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Abstract

We study the distributed tracking model, also known as distributed functional
monitoring. This model involves k sites each receiving a stream of items and
communicating with the central server. The server’s task is to track a function of
all items received thus far continuously, with minimum communication cost. For
count tracking, it is known that there is a

√
k gap in communication between de-

terministic and randomized algorithms. However, existing randomized algorithms
assume an "oblivious adversary" who constructs the entire input streams before
the algorithm starts. Here we consider adaptive adversaries who can choose new
items based on previous answers from the algorithm. Deterministic algorithms are
trivially robust to adaptive adversaries, while randomized ones may not. Therefore,
we investigate whether the

√
k advantage of randomized algorithms is from ran-

domness itself or the oblivious adversary assumption. We provide an affirmative
answer to this question by giving a robust algorithm with optimal communication.
Existing robustification techniques do not yield optimal bounds due to the inherent
challenges of the distributed nature of the problem. To address this, we extend
the differential privacy framework by introducing "partial differential privacy" and
proving a new generalization theorem. This theorem may have broader applications
beyond robust count tracking, making it of independent interest.

1 Introduction

In the distributed tracking model there are k sites and a single central server. Each site i receives
items over time in a streaming fashion and can communicate with the server. Let Si(t) be the stream
that site i observes up to time t. The sever wants to track the value of a function f that is defined over
the multiset union of {Si(t) | i = 1, · · · k} at all times. The goal is to minimize the communication
cost, which is defined as the total number of words communicated between the server and all sites.
Due to strong motivations from distributed system applications, this model has been extensively
investigated, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The theoretical study of communication
complexity was initiated by [5]. Count tracking is the most basic problem in distributed tracking,
where f is simply the total number of items received so far. Since exact tracking requires sites to
communicate every time an item arrives, incurring too much communication, the objective is to track
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an (1 + α)-approximation. For this problem, there is a simple deterministic algorithm with Õ (k/α)2

communication. Huang et al. [13] proposed a randomized algorithm that achieves Õ(
√
k/α), but the

correctness is under the assumption of an oblivious adversary, i.e., input streams are constructed in
advance and are just given to sites one item at a time. In particular, the analysis assumes the input
is independent of the algorithm’s internal randomness. In interactive applications, this assumption
is often unrealistic; the adversary can generate the next item based on previous answers from the
server, making the independence assumption invalid. Moreover, the break of independence may occur
unintentionally. For example, the tracking algorithm may be part of a larger system; the output of
the algorithm can change the environment, from which the future input to the algorithm is generated.
In such cases, we can no longer assume the independence between inputs and algorithm’s internal
state. The main question of this paper is: Whether the

√
k advantage of randomized count tracking

algorithms is from randomness itself or the oblivious adversary assumption?

Designing robust randomized algorithms against adaptive adversaries has received much attention
recently [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Existing research focuses on centralized settings, and
in this paper, we initiate the study of adversarial robustness for distributed tracking. We provide a
new randomized algorithm with communication Õ(

√
k/α), which provably tracks the count within

an α relative error at all times, even in the presence of an adaptive adversary. As in [18], we utilize
differential privacy (DP) to construct robust tracking algorithms. The main idea is to use DP to protect
the internal randomness, so that the adversary cannot learn enough information about it to generate
bad inputs. However, due to the “event-driven nature" of distributed tracking algorithms, we cannot
protect the randomness in the usual sense of DP (which will be elaborated in more details below).
Thus, the DP framework of [18] is not directly applicable.

To address this difficulty, a relaxed version of differential privacy, called partial differential privacy,
is introduced. Moreover, a new generalization theorem for partial DP is proved. In partial DP we
allow an arbitrary small subset of the database to be revealed, and only require the privacy of the
remaining dataset is protected. The power of the new definition comes from the fact that the privacy
leaked set can be chosen by the algorithm after the interaction with the adversary and the set can
depend on the actual transcript. Intuitively, an interactive mechanism satisfies partial DP as long as
after the interaction, we can always find a large subset whose privacy is protected. On the other hand,
since the set we try to protect is not fixed in advance, it is subtle to give the right notion of “protecting
the privacy of a large part of the data". Besides this new notion of DP, our algorithm deviates from the
framework of [18] in many other details. For instance, our algorithm does not treat existing oblivious
algorithms as a black box; instead, we directly modify oblivious algorithms and perform a more
fine-grained privacy analysis. The contributions of this paper are summarized as follows:

1. We initiate the study of adversarially robust distributed tracking and propose the first robust
counting tracking algorithm with near optimal communication.

2. To overcome the inherent challenges that arise from the distributed nature of the problem,
we introduce a relaxed (and more general) version of differential privacy and prove a new
generalization theorem for this notion. We believe that this new generalization theorem can
be of independent interest and may have broader applications beyond count tracking.

1.1 Problem Definitions and Previous Results

Throughout this paper, we useM to denote the tracking algorithm/mechanism and A to denote the
adversary. N is used to denote the total number of items.

The model and its event-driven nature We assume there exists a point-to-point communication
channel between each site and the server, and communication is instantaneous with no delay. It is
convenient to assume that the time is divided into discrete time steps. In each step, the adversary
picks one site and sends it a new item. The adversary is also allowed to skip the step and do nothing,
and because of this, algorithms that can trigger new events based on the global time do not have an
advantage over purely event-driven ones. For example, the server may have wanted to wait a random
number of time steps before updating the output, but the adversary can always skip a large number of
steps before sending the next item, which makes the waiting meaningless. That being said, it is not a
restriction to only consider event-driven algorithms: the internal state of each site changes only when

2We use the Õ notation to suppress the dependency on all polylogarithmic factors.

2



it receives a new item or a new message from the server, and the server’s state changes only if a new
message from sites arrives.

Distributed count tracking The goal of a count tracking algorithm M is to output an (α, β)-
approximation of the total number of items received by all sites. More specifically, with probability
at least 1− β, the output ofM is (1± α)-accurate with respect to the true answer at all time steps
simultaneously. We measure the complexity of the algorithm by the total communication cost between
the server and all sites. Consistent with prior research, communication cost is expressed in terms
of words unless otherwise stated. We assume that any integer less than N can be represented by a
single word. To simplify the presentation, we assume k ≤ 1

α2 . The case k > 1
α2 can be solved with

the same technique, with an extra additive O(k logN) term in the communication complexity3.

The adversarial model The setting can be viewed as a two-player game between the tracking
algorithmM and the adversary A. At each time step t,

1. A generates a pair ut = (i, x), where x is the item and i is the site to send x to; and ut

depends on the previous items and previous outputs ofM.

2. M processes ut and outputs its current answer at.

The interaction between A andM generates a transcript π = (u1, a1, u2, a2, · · · ). The objective of
A is to causeM to output an incorrect answer at some step t.

Existing results on count tracking Previous results and their main ideas are discussed here.

Deterministic complexity. There is a simple deterministic solution to count tracking. Each site notifies
the server every time their counter increases by a factor of 1 + α. Then, the server always maintains
an α-approximation to each site’s counter, and their sum is an α-approximation to the total count. It
is easy to see the communication complexity of this algorithm is O( kα · logN). We note deterministic
algorithms are trivially robust to adaptive inputs. A deterministic communication lower bound of
Ω( kα · logN) was proved in [6].

Randomized complexity. A randomized algorithm with O(
√
k

α · logN) communication and constant
error probability was proposed in [13], which was shown to be optimal in the same paper. The
main idea of their algorithm is as follows. Let N be the current number of items. Unlike the
above deterministic algorithm, in which each site notifies its local count according to deterministic
thresholds, now the thresholds are set randomly. Let ei be the discrepancy between the true local
count on site i and its estimation on the server, and the total error is e =

∑k
i ei. For deterministic

algorithms, all ei could have the same sign in the worst case, so on average, ei has to be less than
αN/k. On the other hand, in the randomized algorithm, each ei is a random variable. Suppose
Var[ei] ≤ (αN)2/k for each i, the total variance Var[e] ≤ (αN)2, and it is sufficient to obtain an
α-approximation with constant probability by standard concentration inequalities. Compared to
deterministic estimators, now each local error ei may far exceed αN/k.

