
Score-based 3D molecule generation with neural fields

Matthieu Kirchmeyer*, Pedro O. Pinheiro*, Saeed Saremi
Prescient Design, Genentech

Abstract

We introduce a new representation for 3D molecules based on their continuous
atomic density fields. Using this representation, we propose a new model based on
walk-jump sampling [1] for unconditional 3D molecule generation in the continu-
ous space using neural fields. Our model, FuncMol, encodes molecular fields into
latent codes using a conditional neural field, samples noisy codes from a Gaussian-
smoothed distribution with Langevin MCMC (walk), denoises these samples in a
single step (jump), and finally decodes them into molecular fields. FuncMol per-
forms all-atom generation of 3D molecules without assumptions on the molecular
structure and scales well with the size of molecules, unlike most approaches. Our
method achieves competitive results on drug-like molecules and easily scales to
macro-cyclic peptides, with at least one order of magnitude faster sampling.1

1 Introduction

Generative modeling of 3D molecular structures, if deployed successfully, can help on many problems
in material and life sciences. Recently, state-of-the-art image and text generative models were adapted
to 3D molecule generation, achieving some degree of success [2, 3]. However, unlike other domains
where the data modality is defined by the representation itself (e.g., a digital image is a tensor of
pixels), there are multiple ways to represent a molecule. Therefore, an important problem to consider
when modeling 3D molecules is: what constitutes a good representation for molecules?

Recent methods for 3D molecule generation usually represent molecules as point clouds of atoms [4]
or discrete grids of atomic densities [5], which we will refer to as voxel grids. Point clouds are
processed by graph neural networks (GNNs), usually based on equivariant architectures [6, 7]. GNNs
are known to be less expressive than other architectures due to the message passing formalism [8,
9, 10] and often scale quadratically with the number of atoms. On the other hand, voxel grids are
compatible with more expressive models (e.g., convnets and transformers) but computation and
memory scales cubically with the volume occupied by the molecules. These limitations in expressivity
and scalability hinder the scope of application of these models.

In this work, we propose a new representation for molecules that overcomes those limitations.
Inspired by the 3D computer vision community [11], we represent molecules as fields encoding
atomic occupancy, i.e., continuous functions that map 3D coordinates to atomic densities. Arguably
this representation is more natural for molecules than for visual data: while visual data is obtained
via discrete measurements, molecular fields are continuous by nature. We handle these fields as such,
by parameterizing the molecular occupancy field with a neural network, shared among all molecules,
and modulation codes, specific to each molecule. Fields that are parametrized by neural networks are
referred to as neural fields, implicit neural representations (INR) or coordinate-based neural networks.
The former models common molecular structures (e.g., bonds, angles, valencies, symmetries) while
the later encodes variations that make each molecule unique. Given a modulation code, we decode the
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Figure 1: (a) a conditional neural �eld encodes a molecular �eldv into a low dimensional latent code
z. (b) using a learned score functiong� , FuncMol performs sampling in latent space via Langevin
MCMC. These codes are decoded back into molecules.

molecular �eld by predicting the occupancy of each atom at given 3D coordinates (see Figure 1(a)).
This decodes the molecules into explicit representations (such as discrete grids at arbitrary resolution
or a.sdf format �le), useful for downstream tasks.

We perform generative modeling in the continuous function space simply by sampling new modulation
codes. Our proposed approach,FuncMol, leverages a modulation code denoiser to sample molecules
following the (score-based) walk-jump sampling (WJS) approach [1]. WJS enjoys many properties
such as fast-mixing, simplicity for training and fast sampling speed. Sampling is composed of
three steps: (i)(walk) sample noisy modulation codes with a Langevin Markov chain Monte Carlo
(MCMC), (ii) (jump)estimate the “clean” modulation codes, and (iii)(decode)convert the estimated
codes into a molecule. Figure 1(b) illustrates a WJS chain, with samples generated by our model
trained on a macrocyclic peptides dataset [12].

The neural molecular �eld representation has many advantages over prior representations: (i) it
represents complex high-dimensional data in a relatively low-dimensional compact space, (ii) it is
scalable (w.r.t. the number of points, size of molecules and resolution) and has low memory footprint,
(iii) it does not make any assumptions on molecular structure or geometry, (iv) it can represent
molecular structures at arbitrary resolutions and for a free-form discretization, (v) it is compatible
with expressive machine learning architectures, and (vi) it is domain-agnostic and can be used for a
variety of molecular design problems that can be expressed over �elds, e.g., atomic densities, surfaces,
pharmacophores, molecular orbitals, electron densities etc.

In summary, our contributions are as follows. We introduce a new way to represent molecular
structures with neural �elds. These representations are low-dimensional, compact, scalable and do not
make any assumptions on the molecular structure. We then propose FuncMol, a score-based model
for 3D molecule generation that leverages these representations. We show that FuncMol performs
competitively against representative baselines on the drug-like molecules dataset GEOM-drugs [13],
based on a wide set of standard and new metrics that we introduce to better measure the generation
quality. These results were achieved with one order magnitude faster sampling time.2 Finally, we
illustrate FuncMol's ability to scale to larger 3D molecules by training it on CREMP [12], a recent
macro-cyclic peptide dataset, to which our baselines are currently unable to scale.

2 Related work

Neural �elds. Neural �elds, also referred to as implicit neural representations (INRs), are
coordinate-based neural networks that map coordinates (e.g., pixels on an image or coordinates in
3D Euclidean space) to features (e.g., RGB values or atomic occupancies). The idea of representing
data points implicitly as neural networks dates back to the work of [14]. Recently, these representa-
tions have been successfully applied to model continuous signals, e.g., 2D images [15, 16, 17], 3D
shapes [18, 19, 20, 21], 3D scenes [22, 23], videos [24, 25], physics [26, 27], due to their appealing
properties. Recently, two concurrent seminal work lead to a fast progress of neural �elds by overcom-
ing the spectral bias of coordinate-based neural networks [28]. Sitzmannet al. [29] propose SIREN,
a neural network that uses periodic activation functions, while Tanciket al. [30] considers a posi-

2Sampling time includes the “decoding” step to convert the generated code into a molecule.
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tional encoding based on Fourier features. Built on top of those architectures, multiplicative �lter
networks (MFNs) [31] represent �elds as a simple linear combination over an exponential number of
basis functions (e.g. Fourier or Gabor basis). Due to their simplicity and strong performance, we use
MFNs to model the atomic occupancy �elds.

Generative models of �elds. Generative models for neural �elds were �rst applied in 3D computer
vision problems. Meschederet al.[19] learn the distribution of shape occupancy �elds with VAEs [32],
while [18, 33] achieves similar objectives using GANs [34]. Diffusion models [35] have also been
applied to learn the distribution of neural �elds [36, 37, 38, 39]. Some work [37, 40] parameterize the
neural �eld with the vector of all the corresponding weights. However, when the signal is complex
and the neural �elds have large number of parameters (e.g., in the order of millions), it is preferable
to parameterize the �eld with a latent code with much lower dimension [36, 41, 42, 43]. Dupontet
al. [36] �t the whole dataset with a shared coordinate-based network and learn a latent modulation
code for each �eld with gradient-based meta learning [44]. Similarly to them, we parameterize
neural �elds with latent modulation codes. However, instead of applying meta learning, we learn
the latent codes through stochastic optimization, either following the “auto-encoding” [19] or the
“auto-decoding” [20] framework.

3D molecule generation. Most 3D molecule generation approaches represent atoms as points (with
coordinates and atom types) and molecules as a set of points. For example, [45, 46, 47] propose
autoregressive approaches to sample atoms, while [48, 49] use normalizing �ows [50]. Hoogeboomet
al. [4] propose EDM, a diffusion model [35] applied to point cloud of atoms with E(3) equivariance [6].
Many follow-up works extend EDM [51, 52, 53]. For example, [54, 55, 56] improve its performance
by leveraging extra information during training (such as molecular graph and formal charges). This
contribution is orthogonal to ours and can potentially be incorporated into our generative model.
Other approaches [57, 58] map atomic densities on discrete 3D regular grids and leverage computer
vision techniques for generation. Recently, VoxMol [5] (and its latent version [59]), a score-based
generative model based on walk-jump sampling [1], shows that voxel-based representations can
achieve state-of-the-art results on 3D drug-like molecule generation. However, these methods scale
cubically with the volume occupied by molecules, which limits its scope of application. Neural �elds
are the continuous generalization of discrete 3D grid representations: they achieve good performance
on 3D molecule generation and are more ef�cient in terms of memory and computation.

