
Streaming Algorithms and Lower Bounds for Estimating

Correlation Clustering Cost

Sepehr Assadi∗ Vihan Shah ∗ Chen Wang∗

Abstract

Correlation clustering is a fundamental optimization problem at the intersection of machine
learning and theoretical computer science. Motivated by applications to big data processing,
recent years have witnessed a flurry of results on this problem in the streaming model. In this
model, the algorithm needs to process the input n-vertex graph by making one or few passes
over the stream of its edges and using a limited memory, much smaller than the input size.

All previous work on streaming correlation clustering has focused on semi-streaming algo-
rithms with Ω(n) memory, whereas in this work, we study streaming algorithms with much
smaller memory requirements of only polylog(n) bits. This stringent memory requirement is
in the same spirit of classical streaming algorithms that instead of recovering a full solution
to the problem—which can be prohibitively large with such small memory as is the case in
our problem—, aimed to learn certain statistical properties of their inputs. In our case, this
translates to determining the “(correlation) clusterability” of input graphs, or more precisely,
estimating the cost of the optimal correlation clustering solution.

As our main result, we present two novel algorithms that in only polylog(n) space are able to
estimate the optimal correlation clustering cost up to some constant multiplicative factor plus
some extra additive error. One of the algorithms outputs a 3-multiplicative approximation plus
o(n2) additive approximation, and the other one further reduces the additive error at the cost of
increasing the multiplicative factor to some large constant. We then present new lower bounds
that justify the mix of both multiplicative and additive error approximations in our algorithms.

∗({sepehr.assadi,vihan.shah98,chen.wang.cs}@rutgers.edu) Department of Computer Science, Rutgers University.
Research supported in part by a NSF CAREER Grant CCF-2047061, a gift from Google Research, and a Rutgers
Research Fulcrum Award.

i

mailto:\{sepehr.assadi,vihan.shah98,chen.wang.cs\}@rutgers.edu

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Our Techniques . 3

2 Preliminaries 5
2.1 Notation . 5
2.2 Problem Definition . 6
2.3 The Streaming Model . 6
2.4 Standard Technical Tools . 7

3 An Algorithm based on Sparse-dense Decomposition 8
3.1 Sketching tools for sparse and dense edges . 9

3.1.1 The tool for ε-sparse edges . 9
3.1.2 The tool for ε-dense non-edges . 12

3.2 Using ε-sparse Edges and ε-dense Non-edges for Correlation Clustering 15
3.3 The Sparse-dense Decomposition-based Algorithm 19

4 An Algorithm based on Pivot 24
4.1 A Predecessor-aware Non-Edge Sketching Tool . 25
4.2 A Predecessor-aware Edge Sketching Tool . 26
4.3 Unclustered edge Sketching Tool . 28
4.4 The Algorithm based on Pivot . 29

5 A Lower Bound for O(n2−ε) Additive error 32
5.1 A construction of correlation clustering structural . 33
5.2 Multi-copy correlation clustering structure . 37
5.3 Cost Testing Lower Bound – A Variate of the Hard Instance 38

6 A Lower Bound for O(n) Additive error 41
6.1 Gap Cycle Counting with Odd Cycles . 41
6.2 The lower bound . 44

7 Experiments 46
7.1 Experimental Settings . 46
7.2 Experimental Results . 47

A Proof of Lemma 3.15 55

ii

1 Introduction
Correlation clustering is a fundamental optimization problem at the intersection of machine learning
and theoretical computer science. This problem was introduced by the work of [BBC04]1, with
motivation to document clustering, as follows: we have a complete graph G = (V,E) whose edges
are labeled by either (+) or (−), and the objective, known as disagreement minimization, is to
cluster the vertices so that the number of (+) edges across clusters and (−) edges inside the same
clusters are minimized. Correlation clustering has since found broad applications in areas such as
document categorization [BBC04], webpage segmentation [CKP08], microscopy imaging [ZYH14],
and community detection [VGW18, SDE+21], to name a few.

There is an abundant body of literature studying polynomial time algorithms for correlation
clustering. [BBC04, CMSY15] showed that there exists a 2.06-approximation algorithm in polyno-
mial time and the problem is NP-hard and even APX-hard. Furthermore, [ACN05] gave a simple
(combinatorial) poly-time 3-approximation algorithm that is widely used in practice. Very recently,
breakthrough results by [CLN22, CALLN23] achieved 1.73 approximation in polynomial time. In
addition, efficient algorithms are also explored for several variants of this problem like the agreement
maximization objective [BBC04, Swa04, CGW03], weighted graphs [Swa04, CGW03, EF03], fixed
number of clusters [GG06], fair clustering [AEKM20, SZ22], and others.

In recent years, with the rapid development of the ‘big data era’, there has been a growing interest
in algorithms for correlation clustering under sublinear models. In general, learning algorithms
under sublinear models are able to output the answer without processing or storing the entire input.
For instance, [BGK13, AW22] gave algorithms to (approximately) learn the clustering in sublinear
time, and [CLM+21, BCMT22] designed algorithms in the Massively Parallel Computation (MPC)
model. Another widely popular model of sublinear algorithms—the focus of our paper—is the graph
streaming model. In this model, the edges of the input graph are given to the algorithm one by one
in a stream and the memory of the algorithm is desired to be substantially smaller than the input.
Here, [ACG+15] designed a streaming algorithm with Õ(n) memory2 that achieves 3-approximation
with O(log log(n)) passes – here, n is the number of vertices of the graph and thus the input size is
Θ(n2) bits. The number of passes of these algorithms were later improved to O(1) by [CLM+21] and
a single pass by [AW22], albeit with much larger, yet still a constant, approximation factor. Very
recently, [BCMT23] further improved the approximation ratio of single-pass streaming algorithms
to a 5-approximation in polynomial time and (1 + ε)-approximation in exponential-time.

The aforementioned line of work in [ACG+15, CLM+21, AW22, BCMT23] focused on the Õ(n)-
memory regime, otherwise known as the semi-streaming memory. Allowing for Ω(n) memory in these
algorithms is necessary given that even outputting the solution, namely, the clustering of the input
labeled graph, requires this much memory. Yet, in many application, Ω(n) memory can still be quite
large, and the implementations can require significant resource. In such cases, it is highly desirable
to determine the “clusterability” of the input graph before running the actual clustering algorithm.
If even the optimal cost for the input is high, it implies the clustering cannot provide any meaningful
outcome, and we should not waste resources on these instances. This type of “value estimation”
problem is extensively studied in the streaming literature, see e.g. [KKS15, GT19, ACL+22, BOS22,
DKPP22] for several examples in this context. This raises the following fundamental question:

How well can we estimate the optimal correlation clustering cost with polylog(n)-space
streaming algorithms?

Despite the vast body of work on streaming correlation clustering in general, this question has

1Historically, some forms of the problem were mentioned in earlier works like [GW89].
2Here, and throughout, we use Õ(·) to hide polylog terms on the parameters.

1

received almost no attention so far. Indeed, to the best of our knowledge, the only prior work here is
that of [ACG+15] who proved that any (finite) purely multiplicative factor approximation of the cost
is not possible in o(n) space. This result however does not rule out any additive error approximation
(say, in the spirit of [BGK13] for local query algorithms).

We remedy this state of affairs in this paper. Our main algorithmic results show that one
can obtain a 3-approximation plus o(n2) additive approximation to the cost of optimal correlation
clustering in only polylog(n) space – the additive approximation can be further reduced at the cost
of increasing the multiplicative approximation to some large constant. We then complement these
results with new streaming lower bounds that further justify the necessity of the additive errors in
our algorithms. Throughout, we will present algorithms in the manner of insertion-only streams.
However, we shall note that our algorithms can be extended to dynamic streams wherein the edges
of the graph can be both inserted and deleted during the stream.

1.1 Our Contributions

To state our results, we need the following notation. Let OPT be the optimal cost for correlation clus-
tering. We say an algorithm achieves an (α, β)-approximation of OPT if it gives an α-multiplicative
with a β additive approximation, namely, outputs a number ALG such that

OPT ≤ ALG ≤ α · OPT + β.

Our first main result is a single-pass streaming algorithm that achieves an (O(1), δn2)-approximation
with high probability in poly(log n, 1/δ) space.

Result 1. There is a single-pass streaming algorithm that outputs an (O(1), δn2)-approximation
of the optimal correlation clustering cost with high probabilitya and uses O(polylog(n)/δ5)
space.

aHere, and throughout, with high probability means with probability at least 1− 1/n.

The δ−5-dependence of our algorithm ensures that by setting δ = n−0.19 we can reduce the
additive error down to n1.81 = o(n2) and still achieve an o(n)-space algorithm. On the flip side
however, the leading constant multiplicative factor is quite large in this algorithm – as we will see
shortly, the algorithm is built on the sparse-dense decomposition idea from [AW22], which inevitably
incurs a (worst-case) constant of at least 107. Our next result addresses this drawback: we present
another algorithm that achieves a (3, δn2)-approximation in expectation with polylogn space at the
cost of an exponential dependence on δ in the space.

Result 2. There is a single-pass streaming algorithm that outputs a (3, δn2)-approximation of
the optimal correlation clustering cost in expectation and uses 2O(1/δ) · polylog(n) space.

Compared to the algorithm in Result 1, the algorithm in Result 2 is more suitable for instances
whose optimal correlation clustering costs are large (e.g. OPT = Ω(n2)). In such a case, we can pick
δ to be a small constant, and achieve a (3 + δ)-multiplicative approximation with polylog(n) space.

Since both of our upper bounds contain the δn2 additive error, we would naturally wonder to
what extent these additive terms are necessary. We present two new lower bounds that partially
address this question, and show that the additive errors are necessary to a large extent. Our first
lower bound shows that if only additive error is allowed, there is no polylog(n)-space streaming
algorithm in a single pass achieves additive error substantially better than O(n2).

2

Result 3. No single-pass streaming algorithm with polylog(n) space can output a (1, n2−ε)
approximation of the optimal correlation clustering cost with a sufficiently large constant prob-
ability of success for some ε = o(1).

Result 3 can also be interpreted as the additive counterpart of the lower bounds in [ACG+15],
which focus instead on the purely multiplicative approximation. Since our upper bound allows both
approximations, we further provide a second lower bound showing that a Θ(n) additive error is
necessary even if both multiplicative and additive errors are allowed.

Result 4. No single-pass streaming algorithm with even o(
√
n) space can output a (1.19, O(n))

approximation of the optimal correlation clustering cost with a sufficiently large constant prob-
ability of success.

We now discuss the applicable scenarios for our algorithms. To test instances with low vs. high
correlation clustering costs (e.g. o(n2) vs. Ω(n2)), it suffices to run our algorithm in Result 1 with

δ = 1/ log(n) which uses Õ(1) space. On the other hand, to separate instances that are ‘partially
clusterable’ (e.g. optimal cost of n2/1000) vs. instances that are ‘not clusterable at all’ (e.g. optimal
cost of n2/5), it suffices to run our algorithm in Result 2 with δ = O(1) a small constant which

uses Õ(1) space. The only case our algorithms are not able to deal with is to separate multiple
‘well-clusterable’ instances which does not seem that motivated in practice either.

Experiments To further justify the quality of our algorithms, we conduct experiments of our
algorithms with the stochastic block model (SBM) extensively studied in the literature (e.g., [HLL83,
ABH16, ZT23, Abb17a]). For the correlation clustering problem, we can use a variate of the model
with planted clustering and some “noise.” In particular, we arbitrarily label each vertex with a
clustering label to form clusters with size Ω(n). Then, for two vertices vi and vj , if they belong
to the same planted cluster, we add a (+) edge (xi, xj) with probability p, and a (−) edge with
probability 1− p for some p > 0.5. On the other hand, if xi and xj belong to different clusters, we
add a (+) edge with probability 1− p and a (−) edge with probability p. Stochastic Block Models
are interesting when p is sufficiently large, and the instance will be very “clusterable” with a small
cost. In such a case, we can safely assume the planted clusters are optimal, and we can compute the
correlation clustering cost by adding the (+) edges crossing different planted clusters and (−) edges
inside the same ones.

We implement our algorithms on the simulations of graph streams obtained by the Stochastic
Block Model. Our simulation results show that our algorithms consistently obtain approximations
within a factor at most 4 of the optimal clustering cost, while only storing roughly 0.04% and 3.6% 3

of all possible edges respectively, when the graphs is moderately large (2000 vertices, 1999000 edges).
We further tested our algorithms’ ability to distinguish “well-clusterable” vs. “badly-clusterable”
instances – the latter can be obtained by sampling Erdos-Renyi random graphs with p = 0.5, where
optimal correlation clustering cost is roughly to put every vertex in a singleton cluster. We observe
that our algorithms can always distinguish the costs between the SBM and Erdos-Renyi graphs
when the probability p in SBM is high enough: both estimation algorithms obtain disjoint cost
distributions among the two types of graphs.

