Boosting with Tempered Exponential Measures

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper

Authors

Richard Nock, Ehsan Amid, Manfred Warmuth

Abstract

One of the most popular ML algorithms, AdaBoost, can bederived from the dual of a relative entropyminimization problem subject to the fact that the positive weightson the examples sum to one. Essentially, harder examples receive higher probabilities. We generalize this setup to the recently introduced *temperedexponential measure*s (TEMs) where normalization is enforced on a specific power of the measure and not the measure itself.TEMs are indexed by a parameter $t$ and generalize exponential families ($t=1$). Our algorithm, $t$-AdaBoost, recovers AdaBoost as a special case ($t=1$). We show that $t$-AdaBoost retains AdaBoost's celebrated exponential convergence rate when $t\in [0,1)$ while allowing a slight improvement of the rate's hidden constant compared to $t=1$. $t$-AdaBoost partially computes on a generalization of classical arithmetic over the reals and brings notable properties like guaranteed bounded leveraging coefficients for $t\in [0,1)$. From the loss that $t$-AdaBoost minimizes (a generalization of the exponential loss), we show how to derive a new family of *tempered* losses for the induction of domain-partitioning classifiers like decision trees. Crucially, strict properness is ensured for all while their boosting rates span the full known spectrum. Experiments using $t$-AdaBoost+trees display that significant leverage can be achieved by tuning $t$.