Conditional molecule generation. Voxels and point-clouds have also been used for conditional
3D molecule generation, usually by building upon an unconditional model. The authors in [57]
condition generation on 3D pharmacophores features, [60, 61, 62, 63] generate ligands conditioned
on protein pockets, [64] generate molecules conditioned on fragments and [65, 66] generate 3D
conformations conditioned on molecular graphs. We are aware of only one other work that uses
�eld-based representation for molecules [67]. There are several differences between our works: they
use different data representation, neural network architecture and noise model. While they consider
the problem of generating molecule conformations given a molecular graph, we handle the more
general problem of unconditional 3D molecule generation (without access to a molecular graph). Our
model can easily be adapted to conformer generation by conditioning the generative model to the
molecular graph. Moreover, our approach can also be conditioned to tasks where we do not have
access to molecular graphs, such as structure-based drug design or electron density generation.

3 Neural atomic occupancy �elds

We now describe how we represent molecules as continuous occupancy �elds, how we approximate
them with neural �elds and how we decode the neural �elds to retrieve molecular conformations. We
�nish the section by providing some useful properties of our neural �eld representations.

3.1 Molecules as continuous occupancy �elds

We represent atoms as continuous Gaussian-like shapes in 3D space, centered around their atomic
coordinates. Molecules are de�ned as �elds mapping every point in the 3D space to the atomic
densities of each atom type,v : R3 ! Rn , wheren is the number of atom types in the datasetD.
We follow previous work [68, 69, 70], and compute the occupancy �eldva for each atom typea by

3



Figure 2: Conditional neural �eldf � using the multiplicative �lter network architecture. (a) A latent
codez and some coordinatesx are given as input to the model that outputs the occupancy �eld at that
location for the corresponding molecule,f � (x; z). (b) The code and coordinates are processed via
FiLM layers and Hadamard products. We denote the overall operation at layerl asH ( l ) .

integrating the occupancy generated by all atoms of this type as follows:

8x 2 R3; va(x) = 1 �
n aY

i =1

�
1 � exp

�
�

� kx � xa i k
:93r

� 2��
; (1)

whereai is thei th atom of typea, for a total ofna atoms. We set the atoms' radius to ber = :5Å for
all atom types. Molecular �elds are smooth functions taking values between 0 (far away from all
atoms) and 1 (at the center of atoms).

3.2 Molecular neural �elds

Each molecule in the dataset is mapped to a modulation codez 2 Rd and we parameterize the
molecular occupancyv with a conditional neural �eldf � : R3 � Rd ! Rn . Our objective is to
learn the parameters� and the modulation codez such that for any molecular �eldv and coordinate
x 2 R3, f � (x; z) � v(x). We approximate the molecular �elds with a linear combination of an
exponential large number of parameterized basis functions, such that amplitudes are modulated by the
individual codesz. This parametrization is achieved by modeling the neural �eld with multiplicative
�lter networks (MFN) [31], a type of coordinate-based network that provides an elegant way to
perform this linear combination under some assumptions on the basis functions. We introduce the
parameters associated with these functions in Equation (4).

Our conditional MFN is a network withL multiplicative blocks, as illustrated on Figure 2(a). We
implement conditioning of its parameters with FiLM [71]. Each multiplicative block is composed
of a fully-connected layer, a FiLM modulation layer and an elementwise product with a basis, as
illustrated on Figure 2(b). The neural �eld can be expressed by the following recursive expression:

h(0) (x) = s! (0) (x);

h( l ) (x) =
�


 ( l � 1) �
�

W ( l � 1)
f h( l � 1) (x)

�
+

�
b( l � 1) + � ( l � 1)

��
� s! ( l ) (x); l 2 (1; L � 1);

f � (x; z) , h(L ) (x) = W (L � 1)
f h(L � 1) (x) + b(L � 1) ;

wheres! ( l ) is a spatial basis function parameterized by! ( l ) , � denotes the Hadamard product and

� ( l � 1) = W ( l � 1)
� z; and
 ( l � 1) = W ( l � 1)


 z;

are the bias and scale modulation terms. We propose two approaches to learn the neural �eld's
parameters� = f W ( l )

f ; b( l ) ; ! ( l ) ; W ( l )
� ; W ( l )


 g and the codesz (one per each molecule inD).

Auto-decoding. In this setting, introduced by [20], we initialize each codez randomly and directly
learn them (together with the parameters of the neural �eld) with backpropagation. This is achieved
by solving the following optimization problem:

arg min
�; f zv gv 2D

X

v2D

Z
kf � (x; zv ) � v(x)k2

2 dx; (2)

where the integral is approximated by sampling �nite sets of pointsX � R3. While auto-decoding
was usually applied in settings with relatively few samples, we were able to scale the training to large
datasets of one million samples (see Appendix B). See Algorithm 1 on Appendix B for more details.
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Auto-encoding. This approach, introduced by [19] and illustrated in Appendix B Figure 4, generates
the modulation code via an encoder�  , parameterized by and decodes the neural �eld back. In this
work, �  is a (trainable) 3D convolutional network encoder that takes (low-resolution) voxel gridsG
as inputs. This approach is �exible and compatible with other encoder architectures and molecule
representations (e.g., GNN/point clouds). The parameters of the encoder and the neural �eld are
learned with the following objective:

arg min
�; 

X

v2D

Z
kf � (x; �  (G)) � v(x)k2

2 dx: (3)

Once training is done, we generate the code with the trained encoder. See Algorithm 2 on Appendix B
for more details. Instead of learning the codes individually, this approach learns an encoder, which
allows to leverage data augmentation more ef�ciently. As a result it helps learn a more structured
latent space. These bene�ts are re�ected empirically in our experiments.

3.3 From codes to atomic coordinates

By leveraging the modulation codesz and the neural �eldf � , we have access to the (learned)
continuous occupancy �eld,f � (�; z). However, in many useful applications in chemistry and biology,
we are more interested in the 3D conformation of molecules. Next, we describe how we can extract
the molecular conformation from a learned (or generated, as we will see next) modulation code. This
is the decoding step outlined in the introduction.

We start by identifying all atoms in the �eld, their approximate locations and their type. To this end,
we render a discretized voxel grid from the molecular �eld using a uniform discretization of space and
the neural �eldf � (�; z). We then apply apeak �ndingalgorithm to infer the number of atoms in the
molecule on each channel of the grid (each representing a separate atom type) and their (discretized)
coordinates. Finally, we introduce a new continuous re�nement to �nd the local maximum of the
neural �eld. For each identi�ed atomsa, we re�ne its coordinates around the neighborhood of the
coordinates found with the peak detectorx0

a :

xa = arg max
x 2 R3 :kx � x 0

a k� r
[f � (x; z)]a ;

where[f � (x; z)]a denotes the �eld restricted to the channel corresponding to the atom type. This
continuous re�nement �nds atomic coordinates that lie beyond the initial coarse uniform discretization.
In practice, we batch the re�nement process across molecules and use L-BFGS. We demonstrate in
Appendix E.2 its ef�ciency compared to prior non-continuous re�nement approaches from [72, 5].

3.4 Molecular neural �elds properties

The proposed conditional neural �eld enjoys many properties that make it a natural choice for
handling large 3D molecules represented as continuous �elds.

Flexibility w.r.t. basis. Conditioning MFNs gives the �exibility to choose any type of spatial basis
that satis�es a multiplicative-sum property (see the de�nition in [31]). In our preliminary experiments,
we observed that setting the spatial basis to Gabor �lters performed better than Fourier �lters as they
account for the sparse nature of occupancy �elds. For each layerl , we consider the following Gabor
parameterization, also used in [27]:

s! ( l ) (x) = exp
�

�
� ( l )

2
kx � � ( l ) k2

2

�
(cos(
 ( l ) x); sin(
 ( l ) x)) ; (4)

where� ( l ) is the mean of the Gabor �lter,� ( l ) is the scale,
 ( l ) is the frequency and(�; �) refers to the
concatenation operator. Equation (4) combines both real and imaginary parts of the complex Gabor
�lter. This allows to remove phase parameters and reduce the overall parameter count of MFNs [31].
Other choices of basis are also possible and are left for future work.