1.2 Our Techniques

Upper bound of Result 1. Our first upper bound result borrows the idea of sparse-dense
decomposition-based algorithm from [AW22]. In a nutshell, the sparse-dense decomposition tech-

30.04% fraction of edges are obtained by implementing the algorithm of Result 2 in a two-pass manner

3

nique used in [AW22] categorizes the vertices as two types based on the G+ subgraph: the sparse
vertices Vsparse and almost cliques K1, . . . ,Kk. For each sparse vertex v, a significant portion of its
neighboring vertices u ∈ N+(v) have considerably different (+) adjacent vertices than v, i.e. N+(v)
and N+(u) have a large disjoint part. On the other hand, for each almost clique Ki, the vertices
inside Ki are densely connected with (+) edges, and there are only a few (+) edges going outside.
[AW22] shows that by putting each almost-clique in a separate cluster and treating vertices in Vsparse

as singletons, we can get an O(1)-approximation of the optimal cost.
The sparse-dense decomposition technique naturally requires Ω(n) space to write down the clus-

tering. However, if we can estimate the cost of a sparse-dense decomposition-based clustering in
smaller space, we can still obtain O(1)-approximation of the optimal cost. Indeed, for any vertex
whose number of (+) edges are sufficiently high, i.e. at least δn, a sample size of O(1/poly(δ))
is sufficient to test whether the vertex is sparse with high constant probability. As such, it seems
promising to test whether each high-degree (in G+) vertex belongs to Vsparse, and count the costs
induced by the set of edges as prescribed in [AW22]. Furthermore, the low-degree vertices can incur
at most δn2 additive error, and we can simply add this term in the final output.

The above idea is quite similar to the strategy we actually used in the algorithm, albeit there are
some subtle yet important differences. We note that the sparse-dense decomposition in [AW22] is not
unique – leaving alone the inherent randomness used in the algorithm, the sparse-dense assignments
of some vertices are affected by the ordering of vertices. As such, we proceed differently by using
the notion of sparse and dense edges instead.

Roughly speaking, we say a (+) edge is sparse if its endpoints possess substantially different
neighborhoods in G+. Similarly, we say a non-edge in G+ (i.e., a (−) edge) to be dense if its
endpoints share a large overlap of the neighborhoods in G+. Intuitively, a vertex is sparse if it has
many incident sparse edges; similarly, a vertex in some almost-clique only induces costs on its dense
non-edges. It turns out that if we count in G+ all the sparse edges and at most deg+(v) dense
non-edges for each vertex v, the resulting value is guaranteed to be between OPT and O(1) · OPT.

The final missing piece is to estimate in small space the number of desired sparse edges and
dense non-edges as prescribed above. Similar to the estimation of vertices, we note that a sample
size of O(1/poly(δ)) is sufficient to estimate the sparse-dense information on vertex pairs with both
deg+(v) ≥ δn. Furthermore, we can estimate the count with small variance by randomly sampling
Oδ(polylog(n)) pairs. Finally, by simply forgoing the vertices with small degrees in G+, the induced
additive error is at most δn2, as desired.

Upper bound of Result 2. Our algorithm in Result 2 is inspired by the pivot-based local
algorithm from [BGK13]. The algorithmic procedure in [BGK13] is quite straightforward (although
the analysis is highly non-trivial): we uniformly at random sample O(1/δ2) vertices U together with
an ordering π of the vertices. We then perform a greedy Maximal Independent Set (MIS) for vertices
in U on G+ according to the ordering of π. By an analysis that is similar in spirit to [ACN05], one
can show that the correlation clustering cost on the vertices induced by the MIS is at most 3OPT
in expectation. Furthermore, by pruning the MIS of the graph G+, there are at most δn2 (+) edges
remaining, for which we can afford to put in singleton clusters with an additive cost of δn2.

Our algorithm takes the idea to test the cost of this pivot-based algorithm in limited space.
With techniques similar to what we used in Result 1, we can sample O(1/δ2) vertices uniformly at
random; and for each v ∈ U , we can test the number of (−) edges inside N+(v) and number of
(+) edges leaving N+(v), provided v has at least δn incident (+) edges. However, simply adding
up these numbers for each vertex in U may lead to an overestimation of the cost since there can be
large overlaps between the vertices in U and their positive neighborhoods.

To handle the above problem, we count the number of edges that induce costs more carefully.
For a vertex v in the MIS induced by U , suppose we know the set of vertices S in the MIS before

4

v by the ordering of π. If we can test the number of cost-induced edges that do not incident on
any vertices in N+[S] ∪ S, where N+[S] stands for the union of the positive neighbors of vertices
in S, then we will not encounter the overestimation issue. Indeed, we can approximately count the
number of cost-incurring edges with such constraints by storing whether they have (+) edges to S.
Since S is at most of O(1/δ2) size, the blow-up on the space is at most O(1/poly(δ)).

Finally, we need to handle the fact that we do not know such S for each vertex v, and we
cannot use an ordered MIS on-the-fly as a later insertion/deletion may completely change the MIS.
As such, for each vertex v ∈ U , we simply keep all possible S sets during the stream to store the
cost information, which introduces an extra 2O(1/δ) factor to the space. By the end of the stream,
we can compute the real MIS in U offline (by storing all the Oδ(polylog(n)) edges), and use the
corresponding S set for each vertex to compute the cost value.

Lower bounds. Our lower bounds are mostly adapted from well-known communication problems,
albeit with some novel tricks. In particular, our lower bound in Result 3 borrows idea from a recent
reduction from INDEX in [AAD+23], which was used to give an Ω(n2) space lower bound to return
the exact correlation clustering cost in a single pass. We prove that the same space-error trade-off
holds even if we duplicate each vertex multiple times. As such, we can obtain a lower bound of
Ω(nε) for any algorithm with only O(n2−ε) additive error. Our lower bound in Result 4 follows from
a reduction from the famous Gap-Cycle Counting (GCC) problem. En route to proving the lower
bound, we slightly tweak the original instance of Gap-cycle Counting, and show that the lower bound
works also for odd cycles, which turns out to be necessary to separate the correlation clustering costs.

2 Preliminaries
We introduce the necessary notation, the problem definition, and the standard technical tools we
are going to use in this section.

2.1 Notation

We use G = (V,E+ ∪E−) to denote a labeled complete graph arriving in a stream. For any vertex
v, we denote by N+(v) all vertices that have an (+) edge from v, and we let N+[v] = {v} ∪N+(v).
Similarly, we denote by N−(v) all vertices in the vertex set V that have an (−) edge from v, and we
let N−[v] = {v} ∪ N−(v). We use N+(u)4N+(v) (resp. N−(u)4N−(v)) to denote the disjoint
neighborhoods of u and v, i.e.

N+(u)4N+(v) = (N+(u) ∪N+(v)) \ (N+(u) ∩N+(v)).

For a fixed set of vertices A ⊆ V , we further let E+(v,A) be the set of (+) edges between v and
vertices in A, and E−(v,A) be the set of (−) edges between v and vertices in A.

We use G+ = (V,E+) to denote the positive subgraph of G with all the (+) edges, and we define
G− = (V,E−) analogously. Note that since we work with a labeled complete graph, the information
of G− edges can be uniquely inferred from the positive subgraph G+. As such, when we work with
G+ only, we call a (+) edge (u, v) ∈ E+ as an edge in G+. Similarly, we call a (−) edge (u, v) ∈ E−
an non-edge in G+. We may omit G+ when the context is clear.

For a fixed cluster C on a labeled complete graph G, we use cost (C) to denote the total cost of
correlation clustering on G by C (see Problem 1 for the formal definition of cost). Furthermore, we
slightly abuse the notation to reload cost(·) as a function of cost on subgraphs of G in the following
occasions:

1. For an induced subgraph H ⊆ G, we let cost(C, H) be the cost of C induced by the edges with
both endpoints in H;

5

2. For two vertex sets A,B ⊆ V , we let cost(C, (A,B)) be the cost of C induced by the edges
with exactly one endpoint in A and one endpoint in B.

Finally, for a single edge (u, v), we use the notation edge-cost(C, (u, v)) to denote the cost induced
by a single edge (u, v) for clustering C. We may write a short-hand notation edge-cost((u, v)) when
the context is clear that C is used.

2.2 Problem Definition

We now give the formal description of the problem.

Problem 1 (Correlation Clustering Value Estimation). Given a labeled complete graph G =
(V,E− ∪ E+) and a clustering C that partitions V into disjoint set of vertices C1, C2, · · · , Ck, the
cost of disagreement minimization correlation clustering on C is defined as

cost(C) :=
∣∣{(u, v) ∈ E+ | ∃i 6= j s.t. u ∈ Ci, v ∈ Cj

}∣∣+
∣∣{(u, v) ∈ E− | ∃i s.t. u, v ∈ Ci

}∣∣
Let OPT be the minimum cost over all possible valid clusterings. The Correlation Clustering Value
Estimation problem asks for a number ALG such that OPT ≤ ALG ≤ f(OPT) for some function
f(x) ≥ x.

If f(OPT) = α ·OPT+β ·n2 for α and β, we say that ALG is a (α, β)-approximation of the value
of correlation clustering in this scenario.

2.3 The Streaming Model

We study algorithms for correlation clustering value estimation under the graph streaming model,
where edges arrive one after another in a stream with the labels. We introduce the graph streaming
model for the labeled complete graph for both insertion-only and dynamic streams.

Insertion-only labeled complete graph stream. Given a graph G = (V,E+ ∪ E−), the
insertion-only graph stream of G is a length-T sequence of tuples 〈σ1, σ2, · · · , σT 〉 such that T =

(
n
2

)
,

and each {σt}Tt=1 is consistent of

σt = ((ut, vt), xt),

where (ut, vt) specifies a unique vertex pair and xt gives the label of (ut, vt).

Dynamic labeled complete graph stream. Given a graph G = (V,E+ ∪ E−), the dynamic
graph stream of G is a length-T sequence of tuples 〈σ1, σ2, · · · , σT 〉 such that T ≥

(
n
2

)
, and each

{σt}Tt=1 is consistent of

σt = ((ut, vt),∆t),

where (ut, vt) specifies a vertex pair and ∆t gives the update of the label on (ut, vt) with the following
rules:

• If (ut, vt) does not have any (+) or (−) edges, ∆t can be the insertion of (+) or (−) labels,
but cannot be a deletion operation.

• If (ut, vt) has at least one (+) label, ∆t can be the insertion or deletion of a (+) edge, but it
cannot specify any operation for (−) edges.

• If (ut, vt) has at least one (−) label, ∆t can be the insertion or deletion of a (−) edge, but it
cannot specify any operation for (+) edges.

6

In other words, the dynamic stream is allowed to perform insertions and deletions whenever it is
consistent with the existing labels on the vertex pair. Finally, the stream has to provide a labeled
complete graph in the end, i.e. every pair of vertices has exactly one (+) or (−) edge.

We note that our algorithms work even when given a dynamic stream of just the positive edges
(all pairs of vertices that have no edge at the end of the stream have a (−) edge). We further note
that our algorithms work even when the complete graph in the end has poly(n) (+) edges (or (−)
edges) between a pair of vertices (the multiple edges are thought of as just one edge and not parallel
edges). The space blowup in this case is only a multiplicative factor of log n.

For a pair of vertices, knowing whether it has a (+) or (−) edge at the end of the stream can
be done with a 1 bit counter. We just need to remember if the last insertion between that pair of
vertices was a (+) or (−) edge. If the stream contains only (+) edges then a counter mod 2 does
the job. So in conclusion we just need 1 bit. In the case where we have poly(n) edges between a
pair of vertices in the end, we use a counter of size O(log n) bits.

2.4 Standard Technical Tools

Concentration inequalities. We use the following standard multiplicative and additive forms of
Chernoff bounds.

Proposition 2.1 (Multiplicative Chernoff bound; c.f. [DP09]). Suppose X1, . . . , Xm are m inde-
pendent random variables with range [0, 1] each. Let X :=

∑m
i=1Xi and µL ≤ E [X] ≤ µH . Then,

for any ε > 0, there is

Pr (X > (1 + ε) · µH) ≤ exp

(
−ε

2 · µH
3 + ε

)
and Pr (X < (1− ε) · µL) ≤ exp

(
−ε

2 · µL
2 + ε

)
.