Robustness to adaptive inputs. In the randomized approach described above, the analysis crucially
relies on the independence assumption on ei’s, since otherwise the variances do not add up and
concentration inequalities cannot be applied. When the adversary is oblivious, the independence
holds as long as each site uses independent random numbers. However, in the adaptive setting, this
does not hold any more, and it becomes unclear whether the

√
k improvement is still achievable.

1.2 Existing Robust Streaming Frameworks

Distributed tracking is a natural combination of streaming algorithms [24] and communication
complexity [25]. Robust streaming algorithms design has become a popular topic recently and
several interesting techniques have been proposed. Next, we provide a brief overview on the existing
frameworks for robust streaming algorithms. Let F be the target function, for example, the number
of distinct elements.

3Note that this extra additive O(k logN) term for k > 1
α2 also exists in previous work [13] on oblivious

distributed streams.
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Sketch switching [14] Given a stream of length N and an accuracy parameter α, the flip number,
denoted as λα,N , is the number of times that the target function F changes by a factor of 1 + α. For
insertion-only streams and a monotone function F , λ = 1

α · logN . In sketch switching, we initialize
λ independent copies of an oblivious algorithm, and items in the stream are fed to all copies. The
stream can be divided into O(λ) phases; in each phase F increases roughly by a factor of 1 + α.
During the jth phase, the output remains the same, and the jth copy is used for tracking the value.
When the estimate (from the jth copy) has become larger than the last released output by a factor of
(1 + α), the output is updated and j ← j + 1. The robustness holds because each copy is utilized
no more than once, and once its randomness is revealed, the algorithm switches to a new copy. The
space complexity is λ times the space of the oblivious algorithm. Applying sketch switching on
the algorithm of [13] results in a robust count tracking algorithm. However, the communication
complexity increases by a factor of λ, which can be worse than the deterministic bound.

Difference estimator Woodruff et al. [22] refined the sketch switching approach significantly and
proposed the difference estimator (DE) framework. Informally, instead of using oblivious sketches
as the switching unit, the DE framework divides the stream into blocks and uses sketches on each
block as switching units. Consider a part of the stream, denoted by S, in which the value of F
increases from F to 2F . A technique called difference estimator (DE) was proposed to estimate
the difference between values of F at current time t and some earlier time t0. The estimator is
generated by maintaining ℓ = log 1

α levels of DEs. In level 1, S is divided into 1
α blocks and the

value of F increases by αF in each block. In the jth level, S is divided into 1
α2j−1 blocks, and

the DEs produce estimators with additive error αF . [22] proved that for many important problems,
the space complexity of such DEs is αSpace(F)2j−1, where Space(F) is the space complexity of
F in the oblivious setting. Since there are 1

α2j−1 DEs on the jth level, the total space of level j is
Space(F) and the space is ℓSpace(F) over all levels. Since blocks from all levels form a dyadic
decomposition, the final estimator is the sum of ℓ DEs, one from each level. Thus, the total error is
ℓαF , and by adjusting α in the beginning by a factor of ℓ, this produces the desired error. Applying
the DE framework to distributed tracking, the communication bottleneck is from level 1, where there
are 1/α DEs. It requires synchronization at the beginning of each block, so that all sites and the
server are able to agree to start a new DE. A synchronization incurs k communication; thus, even
ignoring other cost, the total cost is at least k

α , which is no better than the deterministic bound.

Differential privacy Hassidim et al. [18] proposed a framework using tools from DP. Instead of
switching to fresh sketches, this framework protects the randomness in the sketch using DP. The
random bits in each copy of the oblivious sketch are viewed as a data point in the database, and the
adversary generates an item (considered as a query in DP) at each time and observes the privatized
output. By the generalization theorem of DP, if the interaction transcript satisfies DP w.r.t. the random
bits, then the error in the output is close to the error of an oblivious algorithm in the non-adaptive
setting (the closeness depends on the magnitude of the noise injected). Similar as in sketch switching,
the output is updated only when it changes by a (1 + α) factor, and thus there are only λ time
steps in which the adversary observes “useful information". Therefore, it is not surprising that the
sparse vector technique [26] is applied. By the advanced composition theorem of DP [27], Õ(

√
λ)

independent copies of the oblivious algorithm is enough for λ outputs. Therefore, compared with
sketch switching, the space increases by only a factor of

√
λ. Attias et al. [23] gave an improvement

by incorporating difference estimator to the DP framework.

However, there is a fundamental challenge in applying the DP framework to distributed tracking. As
discussed in Section 1.1, all distributed tracking algorithms are essentially event-driven. Now let
us focus on a time step t where the server updates its output. Because of the event-driven nature,
this update is triggered by the event that some site i just sent a message. Similarly, site i sending
the message is also triggered by another event, and so on and so forth. The start of this event chain
must be that the adversary sends an item to some site j, triggering j to send the first message. This
causes additional privacy leakage. For example, suppose whether to send a message is indicated by a
binary function f(nj , rj) where rj is the random number used in the tracking algorithm and nj is
the local count on site j. At time t, the adversary knows f(nj , rj) = 1, which makes the algorithm
have no privacy guarantee. This problem is attributed to the fact that the server can update the output
only after it receives a message. So to achieve the desired level of privacy, one has to add noise to f
locally on each site, but the total noise from all sites can be too large.
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1.3 Our Method

Technical overview In our algorithm, each site divides its stream into continuous blocks of size
∆ = Õ(αN√

k
). For each block j, the site draws a random integer rj with uniform distribution in [∆].

The site sends a message to the server when the number of items in a block j reaches the threshold
rj . The server output m∆, where m is the number of messages received from all sites. By a similar
analysis as in [13], the estimator has αN additive error. To robustify this algorithm, we also use DP.
To overcome the limitations of the existing DP framework, we make several critical changes. First,
instead of running multiple independent copies of the oblivious algorithm, we run a single copy of
the above oblivious algorithm. Secondly, we perform a more refined privacy analysis, in which each
random number rj is treated as the privacy unit. Therefore, the analysis framework is quite different
from [18]. Thirdly, and most importantly, we do not require the algorithm to have a privacy guarantee
in the traditional sense; instead, we privatize the algorithm so that, at any time, we can always find a
large set of random numbers whose privacy is protected. However, it is unclear how to change the
original DP definition to capture the meaning of “protecting a large subset of the dataset", since this
set depends on the current transcript, and may change at each time step. Moreover, for this weaker
DP, we need to prove that the generalization theorem still holds. To this end, we introduce partial DP
and prove a generalization theorem for it. We believe partial DP is quite general and will have more
applications beyond robust distributed tracking. The main results of this paper is summarized in the
next theorem.
Theorem 1 (Main theorem). With probability 1 − δ, our mechanismM comprised of Algorithm
1 and 2 outputs an α-approximate to the total count at all times in the adversarial setting. The

communication complexity is O(C
√
k logN
α ) where C =

√((
log
√
k
)1.5

+ 1

)
· log

(
8
√
k logN
αδ

)
.

Compared to the optimal randomized bound in the oblivious setting, the cost of handling adaptive
adversaries is at most an extra factor of C.