Parameter ef�ciency. Our overall conditional MFN formulation is parameter ef�cient and shares
parameters across molecules and channels (i.e. atom types). As [27], we excluded the basis functions
parameters! from FiLM to further decrease the parameter count.
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Memory ef�ciency. Our conditional neural �eld can be trained on any free-form discretization of
the input �eld. Occupancy values are computed on the �y. This allowed to train FuncMol with large
batch size even on large 3D molecules. We found that training the neural �eld by up-sampling points
close to the atoms' center improved training time as further detailed in Appendix B. Alternative
approaches like VoxMol [5] cannot be trained ef�ciently in this setting: for reference, on the macro-
cyclic peptide generation task of Section 5.4, on 4 A100 GPUs VoxMol's training cost per epoch was
10 hours while our neural �eld's training cost was less than 12 minutes.

Reconstruction quality and robustness to noise. Finally our neural �eld reconstructs accurately
the input data as demonstrated in Appendix E.1. Moreover, operating on these latent codes makes our
model extremely robust to noise in code space. We demonstrate this property in Appendix E.3 by
reporting the sampling metrics when perturbing the codesz by a Gaussian noise.

Sampling ef�ciency. We use the latent codes for generative modeling as explained in Section 4.
Most sampling operations are done on a small dimensional latent space, while decoding into a full
molecular �eld is done only after sampling. As we show in Section 5, our approach (which involves
sampling latent code followed decoding them into molecules) achieves at least one order magnitude
faster molecule sampling time than previous methods.

4 Score-based generative modeling

We use our latent modulation representations for a downstream generative modeling task. Section 4.1
describes the neural empirical Bayes (NEB) formalism used in our method and Section 4.2 explains
how we perform sampling.

4.1 Neural empirical Bayes

Let p(z) be the distribution of codes andp(v) be the (unknown) distribution of molecular �elds,
de�ned more formally as the pushforward ofp(z) via the mappingz 7! f � (�; z). NEB estimates the
score function of a smoothed density of the codesp(y), g� (y) � r logp(y). Indeed sampling from a
smoothed densityp(y) bene�ts from faster mixing than on the original densityp(z) [1, 73, 74]. This
smoothed distribution is de�ned by transforming the random variableZ with an additive isotropic
Gaussian noise with a known noise level� , Y = Z + N , whereN � N (0; � 2I d). The noise level�
plays a key role, trading-off simplicity of the denoising objective and the sampling quality.

NEB is based on an empirical Bayes view of (denoising) score-based models that relates the estimator
of clean data (denoiser) and the score function of the smoothed density at a �xed noise level [75, 76, 1].
The denoiser is taken to be the least-square estimator ofZ givenY = y which is the Bayes estimator,
i.e. ẑ(y) = E[Z jY = y]. Under Gaussian noise, denoiser and smoothed score function are related by
the Tweedie-Miyasawa formula:

ẑ(y) = y + � 2r logp(y): (5)

The denoiser is parameterized by a neural network and learned by minimizing the following objective:

L (� ) = Ez� p(z) ;" �N (0 ;� 2 I d )




 z � ẑ� (z + ")




 2

2: (6)

The score function is recovered from a learned denoiser via Equation (5) and is used for sampling
smoothed codes (see Section 4.2). In practice, we optimize the empirical loss based on the latent
codes inferred from a set of molecular �eldsD. See pseudo-code in Appendix B, Algorithm 3.

4.2 Walk-jump sampling

We use the score functiong� to sample codes using thewalk-jump sampling(WJS) scheme [1, 77,
73, 78]. This approach samples molecules fromp(z) using the learned score function of noisy data
instead of clean data. It consists of two main steps: walking and jumping as detailed in Appendix B,
Algorithm 4. Figure 1(b) illustrates these two main steps in a WJS chain: walking consists in
generating noisy codes while jumping consists in generating clean codesz.

(initialization) To improve mixing, as [77], we initialize the chains by adding uniform noise to
Gaussian noise (with the same� used when training the denoiser). In practice we sample the uniform
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noise over the range of code values,� � U d(min z2D z ;i 2f 1��� dg zi ; maxz2D z ;i 2f 1��� dg zi ), whereDz

is the training dataset of codes, arriving aty0 = � + " , " � N (0; � 2I d).

(walk) Noisy codes are sampled fromp(y) with Langevin MCMC algorithms that discretize the
underdamped Langevin diffusion [79] starting fromy0 andu0 = 0 :

dut = � 
u t dt + g� (yt )dt +
p

2
 dB t ; dyt = ut dt ; (7)

whereB t is the standard Brownian motion inRd and
 is the friction (the “mass” is set to 1). We
discretize this SDE using the ABOBA scheme from Sachset al. [80], given a discretization step�
and a �xed number of walk stepsK . We analyze the impact ofK in Appendix E.4.

(jump) At a given time stepK , clean samples are estimated by denoising the smooth code, i.e.,
zK = ẑ� (yK ). These codes are then used to obtain the atomic coordinates as detailed in Section 3.3.

5 Experiments

We now evaluate our model for unconditional generation. We start with a description of our exper-
imental setup (Section 5.1), then present our results on two popular small molecule datasets (Sec-
tions 5.2 and 5.3) and a recent macro-cyclic peptide dataset (Section 5.4).

5.1 Experimental setup

Datasets. We evaluate FuncMol on three datasets:QM9 [81], GEOM-drugs[82] andCREMP[12].
QM9 contains an enumeration of all possible molecules up to 9 heavy atoms (29 including hydrogens)
satisfying some constraints [83]. GEOM-drugs contains multiple conformations for 430K drug-sized
molecules (computed with semi-empirical density functional theory), with an average of 44 heavy
atoms per molecule. CREMP is a recent dataset that contains multiple conformations of macrocyclic
peptides 4-6 residue long, with an average of 74 heavy atoms per molecule. We model hydrogen
explicitly and consider 5 chemical elements for QM9 (C, H, O, N, F), 6 for CREMP (C, H, O, N,
F, S) and 8 for GEOM-drugs (C, H, O, N, F, S, Cl and Br), ignoring the P, I and B elements that
occur extremely rarely. We use a split of 100K/20K/13K molecules for QM9, 1.1M/146K/146K on
GEOM-drugs and 409K/10K/9K on CREMP for train, validation and test, respectively. We use the
same pre-processing and splits in [54] for QM9 and GEOM-drugs and in [84] for CREMP.

Implementation details. Our main model,FuncMol, follows the auto-encoding approach described
in Section 3.2. The codesz are computed with an encoder that takes as input a low-resolution
voxelized representation of the molecular �eld with grid dimension of 16� 16� 16. The encoder is a
3D CNN containing 4 residual blocks, where each block contains 3 convolutional layers followed by
BatchNorm, ReLU and pooling (max pooling on the �rst three blocks and average pooling on the last
one) layers. We consider modulation codes with dimension 1024 on QM9 and 2048 on GEOM-drugs
and CREMP. We use the same neural �eld network for all datasets: a conditional MFN with Gabor
�lters and 6 FiLM-modulated layers, where each fully-connected layer has 2048 hidden units. We
augment the training set by applying random rotations on the three Euler angles. The weights of the
latent code encoder and neural �eld decoder are trained jointly.

We also show results for the auto-decoding based model,FuncMoldec. In this setting, we initialize
the codes randomly and optimize them together with the neural �eld weights. This approach is less �t
for performing large amounts of augmentation as it solves a costly per-sample optimization problem;
thus we did not apply data augmentation. As a consequence, we observed that this model is more
prone to memorization than the auto-encoding approach (e.g., on GEOM-drugs, around 33% of the
generated molecules are copies from the training set).