Proposition 2.2 (Additive Chernoff bound; c.f. [DP09]). Suppose X1, . . . , Xm are m independent
random variables with range [0, 1] each. Let X :=

∑m
i=1Xi and µL ≤ E [X] ≤ µH . Then, for any

t > 0, there is

Pr (X > µH + t) ≤ exp

(
−2t2

m

)
and Pr (X < µL − t) ≤ exp

(
−2t2

m

)
.

Sampling from graph streams. For a graph G = (V,E+ ∪E−), it is straightforward to sample
an edge uniformly at random in an insertion-only graph stream. For dynamic graphs, the standard
tool is the `0 sampler ([FIS08, LW16b]) that takes O(log3(n)) space and samples an edge with
probability at least 1 − 1/poly(n). However, in our algorithms, we sample vertices and store the
edges between the sampled vertices. As such, we do not have to use the `0 samplers and we directly
keep track of the label of the last update – this only takes O(1) words for each pair of vertices.
Finally, since sampling techniques can be viewed as a sketching matrix in the stream, we use the
name sketching tools to denote the sampling subroutines as standard.

Sparse-dense decomposition. Following the definition in [AW22], an ε-sparse-dense decompo-
sition can be defined as follows.

Definition 1 ([AW22]). Given a graph G = (V,E), an ε-sparse-dense decomposition Vsparse tK1 t
. . . tKk consists of:

• Sparse vertices Vsparse: Any vertex v ∈ Vsparse has at least η0 · ε · deg(v) neighbors u such
that: |N(v)4N(u)| ≥ η0 · ε ·max {deg(u),deg(v)}.

• Dense vertices partitioned into almost-cliques K1, . . . ,Kk: For every i ∈ [k], each Ki

has the following properties. Let ∆(Ki) be the maximum degree (in G) of the vertices in Ki,
then:

7

i). Every vertex v ∈ Ki has at most ε ·∆(Ki) non-neighbors inside Ki;

ii). Every vertex v ∈ Ki has at most ε ·∆(Ki) neighbors outside Ki;

iii). Size of each Ki satisfies (1− ε) ·∆(Ki) ≤ |Ki| ≤ (1 + ε) ·∆(Ki).

[AW22] proved that for sufficiently small ε and η0, such a decomposition always exists – this can
be formalized as follows.

Proposition 2.3. For ε ≤ 1
360 and η0 ≤ 1

20 , for any input graph G = (V,E), the ε-sparse-dense
decomposition of G defined as in Definition 1 always exists.

We will use Proposition 2.3 on the subgraph G+ = (V,E+) of the labeled complete graph to
obtain lower bounds for the correlation clustering costs.

Communication complexity and streaming lower bounds. We use reduction arguments
from two-party one-way communication complexity to prove streaming lower bounds in this paper.
The framework works as follows: in a two-party one-way communication game between Alice and
Bob, a communication protocol Π can always be simulated by a streaming algorithm if the players
can sample the input. Concretely, Alice can simply run the streaming algorithm locally and send
the memory to Bob, where Bob can run the rest of the streaming algorithm and output the answer.
As such, the one-way communication complexity implies the memory lower bound for single-pass
streaming algorithms used in the reduction.

3 An Algorithm based on Sparse-dense Decomposition

In this section, we present our first streaming algorithm that achieves a (O(1), δn2)-approximation for
testing the value of correlation clustering in O(polylog(n)/poly(δ)) space, as long as δ ≥ 1

polylog(n)
.

We utilize the idea in [AW22] to test a (O(1), δn2)-approximate value of the sparse-dense decomposition-
based correlation clustering cost, which in turn is an O(1) approximation of the optimal cost. Our
algorithm uses a memory of O(polylog(n)/poly(δ)) bits, which is efficient for large-scale inputs.
More formally, the guarantee of our algorithm is as follows.

Theorem 1. There is a (dynamic) streaming algorithm that with high probability gives a (O(1), δn2)-

approximation for the correlation clustering value and take space O
(

log2(n)
δ5

)
words.

On a high level, our algorithm for Theorem 1 uses the idea to approximate the value of optimal
correlation clustering with sparse-dense decomposition prescribed as in Definition 1. It is shown in
[AW22] that once we can find such a decomposition on G+, we can achieve an O(1)-approximation
by simply putting every sparse vertex into a singleton cluster and gathering each almost-clique Ki

in a separate cluster. In this way, the costs are essentially only induced by 3 types of edges: 1. the
positive edges incident on a sparse vertex (call them sparse-vertex edges); 2. the positive edges that
connect different almost-cliques (call them cross almost-clique edges); and 3. negative edges inside
the almost-cliques. Therefore, an approximation of the number of the aforementioned edges in a
fixed decomposition will result in a good estimation of the cost.

However, since the sparse-dense decomposition is not unique, it is unclear how to estimate the
edges for a fixed decomposition. On the other hand, an algorithm with polylog(n) space is necessarily
oblivious to the decomposition which takes Θ(n) bits to write down. To overcome this problem, we
forgo the strict notion of the sparse-dense decomposition, and utilize the notion of ε-sparse edges
and ε-dense non-edges (of G+) instead. Roughly speaking, the two notions focus on ‘local’ edge
properties as opposed to the decomposition outputs. We will eventually prove that these two notions

8

capture edges that possibly induce costs in every sparse-dense decomposition, and the overestimation
of the cost is still within an O(1) factor.

The rest of this section is structured as follows. In Section 3.1, we first describe self-contained
sketching tools to approximately test whether an edge (or a non-edge) is ε-sparse or ε-dense. Sub-
sequently, in Section 3.2, we show our desired estimators towards the test of the cost. And finally,
we put the two parts together and present the algorithm in Section 3.3.

3.1 Sketching tools for sparse and dense edges

In this section, we present two sketching tools to test edges with certain properties. In particular,
the first one to detect edges whose endpoints have sufficiently disjoint neighborhoods, and the second
one to detect non-edges whose endpoints have overlapping neighborhoods. Formally, we define the
notions of ε-sparse and ε-dense edges/non-edges as follows.

Definition 2. Fix an arbitrary graph G = (V,E) (which is not necessarily labeled and complete)
and a vertex pair (u, v) ∈ G, we say

1. (u, v) is an ε-sparse edge (resp. non-edge) if (u, v) ∈ E (resp. (u, v) 6∈ E) and |N(v)4N(u)| ≥
ε ·max{deg(u),deg(v)}.

2. (u, v) is an ε-dense edge (resp. non-edge) if (u, v) ∈ E (resp. (u, v) 6∈ E) and |N(v)4N(u)| ≤
ε ·max{deg(u),deg(v)}.

Note that the definitions of the ε-sparse and ε-dense edges/non-edges are generic and not re-
stricted to the labeled complete graph (or even the correlation clustering application). Similarly,
the sketching tools we design in this section are also generic: we will use them in the context of
correlation clustering later.

3.1.1 The tool for ε-sparse edges

In this section, we present a tool to test whether an edge is (approximately) ε-sparse with high
probability. We start with defining the goal of our tool as the following problem.

Problem 2. Consider a graph G = (V,E) specified in a (dynamic) stream and let u, v be a pair of
vertices known before the stream. The goal is to

1. Output “Yes” if (u, v) is at least ε-sparse.

2. Output “No” if (u, v) is not ε
8 -sparse.

with high probability assuming the promise that both u and v have degree at least δ · n. i.e.
deg(u) ≥ δ · n, deg(v) ≥ δ · n.

We remark that by our definition of ε-sparse edges, if an edge (u, v) is not ε
8 -sparse, it is not

sparse for any parameters larger than ε
8 . To keep the argument simple, we do not optimize the

leading constant for ε. Our tool is as follows.

Algorithm 1. Tool-spr: Tool to test if (u, v) is ε-sparse

Input: G = (V,E) in a (dynamic) stream and vertices u, v ∈ V before the stream.

Promise: deg+(u) ≥ δn and deg+(v) ≥ δn.

Pre-Processing:

9

1. Sample k := 200
ε2δ · log(n) vertices z1, z2, . . . , zk uniformly at random into set S.

During the Stream:

1. For every i ∈ [k], store a counter Cu(i) for the number of edges between u and zi. Also, store
a counter Cv(i) for the number of edges between v and zi.

2. Store the degrees of u and v.

Post-Processing:

1. Let NS
u,v := |(N(u)4N(v)) ∩ S|.

2. If NS
u,v ≥ ε

4 · |(N(u) ∪N(v)) ∩ S|, output “Yes”; otherwise, output “No”.

We prove the following lemma about Algorithm 1.

Lemma 3.1. Algorithm 1 with parameters ε, δ and input u, v satisfying the promise deg+(u) ≥ δn
and deg+(v) ≥ δn solves Problem 2 with high probability by outputting ‘Yes” if (u, v) is at least
ε-sparse and “No” if (u, v) is not ε

8 -sparse using O(1/ε2δ) words of space.

Let ES denote the set of edges where Cu(i) > 0 or Cv(i) > 0. Let NS
u := |N(u) ∩ S|, NS

v :=
|N(v) ∩ S|, and we know NS

u,v = |(N(u)4N(v)) ∩ S|. Observe that NS
u,v can be easily computed

using the stored information. We start by showing that the space complexity of Tool-spr is small.

Claim 3.2. The space taken by Tool-spr is at most O
(

1
ε2δ

)
words.

Proof. For each i ∈ [k], we store two O(1) bit counters for zi. Hence, the total space taken is at
most O(|S|) = O

(
1
ε2δ

)
words.

We now show the correctness of the tool. Consistent with the desired properties, the algorithm
has the following guarantees for the output:

Claim 3.3. The answers for Tool-spr on a single (valid) edge (u, v) satisfy the following with high
probability:

• If |N(u)4N(v)| ≥ ε ·max{deg(u),deg(v)}, Tool-spr outputs “Yes”.

• If |N(u)4N(v)| ≤ ε
8 ·max{deg(u),deg(v)}, Tool-spr outputs “No”.

The rest of Section 3.1.1 is to prove Claim 3.3. As the first step, we show that since the degrees
of u and v are sufficiently large, a large number of vertices in S should be in N(u) and N(v) with
high probability. Formally, we show that

Claim 3.4. With high probability, we have NS
u ≥ 100

ε2 · log(n) and NS
v ≥ 100

ε2 · log(n).

Proof. Let us analyze the quantity NS
u (the analysis for NS

v is identical). For each vertex i ∈ [k],
define random variable N i

u as the indicator for whether zi is in N(u). Thus, we have NS
u =

∑
iN

i
u

as the total number of vertices in S that are neighbors of u. The assumption, deg(u) ≥ δ · n implies
E
[
N i
u

]
= Pr (zi ∈ N(u)) ≥ δ. Therefore, in expectation, the number of zi’s in N(u) is

E
[
NS
u

]
=
∑
i

E
[
N i
u

]
≥ |S| · δ =

200

ε2
· log(n). (|S| = 200

ε2δ · log(n))

10

Note that NS
u is a summation of independent indicator random variables. Therefore, by the Chernoff

bound(Proposition 2.1), we can get

Pr

(
NS
u ≤

100

ε2
· log(n)

)
= Pr

(
NS
u ≤ (0.5) · E

[
NS
u

])
≤ exp

(
−
E
[
NS
u

]
4 · 3

)
≤ n−10.

To get the desired result, one can apply a union bound over the failure probabilities of the events
that NS

u and NS
v are large enough.

Now, with a sufficiently large neighborhoods in S for both u and v, we are able to prove the
desired outputs by applying Chernoff bounds. Formally, we can obtain the following claims.

Claim 3.5. Conditioning on the event of Claim 3.4, if (u, v) is an ε-sparse edge, Tool-spr answers
“Yes” with high probability.

Proof. Consider an edge (u, v) that is ε-sparse, and a sample zi ∈ N(u)∪N(v). The probability for
zi to be in N(u)4N(v) is:

Pr (zi ∈ N(u)4N(v)|zi ∈ N(u) ∪N(v)) =
|N(u)4N(v)|
|N(u) ∪N(v)|

≥ ε ·max{deg(u),deg(v)}
|N(u) ∪N(v)|

(definition of ε-sparse edge)

≥ ε

2
. (|N(u) ∪N(v)| ≤ 2 ·max{deg(u),deg(v)})

Therefore, taking a vertex sample zi ∈ (N(u) ∪N(v)) ∩ S, we can define N i
u,v as the indicator

random variable for whether zi ∈ (N(u)4N(v)) ∩ S. We have NS
u,v =

∑
iN

i
u,v and its expected

value is:

E
[
NS
u,v

]
=
∑
i

E
[
N i
u,v

]
=

∑
zi∈(N(u)∪N(v))∩S

Pr (zi ∈ N(u)4N(v))

≥ ε

2
· |(N(u) ∪N(v)) ∩ S| .