2 Preliminaries

Notation Let Π be the space of all possible transcripts of the interaction betweenM andA. We use Π
to denote the transcript random variable, π ∈ Π to denote a realization of Π. The Laplace distribution
with 0 mean and 2b2 variance is denoted by Lap(b). We use the notation S ∼ Pm to indicate that
S is a dataset comprised of m i.i.d samples from distribution P . The conditional distribution of S
given the transcript π is represented by Qπ. The query function is denoted by q : Xm → [0, 1] and
qt denotes the query function at time step t. If qt is a linear query, then qt(S) =

1
m

∑d
i=1 qt,i(Si),

where qt,i : X → [0, 1] is a sub-query function on a single sample. The expectation of q over the
distribution Pm is denoted by q(Pm) = ES∼Pm [q(S)]. And q(Qπ) = ES∼Qπ

[q(S)].

Differential privacy Let S ∈ Xm be the database thatM needs to protect, for example in our case,
the random numbers (thresholds) inM. Denote the interaction between A andM by I(M,A;S).
Definition 1 (Differential Privacy). M is (ε, δ)-differentially private if for any A, any two neighbor-
ing database S ∼ S′ ∈ Xm differing only in one position, and any event E ⊆ Π, we have

Pr
Π∼I(M,A;S)

[Π ∈ E] ≤ eε · Pr
Π∼I(M,A;S′)

[Π ∈ E] + δ.

Lemma 1 (Laplace Mechanism [28]). Let x, x′ ∈ R and |x − x′| ≤ l. Let σ ∼ Lap(l/ε) be a
Laplace random variable. For any measurable subset E ⊆ R, Pr[x+ σ ∈ E] ≤ eε ·Pr[x′ + σ ∈ E].

Private continual counting Consider the continual counting problem: Given an input stream consists
of {0, 1}, continual counting requires to output an approximate count of the number of 1’s seen so
far at every time step. Different techniques have been proposed to achieve differential privacy under
continual observation [29, 30]. In this paper, we make use of the Binary Mechanism (BM) [30] (see
appendix for its pseudo code).
Theorem 2. ([30]) BM is (ε, 0)-differentially private with respect to the input stream. With probabil-
ity at least 1− δ, the additive error is O( 1ε · (log T )

1.5 · log(Tδ )) at all time steps t ∈ [T ].

5



Remark. Note that although the input of BM is bits, it can directly extend to real numbers without
any modification. The same privacy and utility guarantees hold.

Generalization by differential privacy The generalization guarantee of differential privacy arises
from adaptive data analysis. Existing research [28, 31, 32] has shown that any mechanism for
answering adaptively chosen queries that is differentially private and sample-accurate is also accurate
out-of-sample.
Definition 2 (Accuracy). M satisfies (α, β)-sample accuracy for adversary A and distribution P iff

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|at − qt(S)| ≥ α

]
≤ β,

where at is the output ofM and qt is the query given byA at time t.M satisfies (α, β)-distributional
accuracy iff

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|at − qt(Pm)| ≥ α

]
≤ β.

Recently, Jung et al. [32] discovered a simplified analysis of the generalization theorem by introducing
the posterior data distribution Qπ as the key object of interest. Through a natural resampling lemma,
they showed that a sample-accurate mechanism is also accurate with respect to Qπ .
Lemma 2 ([32]). Suppose thatM is (α, β)-sample accurate. Then for every c > 0 it also satisfies:

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|at − qt (QΠ)| > α+ c

]
≤ β

c
.

Thus, to achieve distributional accuracy, it suffices to prove the closeness between Qπ and Pm. Then
they showed that this can be guaranteed by differential privacy.
Lemma 3 ([32]). IfM is (ε, δ)-differentially private, then for any data distribution P , any analyst
A, and any constant c > 0:

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|qt(Pm)− qt (QΠ)| > (eε − 1) + 2c

]
≤ δ

c
.

3 Partial Differential Privacy and Its Generalization Property

In the definition of partial DP, we specify the set of data whose privacy is leaked via a mapping
fL : Π→ 2[m]. Given a transcript π, partial DP guarantees privacy only on S \ fL(π). Intuitively,
this means that the transcripts on two database S, S′ that differs only on a position i ∈ S \ fL(π)
have similar distributions. However, π is not known in advance, which causes trouble to this direct
definition. We remedy this by first fixing i; then we only consider S, S′ that differs only on i and
only those events E whose elements do not contain i in their privacy leaked set.
Definition 3 (Partial Differential Privacy). M is (ε, δ, κ)-partial differentially private, if there exists
a privacy leak mapping fL : Π→ 2[m] with maxπ |fL(π)| ≤ κ, the following holds: for any A, any
i, any S, S′ ∈ Xm that differs only on the ith position, and any E ⊆ Π such that i /∈

⋃
π∈E

fL(π),

Pr
Π∼I(M,A;S)

[Π ∈ E] ≤ eε · Pr
Π∼I(M,A;S′)

[Π ∈ E] + δ.

A generalization theorem for partial DP is presented below. Generalization for linear queries suffices
for our application, but this can be extended to general low-sensitivity queries.
Theorem 3. For linear queries, ifM satisfies (ε, δ, κ) partial differential privacy andM is (α, β)-
sample accurate, then for any data distribution P , any adversary A, and any constant c, d > 0:

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|at − qt(Pm)| > α+ (eε − 1) +

2κ

m
+ c+ 2d

]
≤ δ

d
+

β

c
.

Compared with existing results, it has an extra term κ
m in the error. This is intuitive, as the privacy

leaked set contributes at most κ
m error in the worst case. Following [32], it suffices to establish the low

discrepancy between Qπ and Pm. To this end, we prove the following key lemma in the appendix.
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Lemma 4. IfM satisfies (ε, δ, κ) partial differential privacy, then for any data distribution P , any
adversary A, and any constant c > 0:

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|qt(Qπ)− qt(Pm)| > (eε − 1) +

2κ

m
+ 2c

]
≤ δ

c
.

The query function of interest in this paper only depends on m̂ data points, with m̂ ≪ m, at each
time step. For such queries, we expect the total error to be proportional to m̂ rather than m, which
is formalized in the following refinement of Theorem 3, the proof of which requires only a slight
modification and is included in the appendix.
Theorem 4. For linear queries, ifM satisfies (ε, δ, κ) partial differential privacy andM is (α, β)-
sample accurate. Further, if each linear query depends on at most m̂ data points, then for any data
distribution P , any adversary A, and any constant c, d > 0:

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|at − qt(Pm)| > α+

m̂

m
(eε − 1 + c) +

2κ

m
+ 2d

]
≤ δ

d
+

β

c
.

4 Robust Distributed Count Tracking Algorithm

Our algorithm has multiple rounds. In each round, N increases roughly by a factor of 1+
√
kα. After

a round ends, the true count is computed and sent to all sites, and then, the algorithm is reinitialized
with fresh randomness. Thus, we only focus on one round, and let N0 be the true count at the

beginning of the round. In the algorithm, C =

√((
log
√
k
)1.5

+ 1

)
· log

(
8
√
k

β

)
and ∆ = αN0

8C
√
k

.

The algorithm on site i is presented in Algorithm 1. The site divides its own stream into blocks
of size ∆, and exactly one bit will be sent to the server in each block. The actual time of sending
the bit is determined by a random threshold rij . Let Nt,i be the number of items received on site i
from the beginning of the current round until time t. Let dt,i = ⌊Nt,i/∆⌋ and et,i = Nt,i mod ∆.
Thus, j = dt,i + 1 is the index of the current active block, and et,i is the offset in this block. As per
Algorithm 1, the number of bits sent by site i up to time t is Bt,i = dt,i + 1[ri,j < et,i] ≤ dt,i + 1.
Since ri,j ∼ Uni(0,∆), E[Bt,i] = dt,i +

et,i
∆ , meaning ∆ ·Bt,i is an unbiased estimate of Nt,i. Let

D ∈ (0,∆)m (m = k × k′) be the database comprised of all sites’ random numbers, i.e., Dij = rij ,
considering the input generated by the adversary as queries, then the query at time t can be specified
as:

qt(D) =
1

m

∑
i∈[k]

dt,i +
∑
i∈[k]

1[ri,j < et,i]

 =
Bt

m
, (1)

where Bt =
∑k

i=1 Bt,i denotes the total number of bits received by the server at time t. The value of
qt at each time step depends on k random numbers corresponding to the active blocks, which is much
less than the size of D, which motivates the use of Theorem 4.