We normalize the codes to have zero mean and unit variance. We choose a noise level in normalized
space of� = 1 :2 for GEOM-drugs and CREMP,� = 2 :0 for QM9. Our code denoiser is a modi�ed
version of the denoiser used in [36]: a fully-connected network with 18 residual blocks (each with
two linear layers with 6144 hidden units) and skip connections. We remove the bias of all layers and
use ReLU activations as in [85]. To limit memorization in FuncMoldec, we add dropout (ratio 0.3)
between the fully-connected layers in each residual block. For QM9, we consider a smaller network
(6 residual blocks and 4096 hidden units). We initialize the MCMC chains with noise and use the
following sampling hyperparameters
 = 1 :0 and� = �= 2 as in [5, 78]. For evaluation purposes, we
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generate one sample per chain. We consider 1000 steps for QM9 and GEOM-drugs and 10000 steps
for CREMP. See Appendix B for more details on the implementation.

Baselines. We compare FuncMol and FuncMoldec to three state-of-the-art approaches.EDM [4]
andGeoLDM[53] are diffusion models operating on point clouds (the latter is a latent-space extension
of the former).VoxMol[5] is a voxel-based generative model that uses neural empirical Bayes, similar
to our generative approach. All of the methods generate molecules as a set of atom types and their
coordinates. EDM and GeoLDM apply diffusion directly to point clouds, while VoxMol and FuncMol
rely on an additional (cheap) post-processing step to extract atomic coordinates from voxel grids
or modulation codes, respectively. We follow previous work [58, 54, 5, 62, 86], and use standard
cheminformatics software (OpenBabel [87]) to determine the molecule's atomic bonds given their
atomic coordinates. The same post-processing is applied to all models for fairness of comparison.

Metrics. We consider several metrics used in previous work [5] to benchmark unconditional molecule
generation for the standard QM9 and GEOM-drugs datasets (for the CREMP metrics, see Section 5.4):
stable molandstable atom, the percentage of stable molecules and atoms (as de�ned in [4]); validity,
the percentage of generated molecules that passes RDKit [88]'s sanitization �lter; uniqueness, the
proportion of valid molecules that have different canonical SMILES;valency W1, the Wasserstein
distance between the distribution of valencies in the generated and test set;atoms TVandbonds TV,
the total variation between the distribution of atom types and bond types;bond length W1 andbond
angle W1, the Wasserstein distance between the distribution of bond and lengths. We also report the
average sampling time per molecule. In the case of our method, this time includes the MCMC “walk”
steps, the denoising “jump”, the rendering, peak detection and bond inference.

To further investigate the quality of molecular conformations and other molecular properties on
GEOM-drugs, we consider some additional metrics. These include:single fragment, the percentage
of molecules that contains only a single fragment;median strain energy[89], the difference between
the internal energy of the generated molecule's pose and a relaxed pose of the molecule using RDKit's
Universal Force Field [90], computed over all molecules;ring size TV, the total variation between
the empirical distribution of ring sizes (i.e. number of heavy atoms in rings) in generated and test
sets;number of atoms/mol TV, the total variation between the empirical distribution of number of
atoms per molecule in generated and test sets (in the case of molecules with multiple fragments, we
consider only the largest fragment);QED, SA and logp, measure the drug-likeness score [91], the
synthesizability score [92] and the lipophilic ef�ciency, respectively (computed with RDKit).

Ablations. In Appendix E we report a series of ablation studies for the neural �eld and the generative
model. Appendix E.1 measures the reconstruction quality of the training molecules. Appendix E.2
illustrates the improvements due to continuous atomic coordinate re�nement. Appendix E.3 shows
that our �eld-based decoder is robust to noise, making it an ideal choice for generative modeling.
Appendix E.4 ablates the impact of the number of walk steps in the WJS scheme of Section 4.2.
Finally, Appendix E.5 ablates the impact of the chosen resolution when sampling codes and decoding
them back to molecules. In practice, we observe that 0.25Å provides a good trade-off between the
sampling time and the quality of the generated molecules.

5.2 Results on QM9

As pointed by previous authors [93, 4], this dataset is not fully suited for unconditional generative
models: a model that captures the training distribution will have to generate samples from training
set, due to the enumeration. However, many previous work report results on this dataset. Therefore,
we also show results for completeness.

Table 1 report the metrics described in Section 5.1. We see that FuncMol slightly improves VoxMol
and both models perform worse compared to the equivariant point-cloud based baselines. We note
that sampling time of FuncMol is an order of magnitude better than baselines.

5.3 Results on GEOM-drugs

Table 2 reports the same set of metrics as in the previous dataset. FuncMol performs favorably over
point cloud diffusion models and is close to VoxMol's performance. In particular, FuncMol and
VoxMol generate molecules that are signi�cantly more stable and better capture the distribution of
bond angles. Table 3 shows results on additional metrics (described in Section 5.1). We also include
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Table 1: QM9 results w.r.t. test set for 10000 samples per model." /# indicate that higher/lower
numbers are better. The rowdataare randomly sampled molecules from the validation set. We report
1-sigma error bars over 3 sampling runs.

stable stable valid unique valency atom bond bond bond time
mol %" atom%" %" %" W1# TV # TV # lenW1# angW1# s/mol.#

data 98.7 99.8 98.9 99.9 .001 .003 .000 .000 .120 -

EDM 97.9 99.8 99.0 98.5 .011 .021 .002 .001 .440 0.54
GeoLDM 97.5 99.9 100. 98.0 .005 .017 .003 .007 .435 0.65
VoxMol 89.3 99.2 98.7 92.1 .023 .029 .009 .003 1.96 0.83

FuncMoldec 88.6 99.2 100. 81.1 .022 .066 .032 .006 1.21 0.05
FuncMol 89.2

(� .4)
99.0
(� .07)

100.
(� 0)

92.8
(� 0.3)

.021
(� 0.001)

.012
(� 0.001)

.006
(� 0.003)

.005
(� 0.009)

1.56
(� 0.06)

0.05

Table 2: GEOM-drugs results, standard metrics w.r.t. test set for 10000 samples per model." /#
indicate that higher/lower numbers are better. The rowdataare randomly sampled molecules from
the validation set. We report 1-sigma error bars over 3 sampling runs.

stable stable valid unique valency atom bond bond bond time
mol %" atom%" %" %" W1# TV # TV # lenW1# angW1# s/mol.#

data 99.9 99.9 99.8 100.0 .001 .001 .025 .000 0.05 -

EDM 40.3 97.8 87.8 99.9 .285 .212 .048 .002 6.42 9.35
GeoLDM 57.9 98.7 100. 100. .197 .099 .024 .009 2.96 8.96
VoxMol 75.0 98.1 93.4 99.6 .254 .033 .024 .002 0.64 7.55

FuncMoldec
69.7
(� .6)

95.3
(� .1)

100.
(� .0)

77.5
(� .6)

.268
(� .001)

.035
(� .001)

.028
(� .001)

.003
(� .000)

2.13
(� .01)

0.29
FuncMol 69.7

(� .2)
98.8
(� .0)

100.
(� .0)

95.3
(� .1)

.245
(� .001)

.109
(� .001)

.052
(� .000)

.003
(� .000)

2.49
(� .06)

0.29

the following plots of Appendix F: Figure 9 shows the cumulative distribution function of strain
energies for generated molecules and Figures 10 and 11 show the histograms of the other metrics.

The results are clear:FuncMol samples better drug-like molecules than point-cloud diffusion models.
In fact, about half the molecules of point cloud methods have multiple fragments, they have an order
of magnitude higher median strain energy, the distribution of ring sizes is off and the QED, SA
and logp scores are lower. The results of FuncMol are close to VoxMol in most but not all metrics.
However, our approach is much more scalable and ef�cient:FuncMol generates molecules an order
of magnitude faster than previous methods(see the last column of Table 2). Appendix H shows some
molecules generated by FuncMol on GEOM-drugs.