By the additive Chernoff bound (Proposition 2.2), the probability for NS
u,v to be less than ε

4 ·
|(N(u) ∪N(v)) ∩ S| is at most

Pr
(
NS
u,v ≤

ε

4
· |(N(u) ∪N(v)) ∩ S|

)
≤ exp

(
−ε

2

2
· |(N(u) ∪N(v)) ∩ S|

)
≤ exp

(
−ε

2

2
· 100

ε2
· log(n)

)
(|(N(u) ∪N(v)) ∩ S| ≥ 100

ε2 · log(n) by conditioning on Claim 3.4)

≤ n−10,

which is the desired bound.

11

Claim 3.6. Conditioning on the event of Claim 3.4, if (u, v) is not a ε
8 -sparse edge, Tool-spr

answers “No” with high probability.

Proof. Similar to the proof of Claim 3.5, consider an edge (u, v) that is not an ε
8 -sparse edge, and

a sample zi ∈ N(u) ∪N(v). The probability that zi is in N(u)4N(v) is:

Pr (z ∈ N(u)4N(v)|zi ∈ N(u) ∪N(v)) =
|N(u)4N(v)|
|N(u) ∪N(v)|

≤ ε/8 ·max{deg(u),deg(v)}
|N(u) ∪N(v)|

(definition of ε-sparse edge)

≤ ε

8
. (max{deg(u),deg(v)} ≤ |N(u) ∪N(v)|)

Therefore, taking a vertex sample zi ∈ (N(u) ∪N(v)) ∩ S, we can define N i
u,v as the indicator

random variable for whether zi ∈ (N(u)4N(v)) ∩ S. We have NS
u,v =

∑
iN

i
u,v and its expected

value is:

E
[
NS
u,v

]
=
∑
i

E
[
N i
u,v

]
=

∑
zi∈(N(u)∪N(v))∩S

Pr (zi ∈ N(u)4N(v))

≤ ε

8
· |(N(u) ∪N(v)) ∩ S| .

Again, by the additive form of Chernoff bound, the probability for NS
u,v to be more than ε

4 ·
|(N(u) ∪N(v)) ∩ S| is at most

Pr
(
NS
u,v ≥

ε

4
· |(N(u) ∪N(v)) ∩ S|

)
≤ exp

(
−ε

2

2
· |(N(u) ∪N(v)) ∩ S|

)
≤ exp

(
−ε

2

2
· 100

ε2
· log(n)

)
(|(N(u) ∪N(v)) ∩ S| ≥ 100

ε2 · log(n) conditioning on Claim 3.4)

≤ n−10,

as claimed.

Proof of Claim 3.3. We can now apply a union bound over the events of Claim 3.4, Claim 3.5 and
Claim 3.6, and all the events stated in the claims hold. Therefore, with high probability, Tool-spr
works in the desired way.

Claim 3.3 and Claim 3.2 together prove Lemma 3.1.

3.1.2 The tool for ε-dense non-edges

In this section, we present a tool to test whether a non-edge is (approximately) ε-dense with high
probability. We start with defining the goal of our tool as the following problem.

Problem 3. Consider a graph G = (V,E) specified in a (dynamic) stream and let u, v be a pair of
vertices known before the stream. The goal is to

1. Output “Yes” if (u, v) is at most ε-dense.

12

2. Output “No” if (u, v) is not 8ε-dense.

with high probability assuming the promise that both u and v have degree at least δ ·n i.e. deg(u) ≥
δ · n, deg(v) ≥ δ · n.

Note that contrary to the rules of ε-sparse edges, if a non-edge is not 8ε-dense, it is not dense
for any parameter smaller than 8ε. Our dense tool algorithm is as follows.

Algorithm 2. Tool-dns: Tool to test if non-edge (u, v) is ε-dense

Input: G = (V,E) in a (dynamic) stream and vertices u, v ∈ V before the stream.

Promise: deg+(u) ≥ δn and deg+(v) ≥ δn.

Pre-Processing:

1. Sample k := 200
ε2δ · log(n) vertices z1, z2, . . . , zk uniformly at random into set S.

During the Stream:

1. For every i ∈ [k] store a counter Cu(i) for the number of edges between u and zi. Also, store
a counter Cv(i) for the number of edges between v and zi.

2. Store the degrees of u and v.

Post-Processing:

1. Let NS
u,v := |(N(u)4N(v)) ∩ S|.

2. If NS
u,v ≤ 2ε · |(N(u) ∪N(v)) ∩ S|, output “Yes”; otherwise, output “No”.

We prove the following lemma about Algorithm 2.

Lemma 3.7. Algorithm 2 with parameters ε, δ and input u, v satisfying the promise deg+(u) ≥ δn
and deg+(v) ≥ δn solves Problem 3 with high probability by outputting ‘Yes” if (u, v) is at most
ε-dense and “No” if (u, v) is not 8ε-dense using O(1/ε2δ) words of space.

Let ES denote the set of edges where Cu(i) > 0 or Cv(i) > 0. Let NS
u := |N(u) ∩ S|, NS

v :=
|N(v) ∩ S|, and we know NS

u,v = |(N(u)4N(v)) ∩ S|. It is easy to see that NS
u,v can be computed

using the stored information. We start by showing that the space complexity of Tool-dns is small.

Claim 3.8. The space taken by Tool-dns is at most O
(

1
ε2δ

)
words.

Proof. For each i ∈ [k], we store two O(1) bit counters for zi. Hence, the total space taken is at
most O(|S|) = O

(
1
ε2δ

)
words.

We now show the correctness of Tool-dns in the same manner as Tool-spr. The formal state-
ment is as follows:

Claim 3.9. The answers for Tool-dns on a single (valid) non-edge (u, v) satisfy the following with
high probability:

• If |N(u)4N(v)| ≤ ε ·max{deg(u),deg(v)}, Tool-dns outputs “Yes”.

13

• If |N(u)4N(v)| ≥ 8ε ·max{deg(u),deg(v)}, Tool-dns outputs “No”.

We first note that since the vertex sampling process of Tool-dns is identical to that of Tool-spr,
one can directly apply Claim 3.4 to argue that with high probability the number of neighbors of u
and v intersecting with S is large. We now show that ‘completeness’ and ‘soundness’ of Tool-dns
as the following claims.

Claim 3.10. Conditioning on the event of Claim 3.4, if (u, v) is an ε-dense non-edge, Tool-dns
answers “Yes” with high probability.

Proof. Consider a non-edge (u, v) that is ε-dense and a sample zi ∈ N(u) ∪N(v). The probability
for zi to be in N(u)4N(v) is:

Pr (zi ∈ N(u)4N(v)|zi ∈ N(u) ∪N(v)) =
|N(u)4N(v)|
|N(u) ∪N(v)|

≤ ε ·max{deg(u),deg(v)}
|N(u) ∪N(v)|

(definition of ε-dense non-edge)

≤ ε. (max{deg(u),deg(v)} ≤ |N(u) ∪N(v)|)

Therefore, taking a vertex sample zi ∈ (N(u) ∪N(v)) ∩ S, we can define N i
u,v as the indicator

random variable for whether zi ∈ (N(u)4N(v)) ∩ S. We have NS
u,v =

∑
iN

i
u,v and its expected

value is:

E
[
NS
u,v

]
=
∑
i

E
[
N i
u,v

]
=

∑
zi∈(N(u)∪N(v))∩S

Pr (zi ∈ N(u)4N(v))

≥ ε · |(N(u) ∪N(v)) ∩ S| .

Again, by the additive form of Chernoff bound (Proposition 2.2), the probability for NS
u,v to be more

than 2ε · |(N(u) ∪N(v)) ∩ S| is:

Pr
(
NS
u,v ≥ 2ε · |(N(u) ∪N(v)) ∩ S|

)
≤ exp

(
−2ε2 · |(N(u) ∪N(v)) ∩ S|

)
≤ exp

(
−2ε2 · 100

ε2
· log(n)

)
(|(N(u) ∪N(v)) ∩ S| ≥ 100

ε2 · log(n) conditioning on Claim 3.4)

≤ n−10,

as claimed.

Claim 3.11. Conditioning on the event of Claim 3.4, if (u, v) is not an 8ε-dense non-edge (i.e.
|N(v)4N(u)| ≥ 8ε ·max {deg(u),deg(v)}), Tool-dns answers “No” with high probability.

Proof. Consider a non-edge (u, v) that is not 8ε-dense and a sample zi ∈ N(u) ∪N(v). The proba-
bility for zi to be in N(u)4N(v) is:

Pr (z ∈ N(u)4N(v)) =
|N(u)4N(v)|
|N(u) ∪N(v)|

≥ 8ε ·max{deg(u),deg(v)}
|N(u) ∪N(v)|

(definition of ε-dense non-edge)

≥ 4ε. (|N(u) ∪N(v)| ≤ 2 ·max{deg(u),deg(v)})

14

Therefore, taking a vertex sample zi ∈ (N(u) ∪N(v)) ∩ S, we can define N i
u,v as the indicator

random variable for whether zi ∈ (N(u)4N(v)) ∩ S. We have NS
u,v =

∑
iN

i
u,v and its expected

value is:

E
[
NS
u,v

]
=
∑
i

E
[
N i
u,v

]
=

∑
zi∈(N(u)∪N(v))∩S

Pr (z ∈ N(u)4N(v))

≥ 4ε · |(N(u) ∪N(v)) ∩ S| .

By the additive Chernoff bound (Proposition 2.2), the probability for NS
u,v to be less than 2ε ·

|(N(u) ∪N(v)) ∩ S| is at most

Pr
(
NS
u,v ≤ 2ε · |(N(u) ∪N(v)) ∩ S|

)
≤ exp

(
−8ε2 · |(N(u) ∪N(v)) ∩ S|

)
≤ exp

(
−8ε2 · 100

ε2
· log(n)

)
(|(N(u) ∪N(v)) ∩ S| ≥ 100

ε2 · log(n) conditioning on Claim 3.4)

≤ n−10,

as claimed.

Proof of Claim 3.9. Similar to the proof of Claim 3.3, we can now apply a union bound among the
events of Claim 3.4, Claim 3.10 and Claim 3.11, and conclude that with high probability, Tool-dns
works in the desired way.

Claim 3.9 and Claim 3.8 together prove Lemma 3.7.

3.2 Using ε-sparse Edges and ε-dense Non-edges for Correlation Cluster-
ing

In this section, we discuss how to use the ε-sparse edges and ε-dense non-edges (defined in Defini-
tion 2) in G+ to estimate the correlation clustering cost. In what follows, we use E+

ε-sparse to denote

the set of ε-sparse (positive) edges, and E−ε-dense to denote the set of ε-dense non-edges. Furthermore,
for each vertex v, we use E−ε-dense, v to denote the set of ε-dense non-edges incident on v. We let

m+
ε-sparse :=

∣∣E+
ε-sparse

∣∣ denote the number of ε-sparse edges, m−ε-dense :=
∣∣E−ε-dense

∣∣ denote the num-

ber of ε-dense non-edges and let m−ε-dense,v :=
∣∣∣E−ε-dense, v

∣∣∣ denote the number of ε-dense non-edges

incident on v. Finally, we define m̂−ε-dense as follows.

Definition 3. For each vertex v define

m̂−ε-dense,v := min{m−ε-dense,v,deg+(v)},

where deg+(v) is the number of edges incident on v (in G+). Furthermore, let m̂−ε-dense be defined
as

m̂−ε-dense :=
∑
v∈V

m̂−ε-dense,v.

15

The intuition behind m̂−ε-dense,v is to count the non-edges (of G+) in E−ε-dense, v for at most

deg+(v) times. Our estimator for ε-dense non-edges will estimate m̂−ε-dense instead of m−ε-dense for
the following reason: it suffices to estimate m̂−ε-dense since the number of non-edges inside each
almost-clique is at most deg+(v); on the other hand, if we estimate all ε-dense non-edges, there
could be a very large overhead since the non-edges between almost-cliques are also counted. We
note that if m̂−ε-dense,v = m−ε-dense,v for all v ∈ V then m̂−ε-dense is twice m−ε-dense (since we are double
counting edges). But this is at most a 2-approximation in the worst case, and we are doing this
to make calculations easier. To proceed with the properties of m̂−ε-dense, we first give the following
observations.