Let B̂t be algorithm’s estimate of Bt. Algorithm 2 consists of
√
k phases; B̂t remains con-

stant in each phase and a new estimate b̂j is obtained at the end of the jth phase via the bi-
nary mechanism. The times that the phases end are denoted by H = {t1, t2, . . . , t√k}, and for
t ∈ [tj , tj+1), we have B̂t = b̂j . Therefore, the transcript generated byM and A is of the form
((⊥, 0), (⊥, 0), . . . , (⊤, b̂1), (⊥, b̂1), . . . , (⊤, b̂√k)). We note, in addition to noise in BM, the only
noise added for the purpose of DP is the Laplace random variable added on T , and an independent
noise is used in each phase.

4.1 Privacy Analysis

In this section, we analyze the privacy of M for a single round, demonstrating that it satisfies
(ϵ, 0,

√
k)-partial differential privacy with respect to the random numbers D used by all sites. To

achieve this, we first provide the privacy leak mapping. Note that each time the output ofM updates,
i.e, reporting⊤,A knows the site i it just accessed has sent a bit to the server. Then the active random
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Algorithm 1: Site i for a round
Input: Accuracy parameter α, failure probability β
Initialize: k′ = Ck. Generate k′ i.i.d random number {ri1, ri2, · · · , rik′} from the uniform

distribution on [∆]. Initialize ci = 0 to count the number of received items.
1 When site i receives an item:
2 ci ← ci + 1
3 j ← ⌊ ci∆⌋+ 1
4 cij ← ci mod ∆
5 if j > k′ then
6 Send a signal to the server to end current round.
7 cij ← ci mod ∆
8 if cij > rij for the first time then
9 Send a bit to the server.

Algorithm 2: Server
Input: Accuracy parameter α, failure probability β

Initialize: Set ε = C/
√
k, T = 2C

√
k, T̂ = T + Lap( 4ε ), j = 1, a0 = N0. Initialize

√
k

counters {c1, c2, · · · , c√k} to 0. Start a Binary Mechanism instance denoted as BM
with L =

√
k and ε

4 as privacy parameter.
1 When receiving a bit from some site:
2 cj ← cj + 1 /* cj counts the number of bits in the j-th phase. */

3 if cj < T̂ then
4 Output (⊥, aj−1)
5 else
6 b̂j ← BM(cj) /* feeding cj as the j-th input to BM. */

7 aj ← b̂j ·∆+N0

8 Output (⊤, aj)
9 if j >

√
k then

10 Notify all sites to end the current round, collect all local counters, calculate the total
count, broadcast it to all sites, and start the next round.

11 j ← j + 1

12 T̂ ← T + Lap( 4ε )

number rij at this moment is exposed, which means there is no meaningful privacy guarantee4.
Therefore, we need to relax the DP constraint. Given a transcript π, the privacy leaked set consists of
those rij that are exposed during the execution.

Definition 4 (Privacy Leaked Set). For a given transcript π, let A be the set of time steps when output
updates, i.e. A = {t | πt = (⊤, ·)} where πt is the output at time t. Let it be the site A chooses at
time t. Then, fL(π) = {(it, jt) | t ∈ A(π), jt = ⌊Nt,it/∆⌋+ 1}.

Since there is one data point exposed in each phase, κ ≤
√
k. The privacy guarantee with this privacy

leak mapping is presented below.

Lemma 5. For any two neighboring databases D ∼ D′ that differ only on (i, j), any transcript π
satisfying (i, j) /∈ fL(π), our mechanism (Algorithm 1 and 2) satisfies the following inequality,

e−ε · Pr
Π∼I(M,A;D′)

[Π = π] ≤ Pr
Π∼I(M,A;D)

[Π = π] ≤ eε · Pr
Π∼I(M,A;D′)

[Π = π],

i.e., it satisfies (ε, 0,
√
k)-partial differential privacy.

4Note approximate DP is also not satisfied, since the indices i, j are not random and can be manipulated by
the adversary.
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4.2 Accuracy and Communication

Observe that the size of D is m = k × k′, and each query qt depends only on m̂ = k of them. In the
algorithm qt(D) is estimated by B̂t/m. Suppose it is (α, β)-sample accurate, then by Lemma 5 and
Theorem 4, we have

Pr
D∼Pm,Π∼I(M,A;D)

[
max

t

∣∣∣∣ B̂t

m
− qt(Pm)

∣∣∣∣ > α+
k

m
(eε − 1 + c) +

2
√
k

m

]
≤ β

c
.

Note that ε = C/
√
k. By setting c = 1/

√
k, we get the following lemma.

Lemma 6. For query function qt defined in equation (1), if our mechanismM is (α, β)-sample
accurate for qt, it is ( 4C

√
k

m + α,
√
kβ)-distributional accurate.

By Theorem 2, with probability 1− β
2 , for all tj ∈ H , we have that:∣∣∣B̂tj −Btj

∣∣∣ ≤ 1

ε
·
(
log
√
k
)1.5
· log

(
2
√
k

β

)
≤ C
√
k, (2)

where the second inequality is from ε = C/
√
k and the definition of C. Denote the Laplace

variables used in Algorithm 2 as
{
σ1, · · · , σ√k

}
. By the union bound, with probability 1 − β

2 ,

|σj | ≤ log(4
√
k/β)

ε for all j ∈ [
√
k]. Consider the (j + 1)th phase. For every time step t ∈ (tj , tj+1),

since Bt −Btj ≤ T + σj+1 ≤ 2C
√
k + log(4

√
k/β)

ε and B̂t = B̂tj , we have∣∣∣B̂t −Bt

∣∣∣ = ∣∣∣B̂tj −Bt

∣∣∣ = ∣∣∣B̂tj −Btj +Btj −Bt

∣∣∣ ≤ 3C
√
k +

log(4
√
k/β)

ε
≤ 4C

√
k. (3)

Then B̂t/m is (4C
√
k/m, β)-sample accurate with respect to qt(D). By Lemma 6, it follows that

B̂t/m is (8C
√
k/m,

√
kβ)-accurate w.r.t. ED∼Pm [qt(D)] = Nt/m∆. We establish the following

lemma of the accuracy guarantee.

Lemma 7. With probability 1−
√
kβ, for all t in a round starting from N0, we have |∆ · B̂t +N0 −

(Nt +N0)| ≤ 8C
√
k ·∆ = αN0.

For the Communication complexity, in one round, the total number of received bits by the server is
c1 + c2 + . . .+ c√k. By analysis above, with probability 1− β/2, for all j ∈ [

√
k], we have

√
k∑

j=1

cj ≤

√
k∑

j=1

(T̂j + 1) ≤

√
k∑

j=1

(T + |σj |+ 1) ≤

√
k∑

j=1

2C ·
√
k = 2Ck, (4)

√
k∑

j=1

cj ≥

√
k∑

j=1

T̂ ≥

√
k∑

j=1

(T − |σj |) ≥

√
k∑

j=1

C
√
k ≥ Ck. (5)

Therefore, in one round, the communication cost is upper bounded by O(Ck). By (5), there are at least
Ck ·∆ = αN0

√
k/8 items received in this round, which means N increases by an O(1 + α

√
k/8)

factor after one round. It follows that there are at most O( logN

α
√
k
) rounds. Combined this with

the communication cost in one round, we can conclude the final communication complexity is
O(C

√
k logN
α ). Now we are ready to prove Theorem 1.