Table 3: GEOM-drugs results, additional metrics w.r.t. test set for 10000 samples per model." /#
indicate that higher/lower numbers are better. The rowdataare randomly sampled molecules from
the validation set. We report 1-sigma error bars over 3 sampling runs.

single median ring sz atms/mol QED SA logp
frag%" energy# TV # TV # " " "

data 100. 54.5 .011 .000 .658 .832 2.95

EDM 42.2 951.3 .976 .604 .472 .514 1.11
GeoLDM 51.6 461.5 .644 .469 .497 .593 1.05
VoxMol 82.6 69.2 .264 .636 .659 .762 2.73

FuncMoldec
80.2
(� .6)

96.4
(� 1.1)

.324
(� .008

.970
(� .008)

.677
(� .015)

.788
(� .038)

2.87
(� .00)

FuncMol 70.5
(� .2)

109.7
(� 1.1)

.427
(� .006)

1.05
(� .00)

.713
(� .001)

.811
(� .005)

3.09
(� .02)
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Figure 3: Qualitative evaluation on CREMP following [84]. Left: Comparison of the bond angles (� 1,
� 2, � 3) in each residue and dihedral distributions (� ,  , ! ) for each residue from the reference test set
(gray) and the generated samples (blue). KL divergence is calculated asKL(testjj sampled). Right:
Ramachandran plots [94] (colored by density where darker tones represent high density regions).

5.4 Results on CREMP

To showcase the scalability of FuncMol, we train it on a dataset of larger molecules. We choose the
macrocylic peptides of CREMP, that contains on average 74 atoms, making it challenging to train
models using point-clouds. These molecules also pose serious limitations to voxel-based approaches
as they require modeling a volume of243 cubic Angstroms. We tried to train VoxMol on this dataset
using the of�cial implementation, but did not succeed: it takes around 10 hours per epoch on 4 A100
GPUs, while FuncMol takes less than 12 minutes per neural �eld epoch and 15s per denoiser epoch.
We use the same code dimension and neural �eld architecture as in GEOM-drugs, therefore the
computational training cost of FuncMol remains unchanged.

Figure 3 shows that FuncMol captures well the underlying distribution of macrocyclic conformations.
We show the distribution of bond angles (� 1, � 2, � 3) and dihedrals (� ,  , ! ) of both molecules
from test set and generated molecules. We also show the KL-divergence between test and generated
samples. Approximately 65% of the generated molecules were valid peptides (that is, we could
extract a sequence of amino acids from the SMILES strings). The Ramachandran plots [94] show
that FuncMol recovers the main modes of the distribution. We note that the bond angles and
dihedrals distributions are learned without having any explicit priors on the structure of these peptides.
Appendix H shows some generated macrocylic peptides. Finally, our model takes around 1.5s to
generate a molecule. For reference, should VoxMol be trained successfully, it would take over a
minute to sample a single molecule (assuming similar sampling parameters as in other datasets). This
is a substantial speedup that showcases the potential of FuncMol to scale to even larger molecules.

6 Discussion

We introduce a new continuous representation of 3D molecules based on their atomic occupancy �eld
and a score-based generative model operating on this representation. Each molecule is assigned a
code that modulates a shared neural �eld. We demonstrate that we can build an all-atom generative
model of 3D molecules, FuncMol, with state-of-the-art sampling time and competitive performance
on challenging drug-like datasets. We believe that this model introduces a new paradigm for all-
atom 3D modeling of molecules that has many useful properties, namely scalability, expressivity, and
�exibility, as it can model various molecular design problems (involving structure, electron densities,
etc.) with minor architecture changes. Future research directions include exploring different neural
�eld architectures, adapt the model for conditional generation (e.g., structure conditioning) or model
the molecular bonds alongside the atomic coordinates3. Moreover, the scalability of FuncMol can be
a potential alternative for all-atom representations of large biomolecules.

3Recent work [54, 95] show that this improves generation quality. See Appendix G to see how our method
compares with a representative baseline that uses the bond information.

10



Acknowledgements We would like to thank the Prescient Design team for helpful discussions and
Genentech's HPC team for providing a reliable environment to train and analyze models.

References

[1] Saeed Saremi and Aapo Hyvärinen. Neural empirical bayes.JMLR, 2019. (cit. on pp. 1, 2, 3, and 6)

[2] Camille Bilodeau, Wengong Jin, Tommi Jaakkola, Regina Barzilay, and Klavs F Jensen. Generative models
for molecular discovery: Recent advances and challenges.Computational Molecular Science, 2022. (cit.
on p. 1)

[3] Benoit Baillif, Jason Cole, Patrick McCabe, and Andreas Bender. Deep generative models for 3d molecular
structure.Current Opinion in Structural Biology, 2023. (cit. on p. 1)

[4] Emiel Hoogeboom, V�ctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion for
molecule generation in 3d. InICML, 2022. (cit. on pp. 1, 3, and 8)

[5] Pedro O. Pinheiro, Joshua Rackers, Joseph Kleinhenz, Michael Maser, Omar Mahmood, Andrew Martin
Watkins, Stephen Ra, Vishnu Sresht, and Saeed Saremi. 3d molecule generation by denoising voxel grids.
In NeurIPS, 2023. (cit. on pp. 1, 3, 5, 6, 7, 8, 18, and 21)

[6] V�ctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks. In
ICML, 2021. (cit. on pp. 1 and 3)

[7] Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks.arXiv:2207.09453, 2022. (cit. on p. 1)

[8] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
ICLR, 2019. (cit. on p. 1)

[9] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. InAAAI, 2019.
(cit. on p. 1)

[10] Sergey N Pozdnyakov and Michele Ceriotti. Incompleteness of graph convolutional neural networks for
points clouds in three dimensions.arXiv:2201.07136, 2022. (cit. on p. 1)

[11] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari,
James Tompkin, Vincent sitzmann, and Srinath Sridhar. Neural �elds in visual computing and beyond.
Computer Graphics Forum, 2022. (cit. on p. 1)

[12] Colin A Grambow, Hayley Weir, Christian N Cunningham, Tommaso Biancalani, and Kangway V Chuang.
CREMP: Conformer-rotamer ensembles of macrocyclic peptides for machine learning.arXiv:2305.08057,
2023. (cit. on pp. 2, 7, and 18)

[13] Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations for
property prediction and molecular generation.Scienti�c Data, 2022. (cit. on pp. 2 and 18)

[14] Kenneth O Stanley. Compositional pattern producing networks: A novel abstraction of development.
Genetic programming and evolvable machines, 2007. (cit. on p. 2)

[15] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-gan: Periodic implicit
generative adversarial networks for 3d-aware image synthesis. InCVPR, 2021. (cit. on p. 2)

[16] Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You. Neural
network diffusion.arXiv:2402.13144, 2024. (cit. on p. 2)

[17] Yilun Du, Katie Collins, Josh Tenenbaum, and Vincent Sitzmann. Learning signal-agnostic manifolds of
neural �elds.NeurIPS, 2021. (cit. on p. 2)

[18] Zhiqin Chen and Hao Zhang. Learning implicit �elds for generative shape modeling. InCVPR, 2019. (cit.
on pp. 2 and 3)

[19] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space. InCVPR, 2019. (cit. on pp. 2, 3, and 5)

[20] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. DeepSDF:
Learning continuous signed distance functions for shape representation. InCVPR, 2019. (cit. on pp. 2, 3,
and 4)

11



[21] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Baktashmotlagh, and Anders Eriksson.
Implicit surface representations as layers in neural networks. InICCV, 2019. (cit. on p. 2)

[22] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Continuous
3d-structure-aware neural scene representations.NeurIPS, 2019. (cit. on p. 2)

[23] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. NeRF: Representing scenes as neural radiance �elds for view synthesis. InECCV, 2020. (cit. on p. 2)

[24] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene �ow �elds for space-time view
synthesis of dynamic scenes. InCVPR, 2021. (cit. on p. 2)

[25] Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vidit Goel, Zhangyang Wang, Humphrey Shi,
and Xiaolong Wang. Videoinr: Learning video implicit neural representation for continuous space-time
super-resolution. InICCV, 2022. (cit. on p. 2)

[26] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations.Journal of Computational Physics, 2019. (cit. on p. 2)

[27] Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and patrick gallinari.
Continuous PDE dynamics forecasting with implicit neural representations. InICLR, 2023. (cit. on pp. 2,
5, and 18)

[28] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. InICML, 2019. (cit. on p. 2)

[29] Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions. InNeurIPS, 2020. (cit. on p. 2)