Observation 3.12. For any ε, the quantity of m̂−ε-dense is upper-bounded by
∑
v∈V deg+(v).

The proof of Observation 3.12 is trivial since we ‘cap’ the number of non-edges for a vertex with
deg+(v). We now give another observation to characterize the upper and lower bounds of m̂−ε-dense

w.r.t. different sets of non-edges.

Observation 3.13. Consider the quantity m̂−βε-dense and m̂−β′ε-dense for β′ > β, the following prop-
erties are true:

1. m̂−βε-dense ≤ m̂
−
β′ε-dense for β′ > β.

2. Consider any non-edge set E′ that satisfies the following: i) e is at most βε-dense for all e ∈ E′;
ii) the number non-edges in E′ that are incident on u is at most deg+(u) for all u ∈ V (E′).
Then, we have |E′| ≤ m̂−βε-dense.

3. Consider any non-edge set E′′ obtained by the following process: “Go over all vertices in V
one by one and for vertex v add deg+(v) non-edges that are at most β′ε-dense to E′′ (if the
remaining number is less than deg+(v) then add all such remaining non-edges)”. Then, we have
m̂−β′ε-dense ≤ 2 |E′′|.

Proof. The first property of Observation 3.13 is evident since we ‘relax’ the parameter. We have
E−βε-dense ⊆ E

−
β′ε-dense implying m̂−βε-dense ≤ m̂

−
β′ε-dense. For the second property, we know that for a

vertex v, the number of non-edges of E′ incident on v (|E′(v)|) can be at most deg+(v). |E′(v)| can
also trivially be upper bounded by m−βε-dense,v since E′ only contains βε-dense non-edges implying

that |E′(v)| ≤ m̂−βε-dense,v. Thus, we have

|E′| ≤
∑
v∈V
|E′(v)| ≤

∑
v∈V

m̂−βε-dense,v = m̂−βε-dense.

Finally, for the third property, let E′′(v) be the number of non-edges in E′′ incident on v. We
know that |E′′(v)| is exactly deg+(v) except in case there are fewer β′ε-dense non-edges incident on
v then we add all of them. Thus, |E′′(v)| = min(deg+(v),m−β′ε-dense,v) = m̂−β′ε-dense,v implying that

m̂−β′ε-dense =
∑
v∈V

m̂−β′ε-dense,v =
∑
v∈V
|E′′(v)| ≤ 2 |E′′| .

We have an inequality because there might be a β′ε-dense non-edge (u, v) which is in E′′(u) but not
in E′′(v) because of the deg+(v) upper bound (so (u, v) is not counted twice).

We now establish the relationship between the ε-sparse edges, ε-dense non-edges, and the costs
of correlation clustering.

16

Correlation clustering properties of ε-sparse edges and ε-dense non-edges

The key properties for the connections between the ε-sparse edges/ε-dense non-edges and the cor-
relation clustering follow the idea in [AW22]. In particular, we will show that

• If a clustering pays the cost of all the α · ε-sparse edges and sufficiently many β · ε-dense non-
edges for each vertex v (as defined by m̂−βε-dense), where α and β are suitable parameters, the
estimation never drops below OPT;

• If a clustering only pays the cost of edges that are at least α′ · ε-sparse and deg(v) number of
non-edges that are at most β′ · ε-dense for each v (as defined by m̂−β′ε-dense), where α′ and β′

are suitable parameters, the estimation is upper-bounded by O(1) · OPT.

To continue, we remind the readers that we insist the definition of ε-sparse edges and ε-dense non-
edges to be on G+, and use the notion of non-edge and (−) edge as the same meaning.

We prove the following lemmas that establish the connections between the aforementioned set of
edges and the costs of correlation clustering.

Lemma 3.14. Suppose G = (V,E) is any labeled graph and V = Vsparse t K1 t . . . t Kk is an
ε-sparse-dense decomposition of G+ for 0 ≤ ε ≤ 1/360 and η0 ≤ 1/20. Let edge-cost(e) denote the
cost for a fix clustering C pays for edge e ∈ E+ ∪ E−. Then

a) The cost of (+) edges (u, v) ∈ E+ such that u ∈ Vsparse or v ∈ Vsparse is at most 2
η0ε

times of

the number of all the ε-sparse (+) edges. I.e.,∑
(u,v)∈E+

u∈Vsparse or v∈Vsparse

edge-cost((u, v)) ≤ 2

η0 · ε
·m+

η0ε-sparse.

b) The cost of (+) edges (u, v) ∈ E+ such that u ∈ Ki and v ∈ Kj for some i 6= j is at most the
number of all the ε-sparse (+) edges. I.e.,∑

(u,v)∈E+

u∈Ki,v∈Kj ,
i 6=j

edge-cost((u, v)) ≤ m+
ε-sparse.

c) The cost of (−) edges (u, v) ((u, v) ∈ E−) such that u, v ∈ Ki for the same i is at most m̂−4ε-dense.
I.e., ∑

(u,v)∈E−
u,v∈Ki

edge-cost((u, v)) ≤ m̂−4ε-dense.

Proof. We prove the three properties in order.

Proof of properties a) and b). Property a) is true by the definition of sparse vertices. Fix any
sparse vertex v ∈ Vsparse. By definition, v has at least η0 · ε · deg+(v) neighbors u1, u2, . . . such that
(ui, v) is an η0ε-sparse (+) edge. This implies that m+

η0ε-sparse,v ≥ η0 · ε · deg+(v). Thus, we have∑
(u,v)∈E+

u∈Vsparse or v∈Vsparse

edge-cost((u, v)) ≤
∑

v∈Vsparse

deg+(v) ≤
∑
v∈V

1

η0 · ε
·m+

η0ε-sparse,v =
2

η0 · ε
·m+

η0ε-sparse

17

since edge-cost((u, v)) = 1 for all the edges in the sum. Note that the first inequality is because we
may double count edges between two sparse vertices.

To prove property b), it suffices to show that every edge (u, v) ∈ E+ such that u ∈ Ki and v ∈ Kj

for some i 6= j is an ε-sparse edge. Fix u ∈ Ki and v ∈ Kj . We have:∣∣N+(u)−N+(v)
∣∣ ≥ ∣∣(N+(u) ∩Ki)− (N+(v) ∩Ki)

∣∣
≥ |Ki| − ε ·∆(Ki)− ε ·∆(Kj)

≥ ∆(Ki)− ε ·∆(Ki)− ε ·∆(Ki)− ε ·∆(Kj).

Similarly, we have |N+(v)−N+(u)| ≥ ∆(Kj)− 2ε ·∆(Kj)− ε ·∆(Ki). Therefore, we have:∣∣N+(u)4N+(v)
∣∣ =

∣∣N+(u)−N+(v)
∣∣+
∣∣N+(v)−N+(u)

∣∣
≥ ∆(Ki)− 3ε ·∆(Ki) + ∆(Kj)− 3ε ·∆(Kj)

≥ (1− 3ε) ·max {deg(u),deg(v)}
≥ ε ·max {deg(u),deg(v)}

where the last inequality is by the choice of ε. Therefore, (u, v) must be an ε-sparse edge.

Proof of property c). To prove property c), we start with proving ∆(Ki) ≤ deg(u)/(1−2ε) using
Definition 1. We have deg(u) ≥ |Ki| − ε∆(Ki) ≥ (1− ε)∆(Ki)− ε∆(Ki).

We first show that every non-edge vertex pair (u, v) such that u, v ∈ Ki for the same i is at
most 4ε-dense. To see this, note that for each vertex u ∈ Ki, the number of its non-neighbors in Ki

is at most ε · ∆(Ki) ≤ ε
1−2ε · max {deg(u),deg(v)} ≤ 2ε · max {deg(u),deg(v)} (using Definition 1

and the choice of ε ≤ 1/4). Therefore, number of vertices in N+(u) − N+(v) is at most 2ε ·
max {deg(u),deg(v)}. The same bound holds for N+(v)−N+(u) implying that (u, v) is 4ε-dense.

We now show that the number of non-edges in Ki incident on u is at most deg+(v). All non-edges
in Ki are counted towards the cost. The number of non-edges in Ki that are incident on u is at
most ε ·∆(Ki) ≤ ε

1−2ε · deg+(v) ≤ deg+(v).
We now conclude the proof of property c). Let E′ be the set of non-edges within the almost

cliques Ki for i ∈ [k]. We know that every non-edge in E′ is at most 4ε-dense. Fix a vertex u
in some almost-clique Ki. By the above arguments we know that the number of non-edges of E′

incident of u is at most deg+(u). Using Observation 3.13 with β = 4, the total cost of the non-edges
inside almost-cliques |E′| is upper bounded by m̂−4ε-dense.

We now upper bound the cost of m+
ε-sparse and m̂−ε-dense by a function of OPT using a charging

argument. Formally, we present the following lemma:

Lemma 3.15. Suppose G = (V,E) is any labeled graph and OPT be the optimal correlation clus-
tering cost, and let β, ε be such that 0 < β ≤ 1

2ε , there is

m+
βε-sparse ≤

2

βε
· OPT;

m̂−βε-dense ≤ 8 · OPT.

The proof of Lemma 3.15 is considerably technical, but the idea is straightforward following the
charging arguments in [AW22, CLM+21]. As such, we postpone it to Appendix A.

18

3.3 The Sparse-dense Decomposition-based Algorithm

We are now ready to give the final algorithm for Problem 1 and prove Theorem 1. We will use the
tools in Section 3.1 to estimate the number of ε-sparse edges and ε-dense non-edges. We know by
Lemmas 3.14 and 3.15 that suitable scalings of the number of ε-sparse edges and ε-dense non-edges
when added together is at least OPT and at most O(1) ·OPT. Thus estimating these costs to within
±δ · n2 should give us the approximation we want. We start by showing an estimator for m+

ε-sparse.

Algorithm 3. Estimate m+
ε-sparse

Input: G = (V,E) in a (dynamic) stream.

Pre-Processing:

1. Sample k = 16 logn
δ2 pairs of vertices (u1, v1), (u2, v2), . . . , (uk, vk).

During the Stream:

1. For all i ∈ [k], store the degrees of ui and vi and store a counter for the number of edges
between ui and vi.

2. Also, store Tool-spr(ui, vi) with parameters ε and δ/4 for all i ∈ [k].

Post-Processing:

1. Let i = 1 to k.

2. For pair (ui, vi) if degree of ui or vi is less than δn/4 then set Xi = 0.

3. If (ui, vi) is an edge and if Tool-spr(ui, vi) returns ε-sparse then set Xi = 1 otherwise Xi = 0.

4. After going over all edges, output Zsp = δ · n2/2 +
(n2)
k

∑k
i=1Xi.

We prove the following lemma about Algorithm 3.

Lemma 3.16. Algorithm 3 with parameters ε and δ returns a value Zsp that is at least m+
ε-sparse

and at most m+
ε/8-sparse + δn2 with high probability and uses O(log n/ε2δ3) words of space.

A vertex v is said to have a low degree if deg(v) < δ ·n/4. An edge is said to be low-degree if one
of its endpoints is a low-degree vertex. There are very few low-degree edges thus, their contribution
to the cost is small and can be ignored.

Claim 3.17. The total cost of low-degree edges is at most δn2/4.

Proof. A low-degree vertex has at most δn/4 edges. Also, there are at most n low-degree vertices
thus there are at most δn2/4 low-degree edges implying that their cost is at most δn2/4.

We first bound the space of Algorithm 3.

Claim 3.18. Algorithm 3 uses O(log n/ε2δ3) words of space.

Proof. Tool-spr(ui, vi) takes O(1/ε2δ) words of space. The space taken for storing the degrees and
edges are lower-order terms. Repeating k times gives us a space-bound of O(log n/ε2δ3) words.

19

We now show that Algorithm 3 gives us an estimate of m+
ε-sparse.

Claim 3.19. The output Zsp of Algorithm 3 is at least m+
ε-sparse and at most m+

ε/8-sparse + δn2 with

high probability.

Proof. Let X = 1
k

∑k
i=1Xi. We first lower bound X by m+

ε-sparse. We have

E [Xi] = Pr (Xi = 1) ≥
m+
ε-sparse − δn2/4(

n
2

) = µL

since Xi is 1 for all edges that are not low-degree and are ε-sparse. We know E [X] = E [Xi] by
linearity of expectation. By Hoeffding’s inequality (Proposition 2.2) we have:

Pr (X < µL − δ/2) ≤ Pr (X < E [X]− δ/2) ≤ exp
(
−2k · δ2/4

)
≤ n−8.