Proof of Theorem 1. Since N0 is the exact count at the beginning of a round, the Lemma 7 guarantees
an α-relative error in the round. Since the lemma holds for any round, the correctness is established.
We set the failure probability as β = δ/(

√
k · O( logN

α
√
k
)). Since there are O( logN

α
√
k
) rounds, by the

union bound and Lemma 7, it can be concluded that with probability 1− δ, the output ofM is an
α-approximate to N at all times. The communication complexity is O(C

√
k logN
α )5.

5Note that we assume that k ≤ 1
α2 and thus there are at most O( logN

α
√
k
) rounds. For k > 1

α2 , there are at
most logN rounds. The communication complexity is O(Ck logN). Therefore the communication complexity
for all regimes of k is O(Ck logN + C

√
k logN
α

).
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5 Conclusion

In this paper, we study the robustness of distributed count tracking to adaptive inputs. We present a
new randomized algorithm that employs differential privacy to achieve robustness. Our new algorithm
has near optimal communication complexity. Besides, we introduce a relaxed version of differential
privacy, which allows privacy leak of some data points. Based on this definition, we prove a new
generalization theorem of differential privacy, which we believe can be of independent interest and
have broader applications.
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A Other Related Work

In addition to the robust streaming frameworks discussed earlier, several works in the literature have
considered adversarial robustness for specific problems [14, 16, 20, 21, 33, 34, 35, 36]. [36] also
studied adversarially robust sketching in a distributed setting, but only considered a non-adaptive
adversary and one-shot computation. The generalization property in adaptive data analysis has been
extensively studied [37, 38, 31, 32, 39, 40, 41]. Our work extends the existing studies by providing a
new generalization theorem for a relaxed definition of differential privacy.

B Binary Mechanism

Algorithm 3: Binary Mechanism [30]

Input: A time upper bound L, a privacy parameter ε, and a stream σ ∈ {0, 1}L
Output: At each time step t, output estimate B(t).
Initialize: Each ci and ĉi are (implicitly) initialized to 0.

1 ε′ ← ε/ logL
2 for t← 1 to L do
3 Express t in binary form: t =

∑
j Binj(t) · 2j .

4 Let i := min{j : Binj(t) ̸= 0}, then ci ←
∑

j<i cj + σ(t)

5 for j ← 0 to i− 1 do
6 cj ← 0, ĉj ← 0

7 ĉi ← ci + Lap( 1
ε′ )

8 Output the estimate at time t:

B(t)←
∑

j:Binj(t)=1

ĉj

C Missing Proofs in Section 3

Prior to presenting the missing proofs, we establish a lemma that will be utilized in subsequent proofs.
To simplify notation, we will omit the κ parameter in the definition of partial differential privacy
when it is not used.
Lemma 8. IfM satisfies (ε, δ) partial differential privacy with privacly leak mapping fL, given
index i ∈ [m] and data-point x, for any event E such that ∀π ∈ E, i /∈ fL(π), we have:

Pr
S∼Pm,Π∼I(S)

[Π ∈ E|Si = x] ≤ eε Pr
S∼Pm,Π∼I(S)

[Π ∈ E] + δ

Proof.

Pr
S∼Pm,Π∼I(S)

[Π ∈ E|Si = x] =
∑

x∈Xm

Pr
S∼Pm

[S = x] · Pr [Π ∈ E | S = (x−i, x)]

≤
∑

x∈Xm

Pr
S∼Pm

[S = x] · (eε Pr [Π ∈ E | S = x] + δ)

= eε Pr
S∼Pm,Π∼I(S)

[Π ∈ E] + δ

where the inequality is from the definition of partial differential privacy.

C.1 Proof of Lemma 4

Proof of Lemma 4. Given a transcript π ∈ Π, let t∗(π) = argmaxt |qt(Qπ)− qt(Pm)|. For an
α > 0, we define the following sets:

Πα =
{
π ∈ Π | qt∗(π) (Qπ)− qt∗(π)(Pm) > α

}
,
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X+(π, i) =

{
x ∈ X | Pr

S∼Qπ

[Si = x] > Pr
S∼Pm

[Si = x]

}
,

A(π) = {i ∈ [m]|i /∈ fL(π)} ,

B+
α =

⋃
π∈Πα

(
{π} ×

( ⋃
i∈A(π)

{i} × X+(π, i)
))

,

Π+
α (x, i) =

{
π ∈ Π|(π, i, x) ∈ B+

α

}
.

Fix any α and suppose that Pr
[
|qt∗(π)(QΠ)− qt∗(π)(P)| > α

]
> δ

c . Without loss of generality,
assume that

Pr
[
qt∗(π)(QΠ)− qt∗(π)(P) > α

]
= Pr[Π ∈ Πα] >

δ

2c
. (6)

By abuse of notation, let I be the random variable obtained by uniformly sampling from [m], i.e.,
Pr[I = i] = 1/m for all i ∈ [m]. We write SI to denote the I-th sample of S ∼ Pm. We consider
the following comparison of two probability measures on B+

α :
Pr

I⊗(S,Π)
[(Π, I, SI) ∈ B+

α ]− Pr
I⊗S⊗Π

[(Π, I, SI) ∈ B+
α ]

=
∑

π∈Πα

Pr[Π = π]
∑

i∈A(π)

Pr[I = i]
∑

x∈X+(π,i)

(Pr[Si = x|Π = π]− Pr[Si = x])

≥
∑

π∈Πα

Pr[Π = π]
∑

i∈A(π)

Pr[I = i]
∑

x∈X+(π,i)

qt∗(π),i(x)(Pr[Si = x|Π = π]− Pr[Si = x])

≥
∑

π∈Πα

Pr[Π = π]
∑

i∈A(π)

Pr[I = i]
∑
x∈X

qt∗(π)(x)(Pr[Si = x|Π = π]− Pr[Si = x])

=
1

m

∑
π∈Πα

Pr[Π = π]
∑

i∈A(π)

∑
x∈X

qt∗(π),i(x)(Pr[Si = x|Π = π]− Pr[Si = x])

≥ 1

m

∑
π∈Πα

Pr[Π = π]
(
m · (qt∗(π)(Qπ)− qt∗(π)(Pm))− |fL(π)|

)
(By qt∗(π),i(x) ∈ [0, 1])

>
1

m

∑
π∈Πα

Pr[Π = π]
(
mα−max

π
|fL(π)|

)
= Pr[π ∈ Πα] · (α−

κ

m
).

On the other hand, by partial differential privacy, we have
Pr

I⊗(S,Π)
[(Π, I, SI) ∈ B+

α ]− Pr
I⊗S⊗Π

[(Π, I, SI) ∈ B+
α ]

=
∑
i∈[m]

Pr[I = i]
∑
x∈X

Pr[Si = x](Pr[π ∈ Π+
α (x, i)|Si = x]− Pr[Π ∈ Π+

α (x, i)])

≤
∑
i∈[m]

Pr[I = i]
∑
x∈X

Pr[Si = x]
(
(eε − 1)Pr[Π ∈ Π+

α (x, i)] + δ
)

(By Lemma 8)

= (eε − 1) Pr
I⊗S⊗Π

[(Π, I, SI) ∈ B+
α ] + δ

≤ (eε − 1)Pr[Π ∈ Πα] + δ

< ((eε − 1) + 2c) · Pr[Π ∈ Πα], (By equation (6))

which result in a contradiction for α ≥ (eε − 1) + κ
m + 2c.

C.2 Proof of Theorem 4

To prove Theorem 4, we introduce two new lemmas, with one being a variant of Lemma 4 and the
other a variant of Lemma 2.
Lemma 9. IfM satisfies (ε, δ, κ) partial differential privacy with privacy leak function fL : Π→
2[m]. Further, if each linear query depends on at most m̂ samples, then for any data distribution P ,
any adversary A, and any constant c > 0:

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|qt(Qπ)− qt(P)| >

m̂

m
· (eε − 1) +

κ

m
+ 2c

]
≤ δ

c
. (7)
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Proof. The proof is slight modification of that in Lemma 4. In addition to the sets defined in the
proof of Lemma 4, we introduce another set G(π) which specifies the samples that qt∗(π) depends
on, formally defined as follows.