[30] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn high
frequency functions in low dimensional domains. InNeurIPS, 2020. (cit. on p. 2)

[31] Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J. Zico Kolter. Multiplicative �lter networks. In
ICLR, 2021. (cit. on pp. 3, 4, 5, and 18)

[32] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.ICML, 2014. (cit. on p. 3)

[33] Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative models as distributions of functions.
AISTATS, 2022. (cit. on pp. 3 and 17)

[34] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets.NeurIPS, 2014. (cit. on p. 3)

[35] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. InICML, 2015. (cit. on p. 3)

[36] Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and Dan Rosenbaum. From data
to functa: Your data point is a function and you can treat it like one. InICML, 2022. (cit. on pp. 3, 7, and 18)

[37] Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generating
implicit neural �elds with weight-space diffusion. InICCV, 2023. (cit. on p. 3)

[38] Gene Chou, Yuval Bahat, and Felix Heide. Diffusion-sdf: Conditional generative modeling of signed
distance functions. InICCV, 2023. (cit. on p. 3)

[39] Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape representation
for neural �elds and generative diffusion models.ACM Transactions on Graphics (TOG), 2023. (cit. on p. 3)

[40] Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, and Haggai Maron. Equivariant
architectures for learning in deep weight spaces. InICML, 2023. (cit. on p. 3)

[41] Matthias Bauer, Emilien Dupont, Andy Brock, Dan Rosenbaum, Jonathan Richard Schwarz, and Hyunjik
Kim. Spatial functa: Scaling functa to imagenet classi�cation and generation.arXiv:2302.03130, 2023.
(cit. on p. 3)

[42] Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, and Luigi
di Stefano. Deep learning on implicit neural representations of shapes. InICLR, 2023. (cit. on p. 3)

12



[43] Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Winnie Xu, Samuel Sokota, J Zico Kolter, and
Chelsea Finn. Neural functional transformers. InNeurIPS, 2023. (cit. on p. 3)

[44] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. InICML, 2017. (cit. on p. 3)

[45] Niklas WA Gebauer, Michael Gastegger, and Kristof T Schütt. Generating equilibrium molecules with
deep neural networks.arXiv:1810.11347, 2018. (cit. on p. 3)

[46] Niklas Gebauer, Michael Gastegger, and Kristof Schütt. Symmetry-adapted generation of 3d point sets for
the targeted discovery of molecules.NeurIPS, 2019. (cit. on p. 3)

[47] Youzhi Luo and Shuiwang Ji. An autoregressive �ow model for 3d molecular geometry generation from
scratch. InICLR, 2022. (cit. on p. 3)

[48] Jonas Köhler, Leon Klein, and Frank Noé. Equivariant �ows: exact likelihood generative learning for
symmetric densities. InICML, 2020. (cit. on p. 3)

[49] Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E(n) equivari-
ant normalizing �ows.NeurIPS, 2021. (cit. on p. 3)

[50] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing �ows. InICML, 2015. (cit.
on p. 3)

[51] Lei Huang, Hengtong Zhang, Tingyang Xu, and Ka-Chun Wong. Mdm: Molecular diffusion model for 3d
molecule generation. InAAAI, 2023. (cit. on p. 3)

[52] Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule generation
with informative prior bridges.NeurIPS, 2022. (cit. on p. 3)

[53] Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. InICML, 2023. (cit. on pp. 3 and 8)

[54] Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d denoising
diffusion for molecule generation. InECML, 2023. (cit. on pp. 3, 7, 8, 10, 18, and 24)

[55] Chenqing Hua, Sitao Luan, Minkai Xu, Zhitao Ying, Jie Fu, Stefano Ermon, and Doina Precup. Mudiff:
Uni�ed diffusion for complete molecule generation. InLearning on Graphs Conference, 2024. (cit. on p. 3)

[56] Xingang Peng, Jiaqi Guan, Qiang Liu, and Jianzhu Ma. Moldiff: Addressing the atom-bond inconsistency
problem in 3d molecule diffusion generation. InICML, 2023. (cit. on pp. 3 and 24)

[57] Miha Skalic, José Jiménez, Davide Sabbadin, and Gianni De Fabritiis. Shape-based generative modeling
for de novo drug design.Journal of chemical information and modeling, 2019. (cit. on p. 3)

[58] Matthew Ragoza, Tomohide Masuda, and David Ryan Koes. Learning a continuous representation of 3d
molecular structures with deep generative models.NeurIPS, MLSB Workshop, 2020. (cit. on pp. 3 and 8)

[59] Ewa Nowara, Pedro Pinheiro, Sai Mahajan, Omar Abul'atta, Andrew Watkins, Saeed Saremi, and Michael
Maser. Nebula: Neural empirical bayes under latent representations for ef�cient and controllable design of
molecular libraries.ICML. Worshop on AI4Sciences, 2024. (cit. on p. 3)

[60] Matthew Ragoza, Tomohide Masuda, and David Ryan Koes. Generating 3D molecules conditional on
receptor binding sites with deep generative models.Chemical science, 2022. (cit. on p. 3)

[61] Xingang Peng, Shitong Luo, Jiaqi Guan, Qi Xie, Jian Peng, and Jianzhu Ma. Pocket2mol: Ef�cient
molecular sampling based on 3D protein pockets. InICML, 2022. (cit. on p. 3)

[62] Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3D equivariant
diffusion for target-aware molecule generation and af�nity prediction.ICLR, 2023. (cit. on pp. 3 and 8)

[63] Pedro O Pinheiro, Arian Jamasb, Omar Mahmood, Vishnu Sresht, and Saeed Saremi. Structure-based drug
design by denoising voxel grids.ICML, 2024. (cit. on p. 3)

[64] Ilia Igashov, Hannes Stärk, Clément Vignac, Arne Schneuing, Victor Garcia Satorras, Pascal Frossard, Max
Welling, Michael Bronstein, and Bruno Correia. Equivariant 3d-conditional diffusion model for molecular
linker design.Nature Machine Intelligence, 2024. (cit. on p. 3)

[65] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric
diffusion model for molecular conformation generation. InICLR, 2022. (cit. on p. 3)

13



[66] Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional diffusion for
molecular conformer generation.NeurIPS, 2022. (cit. on p. 3)

[67] Yuyang Wang, Ahmed A. Elhag, Navdeep Jaitly, Joshua M. Susskind, and Miguel Angel Bautista. Gener-
ating molecular conformer �elds, 2023. (cit. on p. 3)

[68] Lin Li, Chuan Li, and Emil Alexov. On the modeling of polar component of solvation energy using smooth
gaussian-based dielectric function.Journal of Theoretical and Computational Chemistry, 2014. (cit. on p. 3)

[69] Michael J Willatt, Félix Musil, and Michele Ceriotti. Atom-density representations for machine learning.
The Journal of chemical physics, 2019. (cit. on p. 3)

[70] Gabriele Orlando, Daniele Raimondi, Ramon Duran-Romaña, Yves Moreau, Joost Schymkowitz, and
Frederic Rousseau. Pyuul provides an interface between biological structures and deep learning algorithms.
Nature communications, 2022. (cit. on p. 3)

[71] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual
reasoning with a general conditioning layer.AAAI, 2018. (cit. on p. 4)

[72] Matthew Ragoza, Tomohide Masuda, and David Ryan Koes. Learning a continuous representation of 3d
molecular structures with deep generative models. InNeurips, Structural Biology workshop, 2020. (cit. on
p. 5)

[73] Saeed Saremi, Rupesh Kumar Srivastava, and Francis Bach. Universal smoothed score functions for
generative modeling.arXiv:2303.11669, 2023. (cit. on p. 6)

[74] Saeed Saremi, Ji Won Park, and Francis Bach. Chain of log-concave Markov chains.ICLR, 2024. (cit. on
p. 6)

[75] Herbert E Robbins. An empirical bayes approach to statistics. InBreakthroughs in Statistics: Foundations
and basic theory. 1992. (cit. on p. 6)

[76] Koichi Miyasawa. An empirical Bayes estimator of the mean of a normal population.Bulletin of the
International Statistical Institute, 1961. (cit. on p. 6)