Thus, with high probability X ≥ µL − δ/2 implying(
n

2

)
·X ≥ m+

ε-sparse − δn2/2.

The calculation is analogous when we want to prove the upper bound on X. We have

E [Xi] = Pr (Xi = 1) ≤
m+
ε/8-sparse(

n
2

) = µH

since Xi is 0 for all edges that are not ε/8-sparse. By Hoeffding’s inequality (Proposition 2.2) we
have:

Pr (X > µH + δ/2) ≤ Pr (X > E [X] + δ/2) ≤ exp
(
−2k · δ2/4

)
≤ n−8.

Thus, with high probability X ≤ µH + δ/2 implying(
n

2

)
·X ≤ m+

ε/8-sparse + δn2/2.

Therefore, with high probability:

m+
ε-sparse ≤ Zsp ≤ m+

ε/8-sparse + δn2.

Finally, the bounds above are true with high probability and the tools succeed with high proba-
bility, thus a union bound gives us success with high probability.

Claim 3.18 and Claim 3.19 together prove Lemma 3.16.
We now show how to estimate the value of m̂−ε-dense. We start by estimating m̂−ε-dense,v (Defini-

tion 3). Consider the following algorithm:

Algorithm 4. Estimate m̂−ε-dense,v

Input: G = (V,E) in a (dynamic) stream and a vertex v ∈ V .

Promise: deg+(v) ≥ δn.

Pre-Processing:

20

1. Sample k =
(

16 logn
δ2

)
vertices u1, u2, . . . , uk uniformly at random and independently.

During the Stream:

1. Store deg+(v).

2. Store a counter for the number of edges between ui and v for all i ∈ [k].

3. Finally, store Tool-dns(ui, v) with parameters ε and δ for all i ∈ [k].

Post-Processing:

1. Let i = 1 to k.

2. If (ui, v) is a non-edge and if Tool-dns(ui, v) returns ε-dense then Yi = 1.

3. After going over all sampled vertices, return Zv = min(deg+(v), nk
∑k
i=1 Yi) + δn/2.

We prove the following lemma about Algorithm 4.

Lemma 3.20. Algorithm 4 with parameters ε and δ returns a value Zv that is at least m̂−ε-dense,v
and at most m̂−8ε-dense,v + δn with high probability and uses O(log n/ε2δ3) words of space.

We first bound the space of Algorithm 4.

Claim 3.21. Algorithm 4 uses O(log n/ε2δ3) words of space.

Proof. Tool-spr(ui, vi) takes O(1/ε2δ) words of space. The space taken for storing the degrees and
edges are lower-order terms. Repeating k times gives us a space-bound of O(log n/ε2δ3) words.

We now show that Algorithm 4 gives us an estimate of m̂−ε-dense,v.

Claim 3.22. The output Zv of Algorithm 4 is at least m̂−ε-dense,v and at most m̂−8ε-dense,v + δn with
high probability.

Proof. Let Y = 1
k

∑k
i=1 Yi. We first lower bound Y by m−ε-dense,v. We have

E [Yi] = Pr (Yi = 1) ≥
m−ε-dense,v

n
= µL

since Yi is 1 for all edges that ε-dense. We know E [Y] = E [Yi] by linearity of expectation. By
Hoeffding’s inequality (Proposition 2.2) we have:

Pr (Y < µL − δ/2) ≤ Pr (Y < E [Y]− δ/2) ≤ exp
(
−2k · δ2/4

)
≤ n−8.

Thus, with high probability Y ≥ µL − δ/2 implying

n · Y ≥ m−ε-dense,v − δn/2.

The calculation is analogous when we want to prove the upper bound on Y . We have

E [Yi] = Pr (Yi = 1) ≤
m−8ε-dense,v

n
= µH

21

since Yi is 0 for all edges that are not 8ε-dense. By Hoeffding’s inequality (Proposition 2.2) we have:

Pr (Y > µH + δ/2) ≤ Pr (Y > E [Y] + δ/2) ≤ exp
(
−2k · δ2/4

)
≤ n−8.

Thus, with high probability Y ≤ µH + δ/2 implying

n · Y ≤ m−8ε-dense,v + δn/2.

The output Zv is δn/2 plus the minimum of n · Y and deg+(v). So we have:

Zv = min(deg+(v), nY) + δn/2

≥ min(deg+(v),m−ε-dense,v − δn/2) + δn/2

≥ min(deg+(v),m−ε-dense,v)− δn/2 + δn/2

= m̂−ε-dense,v.

Similarly, we have Zv ≤ m̂−8ε-dense,v + δn. Therefore, with high probability:

m̂−ε-dense ≤ Zv ≤ m̂
−
8ε-dense + δn.

Finally, the bounds above are true with high probability and the tools succeed with high probability,
thus a union bound gives us success with high probability.

Claim 3.21 and Claim 3.22 together prove Lemma 3.20.
We are now ready to estimate m̂−ε-dense as defined in Definition 3.

Algorithm 5. Estimate m̂−ε-dense

Input: G = (V,E) in a (dynamic) stream.

Pre-Processing:

1. Sample k = 64 logn
δ2 vertices v1, v2, . . . , vk uniformly at random and independently.

During the Stream:

1. For all i ∈ [k] store deg(vi) and let Yi be the estimate of m̂−ε-dense,vi
using Algorithm 4 with

parameters ε and δ/4.

Post-Processing:

1. For i ∈ [k], if deg+(vi) < δn/4 then set Yi = δn/4.

2. Output Zden = n
k

∑k
i=1 Yi + δ · n2/2.

We prove the following lemma about Algorithm 5.

Lemma 3.23. Algorithm 5 with parameters ε and δ returns a value Zden that is at least m̂−ε-dense
and at most m̂−8ε-dense + δn2 with high probability and uses O(log2 n/ε2δ5) words of space.

We first bound the space of Algorithm 5.

22

Claim 3.24. Algorithm 5 uses O(log2 n/ε2δ5) words of space.

Proof. Algorithm 4 takes O(log n/ε2δ3) words of space. The space taken for storing the degrees is
a lower-order term. Repeating k times gives us a space-bound of O(log2 n/ε2δ5) words.

We make the following claim on the bounds of Zden.

Claim 3.25. The output Zden of Algorithm 5 is at least m̂−ε-dense and at most m̂−8ε-dense + δn2 with
high probability.

Proof. We know by Lemma 3.20 that with high probability we have m̂−ε-dense,vi
≤ Yi ≤ m̂−8ε-dense,vi

+
δn/4 for all i ∈ [k] (since we use parameter δ/4 in Algorithm 5). This holds for i ∈ [k] with
deg+(vi) < δn/4 because Yi = δn/4 ≥ deg+(vi) ≥ m̂−ε-dense,vi

and Yi = δn/4 ≤ m̂−8ε-dense,vi
+ δn/4.

We condition on the high probability event of Lemma 3.20 for all k copies used in Algorithm 5.
We first show the lower bound on Y . To do this we lower bound the expectation of Yi. We have

E [Yi] ≥ 1
n

∑n
j=1 m̂

−
ε-dense,j = 1

n · m̂
−
ε-dense = µL since vi is uniform over all vertices. Scaling Y and

applying Hoeffding’s inequality (Proposition 2.2) gives us:

Pr (Y/n < µL/n− δ/2) ≤ Pr (Y/n < E [Y/n]− δ/2) ≤ exp
(
−2k · δ2/4

)
≤ n−8.

Thus, with high probability Y ≥ µL − δn/2 implying

n · Y ≥ m̂−ε-dense − δn
2/2.

The calculation is analogous when we want to prove the upper bound on Y . We know that
Yi ≤ m̂−8ε-dense,vi

+ δn/4 for all i ∈ [k]. We have E [Yi] ≤ 1
n · m̂

−
8ε-dense + δn/4 = µH since vi is

uniform over all vertices. Thus, E [Y] = E [Yi] by linearity of expectation. By Hoeffding’s inequality
(Proposition 2.2) we have:

Pr (Y/n > µH/n+ δ/4) ≤ Pr (Y/n > E [Y/n]− δ/4) ≤ exp
(
−2k · δ2/42

)
≤ n−8.

Thus, with high probability Y/n ≤ µH/n+ δ/4 implying

n · Y ≥ m̂−8ε-dense + δn2/2.

We conclude that Zden = n · Y + δn2/2 has the following bounds with high probability.

m̂−ε-dense ≤ Zden ≤ m̂
−
8ε-dense + δn2.

Finally, the bounds above are true with high probability and the tools succeed with high probability,
thus a union bound gives us success with high probability.

Claim 3.24 and Claim 3.25 together prove Lemma 3.23.

Finalizing the proof of Theorem 1. We are given a parameter δ as input and we want the
additive error to be at most δn2. We fix ε = 1/360, η0 = 1/20 and δ′ = δ · (2 + 2

η0ε
)−1.

Run Algorithm 3 with parameters ε and δ′, and let the output be Zεsp. Also, run Algorithm 3
with parameters η0ε and δ′, and let the output be Zη0εsp . Lemma 3.16 and Lemma 3.14 imply that
Zεsp + (2/η0ε) · Zη0εsp is an upper bound on the cost of the positive edges:

Zεsp + (2/η0ε) · Zη0εsp ≥ m+
ε-sparse + (2/η0ε) ·m+

η0ε-sparse

≥
∑

(u,v)∈E+

u∈Vsparse or v∈Vsparse

edge-cost((u, v)) +
∑

(u,v)∈E+

u∈Ki,v∈Kj ,
i 6=j

edge-cost((u, v)).

23

Also, by Lemma 3.16 and Lemma 3.15 we have:

Zεsp + (2/η0ε) · Zη0εsp ≤
(
m+
ε/8-sparse + δ′n2

)
+ (2/η0ε) ·

(
m+
η0ε/8-sparse + δ′n2

)
≤ 16

ε
OPT +

2

η0ε
· 16

η0ε
OPT + (1 + 2/η0ε) ·

(
δ′n2

)
.

Run Algorithm 5 with parameters 4ε and δ′, and let the output be Zden. Lemma 3.23 and
Lemma 3.14 imply that Zden is an upper bound on the cost of the negative edges:

Zden ≥ m̂−4ε-dense ≥
∑

(u,v)∈E−
u,v∈Ki

edge-cost((u, v)).

Also, by Lemma 3.23 and Lemma 3.15 we have:

Zden ≤ m̂−32ε-dense + δ′n2 ≤ 8OPT + δ′n2.

We can now easily approximate the correlation clustering cost using Lemma 3.15. We have:

ZCC := Zεsp + (2/η0ε) · Zη0εsp + Zden ≥ m+
ε-sparse + (2/η0ε) ·m+

η0ε-sparse + m̂−4ε-dense ≥ OPT

and

ZCC = Zεsp + (2/η0ε) · Zη0εsp + Zden

≤ 16

ε
OPT +

32

η2
0ε

2
OPT + (1 + 2/η0ε) · δ′n2 + 8OPT + δ′n2

=

(
32

η2
0ε

2
+

16

ε
+ 8

)
· OPT +

(
2 +

2

η0ε

)
δ′n2.

By replacing δ′ = δ · (2 + 2
η0ε

)−1 we get an additive error of at most δn2. Substituting ε = 1/360

and η0 = 1/20 gives us:
OPT ≤ ZCC ≤ O(1) · OPT + δn2.

The space taken is O(log n/δ3) for both copies of Algorithm 3 and O(log2 n/δ5) for Algorithm 5
giving a total space of O(log2 n/δ5) words. This proves Theorem 1.

4 An Algorithm based on Pivot

In this section, we give our second streaming algorithm which is a (3+γ, δn2)-approximation for the
correlation clustering value for any choice of δ and γ < 1/2. The algorithm works in O(polylog(n))
space as long as δ ≥ Ω(1

log log(n)). Consider the following formal statement:

Theorem 2. There is a (dynamic) streaming algorithm that with high probability gives a (3+γ, δn2)-

approximation for the correlation clustering value and takes space O
(

27/6δ·log2 n
γ·δ5

)
words.

Our algorithm in Theorem 2 is inspired by [BGK13], and it requires new sketching tools (on G+)
that is different from the ones we used in Section 3. These tools estimate the number of non-edges
within or the number of edges going out of the neighborhood of a vertex (u) outside of the (+)
neighborhood of a known set of vertices (S). In other words, fix a graph G = (V,E), a vertex u,
and a set S, we want to estimate the number of non-edges within or the number of edges going out
of N [u]−N [S]. We again use the generic form to present the sketching tools and do not specify (+)
edges. The formal definitions can be given as follows.

