Loading [MathJax]/jax/output/CommonHTML/jax.js

Replicable Clustering

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper

Authors

Hossein Esfandiari, Amin Karbasi, Vahab Mirrokni, Grigoris Velegkas, Felix Zhou

Abstract

We design replicable algorithms in the context of statistical clustering under the recently introduced notion of replicability from Impagliazzo et al. [2022]. According to this definition, a clustering algorithm is replicable if, with high probability, its output induces the exact same partition of the sample space after two executions on different inputs drawn from the same distribution, when its internal randomness is shared across the executions. We propose such algorithms for the statistical k-medians, statistical k-means, and statistical k-centers problems by utilizing approximation routines for their combinatorial counterparts in a black-box manner. In particular, we demonstrate a replicable O(1)-approximation algorithm for statistical Euclidean k-medians (k-means) with poly(d) sample complexity. We also describe an O(1)-approximation algorithm with an additional O(1)-additive error for statistical Euclidean k-centers, albeit with exp(d) sample complexity. In addition, we provide experiments on synthetic distributions in 2D using the k-means++ implementation from sklearn as a black-box that validate our theoretical results.