G(π) = {i ∈ [m]|i ∈ g(t∗(π), π)} ,
where the function g(t, π) is used to characterize the sample set that qt depends on given transcript π.
Accordingly, the set B+

α is modified to incorporate G(π):

B+
α =

⋃
π∈Πα

(
{π} ×

( ⋃
i∈A(π)∩G(π)

{i} × X+(π, i)
))

.

We consider the same comparison of probability measure on B+
α as that in the proof of Lemma 4.

The first part is same as before,
Pr

I⊗(S,Π)
[(Π, I, SI) ∈ B+

α ]− Pr
I⊗S⊗Π

[(Π, I, SI) ∈ B+
α ]

=
∑

π∈Πα

Pr[Π = π]
∑

i∈A(π)∩G(π)

Pr[I = i]
∑

x∈X+(π,i)

(Pr[Si = x|Π = π]− Pr[Si = x])

≥ Pr[π ∈ Πα] · (α−
κ

m
).

For the second part we can get that,
Pr

I⊗(S,Π)
[(Π, I, SI) ∈ B+

α ]− Pr
I⊗S⊗Π

[(Π, I, SI) ∈ B+
α ]

=
∑
i∈[m]

Pr[I = i]
∑
x∈X

Pr[Si = x](Pr[π ∈ Π+
α (x, i)|Si = x]− Pr[Π ∈ Π+

α (x, i)])

≤ (eε − 1) Pr
I⊗S⊗Π

[(Π, I, SI) ∈ B+
α ] + δ.

Let Bα =
⋃

π∈Πα

(
{π} ×

(⋃
i∈A(π)∩G(π){i}

))
. Here comes the key observation that,

Pr
I⊗S⊗Π

[(Π, I, SI) ∈ B+
α ] ≤ Pr

I⊗Π
[(Π, I) ∈ Bα] =

∑
π∈Πα

Pr[Π = π]
∑

i∈A(π)∩G(π)

1

m
≤ m̂

m
Pr[Π ∈ Πα],

where the third inequality is from |G(π)| ≤ m̂. Hence,

Pr
I⊗(S,Π)

[(Π, I, SI) ∈ B+
α ]− Pr

I⊗S⊗Π
[(Π, I, SI) ∈ B+

α ] <

(
m̂

m
(eε − 1) + 2c

)
· Pr[Π ∈ Πα].

Combining these two parts completes the proof.

Next we provide a variant of Lemma 2.
Lemma 10. IfM is (α, β)-sample accurate and each linear query qt depends on at most m̂ samples,
then for any constant c > 0,

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|at − qt(QΠ)| > α+

m̂

m
c

]
<

β

c
.

Proof. The proof presented here is a minor modification of that used in Lemma 2, provided in [32].
Let t∗(π) = argmaxt |at − qt(Qπ)|. The proof of Lemma 2 uses a fact that at∗(Π) − qt∗(Π) (S

′)−
α ≤ 1. Under the condition that qt only depends on m̂ samples, it can be concluded that at −
1
m

∑
i∈[m] qt,i(Si) ≤ m̂

m . Thus the fact now becomes to at∗(Π) − qt∗(Π) (S
′)− α ≤ m̂

m . Using this
new fact in original proof of Lemma 2 can yield the inequality above.

The proof of Theorem 4 is direct combination of above two lemmas.

D Missing Proofs in Section 4

Remark. Without loss of generality, the adversary is assumed to be deterministic. This is because
a randomized adversary can be regarded as a probabilistic mixture of deterministic adversaries,
thereby rendering it sufficient to establish adaptive robustness against deterministic adversaries.
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D.1 Proof of Lemma 5

proof of Lemma 5. As mentioned in the main text, the transcript generated byM and A is of the
form ((⊥, 0), (⊥, 0), . . . , (⊤, b̂1), (⊥, b̂1), . . . , (⊤, b̂√k)). Note that, w.l.o.g., A is assumed to be
deterministic; thus the input generated by A can be fully determined by the output ofM and thus
is omitted in the transcript. Recall that Algorithm 2 consists of

√
k phases and the output does not

change until the end of each phase. Therefore for a given transcript π, it can be represented by
(π(1), π(2), . . . , π

√
k) where π(t) = (⊥,⊥, . . . , b̂t) is the simplified output of t-th phase. For notation

convenience, we write PD[π] to denote Pr
Π∼I(M,A;D)]

[Π = π]. Then we have:

PD[π] = PD[π(1)] · PD[π(2)|π(1)] · PD[π(3)|π(1), π(2)] · · ·PD[π(
√
k)|π(1), π(2), · · · , π(

√
k−1)]

(8)

Privacy analysis of PD[π(t)|π(1), π(2), . . . , π(t−1)] . Now we focus on one phase of Algorithm 2.

Denote (π(1), π(2), · · · , π(t−1)) as π≤(t−1). In each phase t ∈ [
√
k], the server updates the output

only when the number of received bits denoted as ct surpasses the noisy threshold T̂ . Hence the
probability PD[π(t)|π≤(t−1)] can be calculated as follows:

PD

[
π(t)|π≤(t−1)

]
= PD

[
ct − 1 < T̂ ≤ ct

]
· PD

[
BM(ct) = b̂t|BM(c1, . . . , ct−1) = (b̂1, . . . , b̂t−1)

]
. (9)

Without loss of generality, assume that D′ differs from D at (i, j) such that Dij < D′ij . If the local
counter of site i denoted as ni never surpasses Dij , the output ofM on both databases D and D′

is identical, thus ensuring privacy. Privacy budget is only consumed when ni surpasses Dij or D′ij ,
denoted as events E1 and E2, respectively. If (i, j) ∈ fL(π), then either E1 or E2 happens at the
final time step of some phase t. Consequently, one of the two probability values PD

[
π(t)|π≤(t−1)

]
and PD′

[
π(t)|π≤(t−1)

]
will be zero. For instance, when ni exceeds Dij at the final time step of

phase t, and as Dij < D′ij ,M with D′ as input will receive no bits at this time, thus producing the
same output ⊥ as before, which results in PD′

[
π(t)|π≤(t−1)

]
= 0. To avoid this scenario, we require

the condition (i, j) /∈ fL(π). Under this condition, PD′
[
π(t)|π≤(t−1)

]
can be computed in a similar

manner to equation (9):

PD′

[
πt|π≤(t−1)

]
= PD′

[
c′t − 1 < T̂ ≤ c′t

]
· PD′

[
BM(c′t) = b̂t|BM(c′1, . . . , c

′
t−1) = (b̂1, . . . , b̂t−1)

]
. (10)

Composition of
√
k subroutines and binary mechanism. Combining equation (8), (9) and (10)

yields that

PD [π] = (

√
k∏

t=1

PD[ct − 1 < T̂ < ct]) · PD

[
BM(c1, c2, · · · , c√k) = (b̂1, b̂2, · · · , b̂√k)

]
(11)

PD′ [π] = (

√
k∏

t=1

PD′ [c
′
t − 1 < T̂ < c′t]) · PD′ [BM(c′1, c

′
2, · · · , c′√k

) = (b̂1, b̂2, · · · , b̂√k)] (12)

Since D ∼ D′, in our mechanism, ct and c′t will differ only when Dij or D′ij is surpassed during the
t-th phase. Since each phase uses a new counter, there exist at most two phases t1, t2 ∈ [