24

Definition 4. A non-edge (x, y) is within N [u] −N [S] iff: i) x 6∈ N [S] and ii) y 6∈ N [S] and iii)
x ∈ N [u] and y ∈ N [u].

Definition 5. An edge (x, y) is going out of N [u]−N [S] iff i) x 6∈ N [S] and ii) y 6∈ N [S] and iii)
x ∈ N [u] or y ∈ N [u] but not both.

Definition 6. An edge (x, y) is unclustered w.r.t. S iff i) x 6∈ N [S] and ii) y 6∈ N [S].

We also define mne(u, S) as the number of non-edges within N [u]−N [S], me(u, S) as the number
of edges going out of N [u]−N [S], and mu(S) as the number of unclustered edges w.r.t. S. We
write mne,me, and mu when u and S are clear from context. Consider the following lemma about
estimating the number of non-edges within N [u]−N [S], the edges going out of N [u]−N [S], and
the unclustered edges with respect to S:

Lemma 4.1. There exist streaming algorithms called NE-Tool, E-Tool, and U-Tool that given u and
S before the stream, respectively compute with high probability i). the number of non-edges within;
ii). the number of edges going out of N [u]−N [S]; and iii). the number of edges with unclustered
w.r.t. S with an overestimation of at most δn2 and take space O(1/δ2) words.

In the next sections, we show in detail the novel sketching tools NE-Tool and E-Tool that are
predecessor-aware, i.e. given a fixed set of vertices S as the predecessors (in the MIS of the algorithm
of Theorem 2), they can estimate the desired edges outside the neighborhood of S.

4.1 A Predecessor-aware Non-Edge Sketching Tool

In this section, we describe a tool to estimate the number of non-edges within the neighborhood of
a vertex outside a set of vertices (mne(u, S)). Consider the formal description of the problem:

Problem 4. The input graph G = (V,E) is given in a (possibly dynamic) stream. The input also
contains a vertex u and a set S given before the stream. The goal is to estimate the number of
non-edges within N [u]−N [S] (mne(u, S)) with an overestimation of at most δn2.

Lemma 4.2. There is a (dynamic) streaming algorithm that solves Problem 4 with high probability
using O(1/δ2) words of space.

We now show the streaming algorithm of Lemma 4.2:

Algorithm 6. NE-Tool

Input: G = (V,E) in a (dynamic) stream and u ∈ V and S ⊆ V before the stream.

Pre-Processing:

1. Sample k = 10 logn
δ2 pairs of vertices xi, yi uniformly at random

During the Stream:

1. For pair (xi, yi), store the following information:

(a) A counter C(i) for the number of edges between xi and yi.

(b) A counter Cx(i, S) for the number of edges between xi and S and a counter Cy(i, S) for
the number of edges between yi and S.

(c) A counter Cx(i, u) for the number of edges between xi and u and a counter Cy(i, u) for
the number of edges between yi and u.

25

Post-Processing:

1. For pair i set Zi = 1 iff (xi, yi) is a non-edge within N [u]−N [S] and set Zi = 0 otherwise.

2. Let Z̃ =
(
n
2

)
· 1
k · (

∑
i Zi)

3. Output Z̃ +
(
n
2

)
δ

It is easy to see that the stored information is enough to check whether (xi, yi) is a non-edge
within N [u]−N [S]. We now show that Z̃ is a good approximation for mne.

Claim 4.3. With high probability, we have mne −
(
n
2

)
δ ≤ Z̃ ≤ mne +

(
n
2

)
δ.

Proof. Zi is a random variable since the choice of xi and yi is random. xi, yi could be any of(
n
2

)
pairs but Zi is 1 only for the mne pairs (non-edges within N [u] − N [S]). Thus, E [Zi] =

Pr (Zi = 1) = mne/
(
n
2

)
. Let Z̄ = 1

k · (
∑
i Zi). Thus, E

[
Z̄
]

= mne/
(
n
2

)
. Using Hoeffding’s inequality

(Proposition 2.2) we get:

Pr
(∣∣Z̄ − E

[
Z̄
]∣∣ ≥ δ) ≤ 2 exp

(
−2δ2k

)
≤ 2 exp (−2 · 10 log n)

≤ n−10.

So with high probability, we have ∣∣Z̄ − E
[
Z̄
]∣∣ ≤ δ

mne(
n
2

) − δ ≤Z̄ ≤ mne(
n
2

) + δ

mne −
(
n

2

)
δ ≤Z̃ ≤ mne +

(
n

2

)
δ

proving the claim.

The output of Algorithm 6 is Z̃ +
(
n
2

)
δ implying mne ≤ Z̃ +

(
n
2

)
δ ≤ mne + δn2 using Claim 4.3.

This proves the estimation guarantee of NE-Tool in Lemma 4.2. We now show that the space used
is O(1/δ2) words.

Claim 4.4. The space used by Algorithm 6 is O(1/δ2) words.

Proof. In one iteration, we store a constant number of counters which takes a space of O(1) bits
implying that the space used by the algorithm over all iterations is O(1/δ2) words.

This proves the space-bound of NE-Tool in Lemma 4.2.

4.2 A Predecessor-aware Edge Sketching Tool

In this section, we describe a tool to estimate the number of edges going out of the neighborhood of
a vertex outside a set of vertices (me(u, S)). Consider the formal description of the problem:

Problem 5. The input graph G = (V,E) is given in a (possibly dynamic) stream. The input also
contains a vertex u and a set S given before the stream. The goal is to estimate the number of edges
going out of N [u]−N [S] (me(u, S)) with an overestimation of at most δn2.

26

Lemma 4.5. There is a (dynamic) streaming algorithm that solves Problem 5 with high probability
using O(1/δ2) words of space.

We now show the streaming algorithm of Lemma 4.5:

Algorithm 7. E-Tool

Input: G = (V,E) in a (dynamic) stream and u ∈ V and S ⊆ V before the stream.

Pre-Processing:

1. Sample k = 10 logn
δ2 pairs of vertices xi, yi at random

During the Stream:

1. For pair (xi, yi), store the following information:

(a) A counter C(i) for the number of edges between xi and yi.

(b) A counter Cx(i, S) for the number of edges between xi and S and a counter Cy(i, S) for
the number of edges between yi and S.

(c) A counter Cx(i, u) for the number of edges between xi and u and a counter Cy(i, u) for
the number of edges between yi and u.

Post-Processing:

1. For pair i set Zi = 1 iff (xi, yi) is an edge going out of N [u]−N [S] and set Zi = 0 otherwise.

2. Let Z̃ =
(
n
2

)
· 1
k · (

∑
i Zi)

3. Output Z̃ +
(
n
2

)
δ

It is easy to see that the stored information is enough to check whether (xi, yi) is an edge going
out of N [u]−N [S].

We first show that Z̃ is a good approximation for me.

Claim 4.6. With high probability, we have me −
(
n
2

)
δ ≤ Z̃ ≤ me +

(
n
2

)
δ.

Proof. Zi is a random variable since the choice of xi and yi is random. xi, yi could be any of
(
n
2

)
pairs but Zi is 1 only for the me pairs (edges going out of N [u]−N [S]). Thus, E [Zi] = Pr (Zi = 1) =
me/

(
n
2

)
. Let Z̄ = 1

k · (
∑
i Zi). Thus, E

[
Z̄
]

= me/
(
n
2

)
. Using Hoeffding’s inequality (Proposition 2.2)

we get:

Pr
(∣∣Z̄ − E

[
Z̄
]∣∣ ≥ δ) ≤ 2 exp

(
−2δ2k

)
≤ 2 exp (−2 · 10 log n)

≤ n−10.

27

So with high probability, we have ∣∣Z̄ − E
[
Z̄
]∣∣ ≤ δ

me(
n
2

) − δ ≤Z̄ ≤ me(
n
2

) + δ

me −
(
n

2

)
δ ≤Z̃ ≤ me +

(
n

2

)
δ

proving the claim.

The output of Algorithm 7 is Z̃ +
(
n
2

)
δ implying me ≤ Z̃ +

(
n
2

)
δ ≤ me + δn2 using Claim 4.6.

This proves the estimation guarantee of E-Tool in Lemma 4.5. We now show that the space used is
O(1/δ2) words.

Claim 4.7. The space used by Algorithm 7 is O(1/δ2) words.

Proof. In one iteration, we store a constant number of counters which takes a space of O(1) bits
implying that the space used by the algorithm over all iterations is O(1/δ2) words.

This proves the space-bound of E-Tool in Lemma 4.5.

4.3 Unclustered edge Sketching Tool

In this section, we describe a tool to estimate the number of edges incident on unclustered vertices
given a set S of cluster centers. A cluster contains the cluster center u and its neighboring vertices
N(u). Thus, vertices that are not in N [S] are called unclustered vertices and edges incident on those
vertices are called unclustered edges. Consider the formal description of the problem:

Problem 6. The input graph G = (V,E) is given in a (possibly dynamic) stream. The input also
contains a set of vertices S, given before the stream, that represent cluster centers. The goal is to
estimate the number of unclustered edges mu i.e. edges that have both endpoints outside N [S] with
an overestimation of at most δn2.

Lemma 4.8. There is a (dynamic) streaming algorithm that solves Problem 6 with high probability
using O(1/δ2) words of space.

We now show the streaming algorithm of Lemma 4.8:

Algorithm 8. U-Tool

Input: G = (V,E) in a (dynamic) stream and S ⊆ V before the stream.

Pre-Processing:

1. Sample k = 10 logn
δ2 pairs of vertices xi, yi at random

During the Stream:

1. For pair (xi, yi), store the following information:

(a) A counter C(i) for the number of edges between xi and yi.

(b) A counter Cx(i, S) for the number of edges between xi and S and a counter Cy(i, S) for
the number of edges between yi and S.

28

Post-Processing:

1. For pair i set Zi = 1 iff (xi, yi) is an unclustered edge and set Zi = 0 otherwise.

2. Let Z̃ =
(
n
2

)
· 1
k · (

∑
i Zi)

3. Output Z̃ +
(
n
2

)
δ

It is easy to see that the stored information is enough to check whether (xi, yi) is an unclustered
edge. First check if (xi, yi) is an edge C(i) > 0. If xi§ or yi ∈ S then (xi, yi) is not an unclustered
edge. Finally, if at least one of Cx(i, S), Cy(i, S) is 0 (xi, yi) is an unclustered edge. We first show

that Z̃ is a good approximation for mu.

Claim 4.9. With high probability, we have mu −
(
n
2

)
δ ≤ Z̃ ≤ mu +

(
n
2

)
δ.

Proof. Zi is a random variable since the choice of xi and yi is random. xi, yi could be any of
(
n
2

)
pairs but Zi is 1 only for the mu pairs (unclustered edges). Thus, E [Zi] = Pr (Zi = 1) = mu/

(
n
2

)
.

Let Z̄ = 1
k · (

∑
i Zi). Thus, E

[
Z̄
]

= mu/
(
n
2

)
. Using Hoeffding’s inequality (Proposition 2.2) we get:

Pr
(∣∣Z̄ − E

[
Z̄
]∣∣ ≥ δ) ≤ 2 exp

(
−2δ2k

)
≤ 2 exp (−2 · 10 log n)

≤ n−10.

So with high probability, we have ∣∣Z̄ − E
[
Z̄
]∣∣ ≤ δ

mu(
n
2

) − δ ≤Z̄ ≤ mu(
n
2

) + δ

mu −
(
n

2

)
δ ≤Z̃ ≤ mu +

(
n

2

)
δ

proving the claim.

The output of Algorithm 8 is Z̃ +
(
n
2

)
δ implying mu ≤ Z̃ +

(
n
2

)
δ ≤ mu + δn2 using Claim 4.9.

This proves the estimation guarantee of U-Tool in Lemma 4.8. We now show that the space used is
O(1/δ2) words.

Claim 4.10. The space used by Algorithm 8 is O(1/δ2) words.

Proof. In one iteration, we store a constant number of counters which takes a space of O(1) bits
implying that the space used by the algorithm over all iterations is O(1/δ2) words.

This proves the space-bound of U-Tool in Lemma 4.8. Lemmas 4.2, 4.5 and 4.8 together prove
Lemma 4.1.