[77] Saeed Saremi and Rupesh Kumar Srivastava. Multimeasurement generative models.ICLR, 2022. (cit. on
p. 6)

[78] Nathan C Frey, Dan Berenberg, Joseph Kleinhenz, Isidro Hotzel, Julien Lafrance-Vanasse, Ryan Lewis
Kelly, Yan Wu, Arvind Rajpal, Stephen Ra, Richard Bonneau, Kyunghyun Cho, Andreas Loukas, Vladimir
Gligorijevic, and Saeed Saremi. Protein discovery with discrete walk-jump sampling. InICLR, 2024. (cit.
on pp. 6 and 7)

[79] Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, and Michael I. Jordan. Underdamped Langevin
MCMC: A non-asymptotic analysis. InCOLT, 2018. (cit. on p. 7)

[80] Matthias Sachs, Benedict Leimkuhler, and Vincent Danos. Langevin dynamics with variable coef�cients
and nonconservative forces: from stationary states to numerical methods.Entropy, 2017. (cit. on p. 7)

[81] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.Chemical
science, 2018. (cit. on pp. 7 and 18)

[82] Simon Axelrod and Rafael Gómez-Bombarelli. Geom, energy-annotated molecular conformations for
property prediction and molecular generation.Scienti�c Data, 9(1):185, 2022. (cit. on p. 7)

[83] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules.Scienti�c data, 2014. (cit. on p. 7)

[84] Colin A. Grambow, Hayley Weir, Nathaniel L. Diamant, Alex M. Tseng, Tommaso Biancalani, Gabriele
Scalia, and Kangway V. Chuang. Ringer: Rapid conformer generation for macrocycles with sequence-
conditioned internal coordinate diffusion.arXiv, 2023. (cit. on pp. 7 and 10)

[85] Sreyas Mohan, Zahra Kadkhodaie, Eero P. Simoncelli, and Carlos Fernandez-Granda. Robust and
interpretable blind image denoising via bias-free convolutional neural networks. InICLR, 2020. (cit. on p. 7)

[86] Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom Blundell, Pietro
Lió, Carla Gomes, Max Welling, et al. Structure-based drug design with equivariant diffusion models.
preprint arXiv:2210.13695, 2022. (cit. on p. 8)

14



[87] Noel M O'Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and Geoffrey R
Hutchison. Open babel: An open chemical toolbox.Journal of cheminformatics, 2011. (cit. on p. 8)

[88] Greg Landrum. Rdkit: Open-source cheminformatics software, 2016. (cit. on pp. 8 and 18)

[89] Charles Harris, Kieran Didi, Arian R Jamasb, Chaitanya K Joshi, Simon V Mathis, Pietro Lio, and Tom
Blundell. Benchmarking generated poses: How rational is structure-based drug design with generative
models?arXiv preprint arXiv:2308.07413, 2023. (cit. on p. 8)

[90] Anthony K Rappé, Carla J Casewit, KS Colwell, William A Goddard III, and W Mason Skiff. Uff, a full
periodic table force �eld for molecular mechanics and molecular dynamics simulations.Journal of the
American chemical society, 1992. (cit. on p. 8)

[91] G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins. Quantifying
the chemical beauty of drugs.Nature chemistry, 2012. (cit. on p. 8)

[92] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules
based on molecular complexity and fragment contributions.Journal of cheminformatics, 2009. (cit. on p. 8)

[93] Clement Vignac and Pascal Frossard. Top-n: Equivariant set and graph generation without exchangeability.
ICLR, 2022. (cit. on p. 8)

[94] GN t Ramachandran and V Sasisekharan. Conformation of polypeptides and proteins.Advances in protein
chemistry, 23:283–437, 1968. (cit. on p. 10)

[95] Xingang Peng, Jiaqi Guan, Qiang Liu, and Jianzhu Ma. MolDiff: Addressing the atom-bond inconsistency
problem in 3D molecule diffusion generation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,Proceedings of the 40th International
Conference on Machine Learning, volume 202 ofProceedings of Machine Learning Research, pages
27611–27629. PMLR, 23–29 Jul 2023. (cit. on p. 10)

[96] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. InMICCAI, 2015. (cit. on p. 17)

[97] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. InICLR, 2019. (cit. on p. 18)

[98] David Sehnal, Sebastian Bittrich, Mandar Deshpande, Radka Svobodová, Karel Berka, Václav Bazgier,
Sameer Velankar, Stephen K Burley, Jaroslav Ko�ca, and Alexander S Rose. Mol* Viewer: modern web
app for 3D visualization and analysis of large biomolecular structures.Nucleic Acids Research, 2021. (cit.
on p. 18)

15



Appendices

This supplementary material is organized as follows:

1. Appendix A includes a broader impact statement.

2. Appendix B includes extra implementation details.

3. Appendix C shows some additional analysis of latent space including some downstream
task evaluation.

4. Appendix D presents results of a diffusion baseline on QM9.

5. Appendix E provides some ablation studies for the model.

6. Appendix F shows additional quantitative results.

7. Appendix H shows additional qualitative results.

8. Appendix G provides some comparison to a bond-diffusion baseline.

9. Appendix I includes the NeurIPS checklist.

A Broader Impact Statement

This work introduces some technical advancements in unconditional 3D molecule generation, an
important component of molecular design and pharmaceutical research. A key advantage of our
model is that it scales to larger molecules unlike existing models and has at least one order magnitude
faster sampling time. Although extensive validation through wet-lab experiments and clinical trials is
necessary, successful developments in this area have the potential to enhance human health, impacting
a wide number of �elds such as drug discovery, biology, materials science to cite a few. As with
any technology, ensuring safe, ethical, and accountable deployment of these models is necessary to
guarantee a positive impact on society.

B Implementation details

Figure 4: Auto-encoding approach for neural �eld representation. A voxelized representation of
molecule is encoded int the latent spacez with a 3D CNN. This representation is then decoded with a
conditional MFN for any pointx in space.

Here, we provide some more implementation details that complement Section 5.

Conditional neural �eld. The codesz are computed with an encoder that takes as input a low-
resolution voxelized representation of the molecular �eld with grid dimension ofN � 163. We use
N = 5 for QM9, N = 8 for GEOM-drugs andN = 6 for CREMP. We use resolution of .5Å to
generate the low-resolution grid on QM9, 1Å on GEOM-drugs and 1.667Å for CREMP. Before
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voxelizing the molecules, we �rst center the atoms around the tightest bounding box encapsulating
the molecule, apply a random rotation to the atoms (each Euler angle rotated randomly between
[0,2� )) and normalize their coordinates to the range of[� 1; 1]. The encoder is a 3D CNN containing
4 residual blocks (number of hidden units 256, 512, 1024, 2048 for each block), where each block
contains 3 convolutional layers followed by BatchNorm, ReLU and pooling layers (we use max
pooling on the �rst three blocks and average pooling on the last one). The encoder has 145M on QM9
and 229M on GEOM-drugs and CREMP. In the case of FuncMoldec, we do not use any encoder and
directly optimize the codesz, one for each molecule in the dataset.

The neural �eld and codes are optimized over a free-form discretization gridX , that changes at
each iteration. For each training step, we sample a random training molecule and randomly pick
N = 4000 points, half of the points are taken out of an uniform discretization grid of resolution
.25Å, and the remaining points are sampled equally across cubes of size 3� 3� 3 and resolution .25Å,
centered on each atom in the molecule. We found that this choice helped speed up training. For each
point, we compute the atomic occupancy value for each atom using Equation (1).

The parameters of the conditional neural �eld are optimized with Adam. For FuncMol, we use a
learning rate of10� 4 for the encoder and5� 10� 4 for the decoder using a node of 2 A100 GPUs with
a batch size of 96 per GPU. For FuncMoldec, we ef�ciently scaled auto-decoding to large datasets by
optimizing the codes with SparseAdam, using a learning rate10� 3. The decoder optimizer is Adam
with a learning rate of10� 3. We train the models for 900 epochs on QM9, 300 epochs on GEOM-
drugs and 1000 epochs on CREMP. Algorithm 1 and Algorithm 2 provide pseudocodes for learning
the conditional neural �eld decoder and the latent codes (FuncMoldec) or the encoder (FuncMol).