√
k] such

that |c′t − ct| = 1 and for the other phases, ct = c′t. Recall that T̂ = T + Lap(ε/4)). By Lemma 1,
for t ∈ {t1, t2}, we can get that

e−
ε
4 · PD′

[
c′t − 1 < T̂ ≤ c′t

]
≤ PD

[
ct − 1 < T̂ ≤ ct

]
≤ e

ε
4 · PD′

[
c′t − 1 < T̂ ≤ c′t

]
. (13)

By direct calculation, we have

e−
ε
2

√
k∏

t=1

PD′ [c
′
t − 1 < T̂ < c′t] ≤

√
k∏

t=1

PD[ct − 1 < T̂ < ct] ≤ e
ε
2

√
k∏

t=1

PD′ [c
′
t − 1 < T̂ < c′t]. (14)

16



Now consider the binary mechanism. It is known from analysis above that (c1, · · · , c√k) differs from
(c′1, · · · , c′√k

) at most two positions. By Theorem 2, we have

e−
ε
2 · PD′ [BM(c′1, · · · , c′√k

) = (b̂1, · · · , b̂√k)] ≤ PD[BM(c1, · · · , c√k) = (b̂1, · · · , b̂√k)],

PD[BM(c1, · · · , c√k) = (b̂1, · · · , b̂√k)] ≤ e
ε
2 · PD′ [BM(c′1, · · · , c′√k

) = (b̂1, · · · , b̂√k)]. (15)

Combining equation (14) and (15), we can get that

e−ε · PD′ [π] ≤ PD[π] ≤ eε · PD′ [π],

which completes the proof.

E Extension to Low Sensitivity Queries

Definition 5. A query q : Xm → R is called ∆-sensitive if for all pairs of neighbouring datasets
S, S′ ∈ Xm : |q(S)− q (S′)| ≤ ∆. Note that linear queries are (1/m)-sensitive.
Lemma 11. If M satisfies (ε, δ, κ) partial differential privacy with privacy leak function fL :
Π→ 2[m]. Further, if each ∆-sensitive query qt depends on at most m̂ samples, then for any data
distribution P , any adversary A, and any constant c > 0:

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|qt(Qπ)− qt(Pm)| >

(
eε − 1 +

κ

m̂
+ 4c

)
m̂∆

]
≤ m

m̂
· δ
c
. (16)

Proof. We introduce the following useful definitions: q̄ (x≤i) = E
S′∼Pm−i

[q ((x≤i, S
′))]. Given a

transcript π ∈ Π, let t∗(π) = argmaxt |qt(Qπ)− qt(Pm)|. We use a function g(t, π) to specify the
samples that qt depends on at time t given π. For an α > 0, we define the following sets:

Πα =
{
π ∈ Π | qt∗(π) (Qπ)− qt∗(π)(Pm) > α

}
,

A(π) = {i ∈ [m]|i /∈ fL(π)} ,
G(π) = {i ∈ [m]|i ∈ g(t∗(π), π)} ,

Πα,i = {π ∈ Π | π ∈ Πα, i ∈ A(π) ∩G(π)} ,
and for any z ∈ [0, 2∆], i ∈ [m], denote

Πα,i,z (x≤i) =
{
π ∈ Πα,i | q̄t∗(π) (x≤i)− q̄t∗(π) (x≤i−1) > z −∆

}
.

We will then focus on the following expectation:

E
S∼Pm

 ∑
π∈Πα

Pr
Π∼I(S)

[Π = π]
∑

i∈A(π)∩G(π)

(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1)

) .

On one hand, we have that

E
S∼Pm

 ∑
π∈Πα

Pr
Π∼I(S)

[Π = π]
∑

i∈A(π)∩G(π)

(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1)

)
= E

S∼Pm

[ ∑
π∈Πα

Pr
Π∼I(S)

[Π = π]

m∑
i=1

(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1)

)]
︸ ︷︷ ︸

Part I

− E
S∼Pm

 ∑
π∈Πα

Pr
Π∼I(S)

[Π = π]
∑

i∈fL(π)∩G(π)

(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1)

)
︸ ︷︷ ︸

Part II

− E
S∼Pm

 ∑
π∈Πα

Pr
Π∼I(S)

[Π = π]
∑

i∈Ḡ(π)

(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1)

)
︸ ︷︷ ︸

Part III

.
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Note that query qt∗(π) does not depend on the ith data for those i ∈ Ḡ(π). Therefore ∀i ∈
Ḡ(π), q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1) = 0, which means the third part equals to zero. We then bound
the first two parts separately.

Part I = E
S∼Pm

[ ∑
π∈Πα

Pr
Π∼I(S)

[Π = π]

m∑
i=1

(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1)

)]

= E
S∼Pm

[ ∑
π∈Πα

Pr
Π∼I(S)

[Π = π]
(
q̄t∗(π) (S)− q̄t∗(π) (Pm)

)]
=
∑

π∈Πα

Pr[Π = π]
(
q̄t∗(π) (Qπ)− q̄t∗(π) (Pm)

)
> α · Pr[Π ∈ Πα],

Part II ≤ E
S∼Pm

[ ∑
π∈Πα

Pr
Π∼I(S)

[Π = π] · |fL(π) ∩G(π)|∆

]
≤ E

S∼Pm

[ ∑
π∈Πα

Pr
Π∼I(S)

[Π = π] · |fL(π)|∆

]

≤ κ∆ E
S∼Pm

[
Pr

Π∼I(S)
[Π ∈ Πα]

]
= κ∆ · Pr[Π ∈ Πα].

Combining the results together, we have

E
S∼Pm

 ∑
π∈Πα

Pr
Π∼I(S)

[Π = π]
∑

i∈A(π)∩G(π)

(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1)

) > Pr[Π ∈ Πα]·(α− κ∆) .

On the other hand, we consider that

E
S∼Pm

 ∑
π∈Πα

Pr
Π∼I(S)

[Π = π]
∑

i∈A(π)∩G(π)

(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1)

)
=

m∑
i=1

E
S∼Pm

 ∑
π∈Πα,i

Pr
Π∼I(S)

[Π = π]
(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1)

) .

Now for each coordinate i, we have

E
S∼Pm

 ∑
π∈Πα,i

Pr
Π∼I(S)

[Π = π]
(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1) + ∆

)
= E

S∼Pm

[∫ 2∆

0

Pr
Π∼I(S)

[Π ∈ Πα,i,z(S≤i)]dz

]

≤ E
S∼Pm,Y∼P

[∫ 2∆

0

(
eϵ Pr

Π∼I(Si←Y )
[Π ∈ Πα,i,z(S≤i)] + δ

)
dz

]

= E
S∼Pm,Y∼P

eϵ ∑
π∈Πα,i

Pr
Π∼I(Si←Y )

[Π = π]
(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1) + ∆

)
+ 2∆δ


= E

S∼Pm,Y∼P

eϵ ∑
π∈Πα,i

Pr
Π∼I(S)

[Π = π]
(
q̄t∗(π)

(
Si←Y
≤i

)
− q̄t∗(π) (S≤i−1) + ∆

)
+ 2∆δ

 .

The inequality holds due to partial differential privacy and the fact that position i does not belong to
the privacy leak set. Si←Y stands for (S1, . . . , Si−1, Y, Si+1, . . . , Sm). Therefore, in the last equality
we have that (S, Y ) and (Si←Y , Si) are distributed identically. Since Y ∼ P and is independent of
Π, we have that

E
Y∼P

[
q̄t∗(π)

(
Si←Y
≤i

)]
= q̄t∗(π) (S≤i−1) ,

E
S∼Pm

 ∑
π∈Πα,i

Pr
Π∼I(S)

[Π = π]
(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1) + ∆

)
18



≤ E
S∼Pm

[
eϵ Pr

Π∼I(S)
[Π ∈ Πα,i]∆ + 2∆δ

]
= (eϵ Pr[Π ∈ Πα,i] + 2δ)∆.

