Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track
Ilias Diakonikolas, Daniel Kane, Yuxin Sun
We study the problem of learning mixtures of linear classifiers under Gaussian covariates.Given sample access to a mixture of r distributions on Rn of the form (x,yℓ), ℓ∈[r],where x∼N(0,In) andyℓ=sign(⟨vℓ,x⟩)for an unknown unit vector vℓ,the goal is to learn the underlying distribution in total variation distance. Our main result is a Statistical Query (SQ) lower bound suggesting that known algorithms for this problem are essentially best possible,even for the special case of uniform mixtures.In particular, we show that the complexity of any SQ algorithm for the problem is npoly(1/Δ)log(r),where Δ is a lower bound on the pairwise ℓ2-separation between the vℓ's.The key technical ingredient underlying our result is a new construction of spherical designs on the unit sphere that may be of independent interest.