .

In addition, we can observe that the accuracy of the estimation from Eq. 29 heavily relies on the
similarity between

P
(k;j )2P wk;j

k E q(vk
0 jvk;j

t ) andE q(vk
0 jv1;:::;M

t ). That means, when we apply

a denoising step to a noisy inputv1;:::;M
t , the outputv1;:::;M

t � 1 is more likely to align with the true
distribution if the prediction ofvk

0 from vk;j
t resembles the prediction ofvk

0 from all v1;:::;M
t . We

think this is fairly reasonable in the context of consistent camera-controlled video generation, as the
underlying geometry of captured videos can often be discerned from just a few views. We believe
this is the key reason why our model can generate consistent multi-view videos trained from video
pair data only.

A.2 Implementing Details

We built our pipeline on top of AnimateDiff [17], a popular open-source T2V model that is widely
used among artists. We additionally deploy CameraCtrl [18] to utilize its camera conditioning ability.
Following this line of works, we bene�t from their plug-and-play property and can swap our base
model with a �ne-tuned version, e.g., via DreamBooth [45] or LORA [25].

A.2.1 Training

We select 65,000 videos from RealEstate10K [68] and 2,400,000 videos from WebVid10M [1] to
train our model. Each data point consists of two videos of 16 frames and their corresponding camera
extrinsic and intrinsic parameters. For RealEstate10K, we randomly sample a 31-frame clip from the
original video and split it into two videos using the method described in the paper. For WebVid10M,
we sample a 16-frame clip, duplicate it to create two videos, and then apply random homography
deformations to the second video. The homography transformation matrixH = H t H r H sH sh Hp is
de�ned as the composition of a series of transformations: translation, rotation, scaling, shearing, and
projection, where:

H t =

"
1 0 t0
0 1 t1
0 0 1

#

; H r =

"
cos(� ) � sin(� ) 0
sin(� ) cos(� ) 0

0 0 1

#

;

H s =

"
1 + s0 0 0

0 1 + s1 0
0 0 1

#

; H sh =

"
1 sh0 0

sh1 1 0
0 0 1

#

; Hp =

"
1 0 0
0 1 0
p0 p1 1

# (30)

are transformation matrices parameterized by controlling vectorst; �; s; sh; p . We aim for the �rst
frame of the deformed video to remain unchanged, with the deformation gradually increasing in
subsequent frames. To achieve this, we randomly sample the controlling vectors for the last frame
from normal distributions. Then, we interpolate these vectors from0 to the sampled values to obtain
the vectors for each intermediate frame and calculate the corresponding matrices.

Following [18], we use the Adam optimizer [30] with learning rate1e� 4. During training, we freeze
the vanilla parameters from our backbones and optimize only our newly injected layers. We mix the
data points from RealEstate10K and WebVid10M under the ratio of7 : 3and train the model in two
phases alternatively. All models are trained on 8 NVIDIA A100 GPUs for 100k iterations using an
effective batch size 8. The training takes approximately 30 hours.

A.2.2 Inference

We use DDIM [51] scheduler with 1000 steps during training and 25 steps during inference. Assuming
wk;j

k is independent withj , we havewk;j
k = wk = 1

j (k;j )2Pj . Our algorithm is shown in Alg. 1.
We use the partitioning strategy in all of our experiments. For 2-view (video pair) results, we use
R = 1(no recurrent denoising) andP = 1 ; For 4-view results, we useR = 4 ; P = 1 ; and for
6-view results, we useR = 6 ; P = 2 . We demonstrate multi-view video generation results in our
supplementary videos. Additionally, we show three potential applications of our algorithm: long
looping videos, view switching, and potential 3D generation.
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Algorithm 1: Algorithm for arbitrary number of videos generation
Parameter: Denoising stepsT, recurrent stepsR, video numberM , noise scheduling

parametersf �� t gT
t =1 , pair selecting strategyStg2 f Exhaustive, Partitiong, partition

numberQ
Input: v1;:::;M

T sampled fromN (0; I ), video pair diffusion model� � , text prompty, camera
trajectoriescam1;:::;M

for t = T; T � 1; :::; 1 do
� 1;:::;M

out  0;
for r = 0 ; 1; :::; R � 1 do

if Stg is Exhaustivethen
P  f (i; j ) j i; j 2 1; :::; M; i 6= j g ; /* Selecting all pairs */
denom  M � 1;

else
P  fg ;
for q = 0 ; 1; :::; Q � 1 do

P:Extend(RandomPairPartition(1; 2; ::; M ))
end
denom  Q;

end
for (i; j ) 2 P do

� i
out  � i

out + � i
� (v i;j

t ; t; cami;j );
� j

out  � j
out + � j

� (v i;j
t ; t; cami;j );

end
v1;:::;M

t � 1 = NoiseSchedule(� 1;:::;M
out =denom;v1;:::;M

t ; t);
if r 6= R � 1 then

� 0 � N (0; I );
v1;:::;M

t =
p

�� t =�� t � 1v1;:::;M
t � 1 +

p
1 � �� t =�� t � 1� 0 ; /* Renoise */

end
end

end

A.3 Results of Attention Maps

We show an exemplar visualization of our epipolar-based attention in Fig. 6, where we take the
highlighted pixel from the left image, and visualize its corresponding attention probability after
softmax. We can observe that information is taken from the second image according to the epipolar
line, and speci�cally, the corresponding region is being attended to.

A.4 Performances with identical camera trajectories

In Fig. 7, we show that our model can generate identical videos if the input camera trajectories are
identical, while none of the prior works communicates cross-videos, hence incapable of generating
identical contents. Quantitatively, our model reaches an MSE of 0.01, signi�cantly outperforming
CameraCtrl at 0.07 and CameraCtrl+SparseCtrl at 0.06. We show more realizations of our model
when the camera trajectory pair and prompt are identical in Fig. 8

A.5 Additional results for LoRA �ne-tuned models

Our model exhibits strong plug-and-play properties and can directly generalize to different �ne-tuned
models, e.g., using Dreambooth [45] or LoRA [25]. We show a few rendering results in Fig. 9. For
better illustration, please refer to our supplemental video.
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Figure 6:Exemplar visualization of epipolar-attention map.

Figure 7:Qualitative comparison with our baselines where the two camera trajectories are identical.

A.6 More Qualitative Results

Figures 10, 11, 12, 13 and 14 show more qualitative results, where we generate video pairs with
different realizations and camera trajectories for each prompt. Please refer to our supplementary
video for better illustrations.

A.7 Homography warping Visualization

In Fig. 15, we show visualization results of our homography warping augmentation applied in our
WebVid10M [1] phase. During our training, we removed the L2 loss in the potentially unseen
pixels (black regions) of the cloned video for data integrity.
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