Algorithm 1: Auto-decoding conditional neural �eld training pseudo-code—Equation (2)

Input : D dataset of molecular �elds,f zv  0gv2D codes,�  � 0 conditional MFN
parameters;N number of points to sample

while not convergeddo
for batchB � D do

Sample a discretization gridX and compute occupancyv(x); 8v 2 B ; 8x 2 X
`dec(�; f zv gv2B ; X ) =

P
v2B ;x 2X kf � (x; zv ) � v(x)k2

2

f zv gv2B  f zv gv2B � � z r z `dec(�; f zv gv2B ; X ); /* Update codes */
�  � � � � r � `dec(�; f zv gv2B ; X ); /* Update decoder weights */

Algorithm 2: Auto-encoding conditional neural �eld training pseudo-code—Equation (3)
Input : D dataset of molecular �elds,   0 voxel encoder parameters;�  � 0 conditional

MFN parameters;N number of points to sample, uniform "low-resolution" voxel gridG
while not convergeddo

for batchB � D do
Sample a discretization gridX and compute occupancyv(x); 8v 2 B ; 8x 2 X and
low-resolution voxel gridGv ; 8v 2 B .

`dec(�;  ; X ; B) =
P

v2B ;x 2X kf � (x; �  (Gv )) � v(x)k2
2

�  � � � � r � `dec(�;  ; X ; B); /* Update decoder weights */
   � �  r  `dec(�;  ; X ; B); /* Update encoder weights */

Modulation code denoiser̂z� . Once the modulation codes and the conditional neural �eld are learned,
we pre-process the codes to have zero mean and unit variance, then learn a denoiser in normalized
space using� = 1 :2 on GEOM-drugs and CREMP and� = 2 for QM9, following Algorithm 3.

Our denoiser has a projection linear layer (that embed the 1024 / 2048 code into a 6144 space)
followed by several residual blocks, where each block contains (in this order): group normalization
layer, ReLU non-linearity, fully-connected layer, normalization layer, ReLU non-linearity, drop-out
with rate 0.3 for FuncMoldec or none for FuncMol and another fully-connected layer. We then add
one �nal layer to go back to the original 1024 / 2048 code space. We use similar “skip-connections”
as in the MLP denoiser of [33], adapted from 2D U-Net architectures [96]. For GEOM-drugs and
CREMP, we consider a model with 1.9B parameters (12 residual blocks, 6144 hidden units). For
QM9, we train a model of size 445M parameters (6 residual blocks, 4096 hidden units). The models
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are trained with batch size 2048 on a single A100 GPU for 2500 epochs with AdamW [97] (learning
rate10� 3, weight decay10� 2) and exponential moving average (EMA) with a decay of.9999. As
[36], we use the following learning rate schedule: we warm-up the learning rate linearly from 0 to
3e-4 for the �rst 4000 iterations, then decay it proportionally to the square root of the iteration count.
The pseudo-code is given in Algorithm 3.

Algorithm 3: Denoiser training pseudo-code - Equation (6)

Input : Dz = f zv gv2D normalized codes, denoiserẑ�
while not convergeddo

for batchB � D z do
y  z + "; " � N (0; � 2I d)
`denoiser(�; B) =

P
z2B kz � ẑ� (y)k2

2
�  � � r � `denoiser(�; B);
� EMA  EMA0:9999(� EMA ; � )

Sampling. The walk-jump sampling approach is very �exible and allows us to con�gure sampling
in different ways. For example, we can choose the number of walk steps between jumps, the
maximum number of walk steps per chain or the number of chains run in parallel. Different sampling
hyperparameters can change the statistics of samples, e.g., samples that are close to each other
on a sample chain will likely be similar molecules. Therefore, we decided to �x some sampling
hyperparameters for benchmarking purposes. In all our quantitative experiments, we generate samples
in the following way: (i) we initialize all the chainsy0 in parallel, (ii) we “walk” K steps with
Langevin MCMC to sample smoothed codesyK , and (iii) we “jump” with the denoiser (in a single
step) to get the clean codesẑK . In practice, we sampled 10000 molecules using 1000 MCMC steps
for both QM9 and GEOM-drugs, and 10000 steps for CREMP on a single A100 GPU.

Algorithm 4: Sampling pseudo-code - the For loop corresponds to walk steps
Input � (step size),
 (friction), K (steps), denoiser̂z� trained at noise level� .
y0 � U d(min z2D z ;i 2f 1��� dg zi ; maxz2D z ;i 2f 1��� dg zi ) + N (0; � 2I d)
u0  0
for k = 0 ; : : : ; K � 1 do

yk+1 =2  yk + �
2 uk

g  g� (yk+1 =2) , (ẑ� (yk+1 =2) � yk+1 =2)=� 2; /* score Equation (5) */
uk+1 =2  uk + �

2 g

uk+1  exp(� 
� )uk+1 =2 + �
2 g +

q �
1 � exp(� 2
� )

�
" , " � N (0; I d)

yk+1  yk+1 =2 + �
2 uk+1

Output ẑK  ẑ� (yK ) ; /* jump step (denoising) */

From codes to molecules.After generating modulation codes, we need to extract the atom types and
coordinates from them. This is a constrained optimization problem, and we provide a simple algorithm
to �nd its solution: (i) render a voxel grid representation of the molecule at resolution of .25Å (tensors
of dimensions5 � 32� 32� 32, 8 � 64� 64� 64and6 � 96� 96� 96on QM9, GEOM-drugs
and CREMP, respectively), (ii) �nd the peaks of the voxel grids—they correspond to a discretized
version of the atomic coordinates—with a simple3 � 3 � 3 kernel, and (iii) �nd the local optima
of the atomic coordinates with the approach described in Section 3.3. Our continuous re�nement
approach leverages L-BFGS with learning rate 1.0 and is batched across 100 molecules of same size.

Assets used in this work.Our code is available athttps://github.com/prescient-design/
funcmol . Our neural �eld code is based on the open source implementation of MFN from [31] and
the conditional version from [27]. Our code for walk-jump sampling is based on the open source
implementation of VoxMol from [5]. Our metrics are computed using code from [54] and RDKit [88].
Our datasetsGEOM-drugs[13], CREMP[12] and QM9 [81] are downloaded from the corresponding
webpages. We use the protein visualization tool of [98]. All these assets are available publicly and to
our knowledge have a CC-BY 4.0 license.
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C Analysis of the latent space

We perform three experiments to qualitatively explore the learned manifold and show empirically
that it is well structured.

First, we pick several pairs of molecules and show the interpolation trajectory in latent modulation
space. We project the interpolated codes back to the learned manifold of molecules via a noise/denoise
operation. Figure 5 illustrates six trajectories, where we observe that molecules close in latent space
share similar structure.

Figure 5: Interpolation in the latent modulation space for different pairs of molecules from GEOM-
drugs. Each interpolated codes is protected back to the learned manifold of molecules via a
noise/denoise operation. FuncMol produces semantically meaningful patterns in the interpolated
space and we observe that molecules close in latent space share similar structure.

Second, we show t-SNE plots to demonstrate that the modulation spacez encodes molecular properties
of QM9. For four different properties, we use t-SNE to embed 400 molecules divided equally between
those with the highest and those with the lowest property values. Figure 6 shows that molecules with
similar property values cluster together.

Finally, we evaluate the latent codes on downstream tasks. We train a linear regression model on
frozen latent codes (a.k.a. linear probing) to see how the learned modulations correlate with different
properties. Figure 7 shows the scatter plots and Spearman correlation for four different properties.
We observe that the codes are highly predictive of the considered properties, despite being trained in
an unsupervised fashion.

D Diffusion baseline

We consider one additional model, FuncMoldec; di� for the auto-decoding setting. This model is
similar to FuncMoldec but we sample codes with a diffusion model instead of walk-jump sampling.
We use the same neural �eld and modulation codes as in FuncMoldec and we train a multi-level
denoiser (with 1000 levels of noise) instead of a single-level one. The modulation codes are sampled
like in standard diffusion models: we start from a Gaussian noise and iteratively apply the denoiser
until we arrive on clean codes. We tried to train the diffusion variant of the model on GEOM-drugs,
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