Subtracting Pr[Π ∈ Πα,i]∆ on both sides gives

E
S∼Pm

 ∑
π∈Πα,i

Pr
Π∼I(S)

[Π = π]
(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1)

) ≤ ((eϵ − 1)Pr[Π ∈ Πα,i] + 2δ)∆.

Here comes the key observation that
m∑
i=1

Pr[Π ∈ Πα,i] =

m∑
i=1

∑
π∈Πα,i∈A(π)∩G(π)

Pr[Π = π] =
∑

π∈Πα

∑
i∈A(π)∩G(π)

Pr[Π = π]

≤
∑

π∈Πα

|A(π) ∩G(π)|Pr[Π = π] ≤ m̂
∑

π∈Πα

Pr[Π = π] ≤ m̂Pr[Π ∈ Πα].

Now using these results, we can achieve that

E
S∼Pm

 ∑
π∈Πα

Pr
Π∼I(S)

[Π = π]
∑

i∈A(π)

(
q̄t∗(π) (S≤i)− q̄t∗(π) (S≤i−1)

)
≤

m∑
i=1

((eϵ − 1)Pr[Π ∈ Πα,i] + 2δ)∆ ≤
(
(eϵ − 1)Pr[Π ∈ Πα] + 2δ

m

m̂

)
m̂∆.

In summary, we obtain both an upper and a lower bound of the expectation. Suppose that
Pr
[
|qt∗(π)(QΠ)− qt∗(π)(P)| > α

]
> m

m̂ ·
δ
c . Without loss of generality, assume that

Pr
[
qt∗(π)(QΠ)− qt∗(π)(P) > α

]
= Pr[Π ∈ Πα] >

1

2

m

m̂
· δ
c
.

By this assumption, we reach

Pr[Π ∈ Πα]·(α− κ∆) <
(
(eϵ − 1)Pr[Π ∈ Πα] + 2δ

m

m̂

)
k′∆ < Pr[Π ∈ Πα] ((e

ϵ − 1) + 4c) m̂∆.

This results in a contradiction for α ≥
(
eε − 1 + κ

m̂ + 4c
)
m̂∆.

Combining this Lemma with Lemma 2 yields the generalization theorem for low sensitivity queries.

Theorem 5. IfM satisfies (ε, δ, κ) partial differential privacy and each ∆-sensitive query qt depends
on at most m̂ data. Then for any data distribution P , any adversary A, and any constant c, d > 0:

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|at − qt(Pm)| >

(
eε − 1 +

κ

m̂
+ 4c

)
m̂∆+ α+ d

]
≤ m

m̂
· δ
c
+

β

d
.

F Simplified Proof for ε-Partial Differential Privacy

Similar as that in [32], we also provide a simplified proof of a generalization theorem for (ε, 0)-partial
differential privacy. The results are summarized in Lemma 12 and Theorem 6.

Lemma 12. IfM satisfies (ε, 0, κ) partial differential privacy with privacy leak function fL : Π→
2[m], then for any data distribution P , any transcript π ∈ Π, any linear query q, and any η > 0:

Pr
S∼Qπ

[
|q(S)− q(Pm)| ≥ (eϵ − 1) +

κ

m
+

√
2 ln(2/η)

m

]
≤ η.

Proof. Recall that for linear queries q(S) = 1
m

∑m
i=1 qi(Si) and q(Pm) = ES∼Pm [q(S)] =

1
m

∑m
i=1 ESi∼P [qi(Si)] = 1

m

∑m
i=1 qi(P). By the same proof in [32], we can construct a mar-

tingale and show concentration by Azuma’s inequality. More specifically, define random variables
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Xi = qi(Si) − E[qi(Si)|S<i] and let Zi =
1
m

∑i
j=1 Xj . Then the sequence Z0 = 0, Z1, · · · , Zm

forms a martingale and |Zi − Zi−1| ≤ 1
m . By Azuma’s inequality, it can be concluded that:

Pr
S∼Qπ

[∣∣∣∣∣ 1m
m∑
i=1

qi (Si)−
1

m

m∑
i=1

E [qi (Si) | S<i]

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−t2m
2

)
. (17)

If M satisfies differential privacy strictly, [32] shows that E[qi(Si)|S<i] is close to qi(P) for all
i ∈ [m]. However, there exists privacy leak in our mechanism. For a given transcript π ∈ Π, we
partition the underlying samples into two sets and examine each case separately.

1. i /∈ fL(π). Fix any realization x and consider E[qi(Si)|S<i = x<i], we have

E
S∼Qπ

[qi(Si)|S<i = x<i] =
∑
x

qi(x) · Pr
S∼Pm

[Si = x|Π = π, S<i = x<i]

=
∑
x

qi(x) ·
PrS∼Pm [Π = π|Si = x, S<i = x<i] · PrS∼Pm [Si = x]

PrS∼Pm [Π = π|S<i = x<i]
.

By the definition of partial differential privacy, we have that

e−ε ≤ PrS∼Pm [Π = π|Si = x, S<i = x<i]

PrS∼Pm [Π = π|S<i = x<i]
≤ eε.

Hence, we can conclude that for i /∈ fL(π),

e−εqi(P) ≤ E
S∼Qπ

[qi(Si)|S<i] ≤ eεqi(P).

2. i ∈ fL(π). Since there are at most κ samples that may leak privacy, combined with the fact
that qi ∈ [0, 1], the error on these samples can be bounded as follows.

−κ ≤
∑

i∈fL(π)

(E[qi(Si)|S<i]− qi(P)) ≤ κ.

By analysis above, we can conclude that∑
i∈[m]

(E[qi(Si)|S<i]− qi(P)) =
∑

i/∈fL(π)

(E[qi(Si)|S<i]− qi(P)) +
∑

i∈fL(π)

(E[qi(Si)|S<i]− qi(P)) ,

(1− eε) ·m− κ ≤
∑
i∈[m]

(E[qi(Si)|S<i]− qi(P)) ≤ (eε − 1) ·m+ κ.

By equation (17), we can get that with probability 1− η,

−
√

2m ln(2/η) ≤
m∑
i=1

qi (Si)−
m∑
i=1

E [qi (Si) | S<i] ≤
√

2m ln(2/η).

Combining this with analysis above yields that

1

m

∣∣∣∣∣
m∑
i=1

(qi (Si)− qi(P))

∣∣∣∣∣ ≤
√

2 ln(2/η)

m
+ (eε − 1) +

κ

m
,

which completes the proof.

A generalization theorem follows directly from Lemma 12. The proof is same as that of Theorem 23
in [32].
Theorem 6. IfM satisfies (ε, 0, κ) partial differential privacy andM is (α, β)-sample accurate.
Then for any data distribution P , any adversary A, any linear query qt, and any constant c, d > 0:

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|at − qt(Pm)| > α+

√
2 ln(2/η)

m
+ (eε − 1) +

κ

m

]
≤ β + η.
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If a linear query q only depends on m̂ samples, then q(S)− q(Pm) = m̂
m ·
(
q′(S)− q′(Pm̂)

)
where

q′ = 1
m̂

∑
j∈{i1,i2,··· ,im̂} qj(Sj). Applying Lemma 12 with q′ yields that,

Pr
S∼Qπ

[
|q(S)− q(Pm)| ≥ m̂

m
· (eϵ − 1) +

κ

m
+

1

m

√
2m̂ ln(2/η)

]
≤ η.

Thus in this case, we can get the following theorem.
Theorem 7. IfM satisfies (ε, 0, κ) partial differential privacy andM is (α, β)-sample accurate.
Further, if each linear query qt depends on at most m̂ samples. Then for any data distribution P , any
adversary A, and any constant c, d > 0:

Pr
S∼Pm,Π∼I(M,A;S)

[
max

t
|at − qt(Pm)| > α+

m̂

m
· (eϵ − 1) +

κ

m
+

1

m

√
2m̂ ln(2/η)

]
≤ β + η.
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