4.4 The Algorithm based on Pivot

In this section, we will show the (3 + γ, δn2)-approximation algorithm for the correlation clustering
value, where γ < 1/2. We will do so by simulating the Local Cluster algorithm from [BGK13]. The
Local Cluster algorithm samples 1/δ random vertices in a set U and computes the greedy maximal

29

independent set (MIS) M of U to get the cluster centers p1, p2, . . . , pt. The clusters generated then
are N+[pi] − ∪i−1

j=1N
+[pj] and all the remaining vertices (called unclustered vertices) are clustered

in their own singleton cluster. [BGK13] proved that the expected cost of this clustering is at most
3 · OPT + δ

2n
2. More formally, they showed the following:

Proposition 4.11 ([BGK13]). The expected cost of the clustering for Local Cluster is at most
3 · OPT + δ

2n
2.

Using Proposition 4.11 we first give a (3, δn2) approximation in expectation.

Theorem 3. There is a (dynamic) streaming algorithm that in expectation gives a (3, δn2)-approximation

for the correlation clustering value and takes space O
(

21/δ·logn
δ5

)
words.

We simulate the Local Cluster algorithm in graph streams. During the stream, we store sketches
that help us compute the cost of non-edges within clusters and edges going out of clusters in post-
processing. The unclustered vertices are put in their own singleton cluster and we use another
sketch to estimate the number of edges incident on the unclustered vertices. Consider the formal
description of the algorithm:

Algorithm 9. Simulation of the Local Cluster Algorithm

Input: G = (V,E+ ∪ E−) in a (dynamic) stream

Output: (3, δn2)-approximation to the correlation clustering value in expectation

Pre-Processing:

1. Sample a set U of 1/δ random vertices

2. Let π be a random permutation of the vertices in U

During the Stream:

1. Store (+) all edges between vertices of U

2. For all u ∈ U and S ⊆ U compute NE-Tool(u, S), E-Tool(u, S), U-Tool(S) with parameter
δ2/6 using the G+ subgraph.

Post-Processing:

1. Compute the greedy MIS M := p1, p2, . . . , pt of U in the order of π (using edges stored between
vertices of U).

2. S0 = ∅. Z̃ = 0.

3. For i = 1 to t:

• Z̃ = Z̃ + NE-Tool(pi, Si−1) + E-Tool(pi, Si−1).

• Si := Si−1 ∪ {pi}

4. Output Z := Z̃ + U-Tool(M)

30

Note that for any pi ∈ M , all the neighbors of pi that are not in N+[Si−1] will belong to the
cluster of pi. Thus, if a vertex is a neighbor of two vertices in M then it will belong to the cluster of
the one that appears earlier in the order π. We first show that if our tools could estimate without
any error we would get exactly the clustering value of the Local Cluster algorithm.

Claim 4.12. The clustering value of the Local Cluster algorithm is equal to mu+
∑
imne(pi, Si−1)+

me(pi, Si−1).

Proof. The correlation clustering value is the sum of the number of non-edges within clusters and
the number of edges across clusters. We first argue that the number of non-edges within clusters is
exactly

∑
imne(pi, Si−1).

mne(u, S) is the number of non-edges within N+[u] − N+[S]. We will show that a non-edge
within a cluster is counted in exactly one term in the summation. Consider any non-edge (x, y)
within a cluster. Let (x, y) be in the cluster of pi. This means that x and y are not neighbors of
p1, p2, . . . , pi−1 because if they were then they would be in a previous cluster and not the cluster of
pi. So (x, y) is not counted in mne(p`, S`−1) for ` < i. Also, it is counted in mne(pi, Si−1) since x
and y are neighbors of pi but not of p1, p2, . . . , pi−1. Finally, (x, y) is not counted in mne(p`, S`−1)
for ` > i because x, y are in N+[pi] ⊆ N+[S`]. Also, mne only counts non-edges within clusters
implying that the number of non-edges within clusters is exactly

∑
imne(pi, Si−1).

The number of edges across clusters can be divided into two disjoint categories. The number of
edges going out of clusters of pi’s and the unclustered edges i.e. the edges between two unclustered
vertices. mu is the number of unclustered edges. Using an almost identical argument to the above
we can show that the number of edges going out of clusters of pi’s is exactly

∑
ime(pi, Si−1).

Therefore, the sum of these gives the exact correlation clustering value of the Local Cluster
algorithm.

We now show that Algorithm 9 is a (3, δn2) approximation in expectation.

Claim 4.13. The output Z of Algorithm 9 is at least OPT with high probability and is at most
3OPT + δn2 in expectation.

Proof. Using Claim 4.12 we know that if the tools worked with no error, Algorithm 9 would give
the exact clustering cost of Local Cluster. Also, we know that the tools do not underestimate
and overestimate by δ2n2/6 with high probability (Lemma 4.1) so we can condition on the high
probability events in Lemmas 4.2, 4.5 and 4.8. We first note that Z is at least OPT because of the
above conditioning and the fact that the clustering cost of Local Cluster is at least OPT. Using
Proposition 4.11 we know that the expected cost of the clustering when choosing 1

δ random pivots is

at most 3OPT+ δ
2n

2. Therefore, the clustering cost of Algorithm 9 is between OPT and 3OPT+ δ
2n

2

plus the overestimate.
We now calculate the overestimate. We use parameter δ2/6 for the tools thus the additive error in

each tool is at most δ2n2/6. There are at most 1/δ pivots implying a total additive error of at most
δn2/3 over all the copies of NE-Tool and E-Tool. U-Tool has an error of at most δ2n2/6 implying
that the overall error is at most δn2/2 + δn2/3 + δ2n2/6 ≤ δn2 giving a (3, δn2) approximation in
expectation.

We note that we condition on the high probability events for all copies of the tools and union
bound over the failure probabilities. Thus, for the overall failure probability to be small we need
21/δ ≤ poly(n).

We now show the space-bound of Algorithm 9.

Claim 4.14. The space of Algorithm 9 is O
(

21/δ·logn
δ5

)
words.

31

Proof. Each copy of NE-Tool, E-Tool and U-Tool with parameter δ2/6 takes O(log n/δ4) words of
space, and we compute the tools for all v ∈ U and S ⊆ U . Thus, the space used is O(21/δ · log n/δ5)
words. Storing the (+) edges between vertices in U takes space at most 1/δ2 words which is a lower
order term.

Claim 4.13 and Claim 4.14 together prove Theorem 3. We now prove Theorem 2. We run
Algorithm 9 60 logn

γ times and let Zmin be the minimum cost over all iterations. Zmin is a (3 +

γ, 7
6δn

2)-approximation with high probability.

Claim 4.15. OPT ≤ Zmin ≤ (3 + γ)OPT + 7
6δn

2 with high probability.

Proof. Using Claim 4.13 we know that the clustering cost of Algorithm 9 is at least OPT with high
probability, so we condition on this event for all parallel repetitions implying that OPT ≤ Zmin.
By Claim 4.13 we also know that the clustering cost of Algorithm 9 is at most 3OPT + δn2 in
expectation. Thus, we can run this algorithm 60 logn

γ times in parallel and take the minimum
cost as the best estimate. Using Markov’s inequality, the probability that the true cost exceeds
(1 + γ/3) · (3OPT + δn2) ≤ (3 + γ)OPT + (1 + 1/6)δn2 is at most 1/(1 + γ/3). We can boost the
probability of success by repeating 60 logn

γ times:

Pr (failure) ≤
(

1

1 + γ/3

) 60 logn
γ

≤ exp (−γ/6)
60 logn
γ (1 + x ≥ exp(x/2) for x ∈ [0, 1])

= n−10.

Therefore, Zmin is at most (3 + γ)OPT + 7
6δn

2 with high probability.

Thus, we get a (3 + γ, 7
6δn

2)-approximation with high probability. We now prove Theorem 2.

Proof of Theorem 2. Each parallel repetition of Algorithm 9 takes O
(

21/δ·logn
δ5

)
words of space.

Repeating O(logn
γ) times and re-scaling δ by a factor of 7

6 gives a total space-bound of O
(

27/6δ·log2 n
γ·δ5

)
words.

5 A Lower Bound for O(n2−ε) Additive error
In this section, we show that if we only allow additive error, any streaming algorithm with poly-
logarithm memory cannot cross an error barrier of Ω(n2−ε) for any constant ε. Here, and throughout,
we will refer to this lower bound as the almost-quadratic lower bound. The lower bound is weaker
than the linear lower bound of Section 6 in terms of the multiplicative factor since it only works
for c = 1. However, it is much stronger in the additive sense: the upper bounds obtained by our
algorithms are O(n2), and the almost-quadratic lower bound matches this term up to an O(nε)
factor – this provides a strong justification of the additive error in our algorithms.

The formal statement of the almost-quadratic lower bound is as follows.

Theorem 4. There exists a constant C, such that any single-pass streaming algorithm that estimates
the optimal value OPT of correlation clustering by a C ·n2−ε purely additive error (i.e., an estimated
value that is at most

(
OPT + C · n2−ε)) with probability at least 99

100 has to use a memory of Ω (nε)
bits, even on labeled complete graphs.

32

Note that Theorem 4 does not require the stream to be dynamic, which is in contrast to our
upper bound results that work for dynamic streams. We obtain the almost-quadratic lower bound
by a new reduction from the INDEX problem. On the high level, the instance we construct ‘hides’
an Ω(n2−ε) gap between the yes and no cases inside a case-invariant Ω

(
n2
)

cost. The reduction can
be viewed as a more involved variant of the space lower bound for the exact correlation clustering
in a very recent work [AAD+23]. In a nutshell, we modify their construction to ‘boost’ the gap
between yes and no cases, and apply a new trick to separate the values of clustering4.

We now start the formal reduction proof with the following variant of INDEX.

Problem 7. Consider a two-player communication problem, where Alice is given a matrix M ∈
{0, 1} and Bob is given i?, j? ∼ [N]× [N]. Alice sends a message to Bob, and Bob outputs the value
of M [i?, j?].

It is not hard to prove that Problem 7 requires Ω(N2) bits of communication for Bob to output
the correct M [i?, j?] with probability at least 99

100 . We shall now construct an instance that creates
the desired gap from Problem 7.

5.1 A construction of correlation clustering structural

To continue, we introduce a subroutine for Alice and Bob to construct vertices with a 2-clustering
structure, such that for the optimal clustering, Alice’s edge will only affect the assignment of one
fixed group of vertices. Crucially, the optimal and second-best clustering assignments of the instance
only differ on this special group of vertices.

As mentioned, we use a simpler construction in [AAD+23] as our prototype. We start introducing
the formal construction with the hard-coded inputs. We insist that the input parameter N is odd
in our construction.

Structural hard-coded inputs: An input-invariate sub-graph

1. Both player create 3C vertices for each index i ∈ [N], where C is a parameter.

2. Connect each collection of C vertices with (+) edges, i.e. make them cliques of size C.

3. For each index i, put the 3 corresponding collections into 3 groups: L, R(1), and R(2). We
let L(i) denote the collection of vertices correspond to (i) in L, and define R(1)(i) and R(2)(i)
analogously.

4. Create 100 · CN vertices and name this new group V . Divide V into two equal-size partitions
of size 50 · CN each, and name them V↑ and V↓.

5. Add (+) edges between all vertex pairs inside V↑×V↑ and inside V↓×V↓; add (−) edges between
vertex pairs of V↑ × V↓.

With the structural hard-coded inputs, we can give our complete construction as follows.

Dense-Two-Clusters: A family of graphs from INDEX

1. Add the structural hard-coded inputs, prescribed as below, to obtain L, R(1), R(2), V↑, V↓, and

4Both ideas are somehow discussed separately by [AAD+23], but it was far from clear whether the two strategies
can work together to obtain the desired lower bound – this is a main technical work in our proof.

33

the corresponding edges.

2. Alice edges:

(a) For each index (i, j), Alice adds 2 · C2 edges as follows:

• If M [i, j] = 0, Alice adds (+) edges between every vertex pairs in L(i) and R(1)(j),
and (−) edges between every vertex pairs in L(i) and R(2)(j).

• Otherwise, if M [i, j] = 1, Alice adds (+) edges between every vertex pairs in L(i) and
R(2)(j), and (−) edges between every vertex pairs in L(i) and R(1)(j).

3. Bob edges:

(a) For every index other than i∗, Bob divides the vertices in L to L↑ and L↓, such that

• All vertices inside L↑ and inside L↓ are connected with (+) edges; all vertex pairs in
L↑ × L↓ are connected with (−) edges.

• Vertices in L↑ are connected to all vertices in V↑ with (+) edges and to all vertices in
V↓ with (−) edges.

• Vertices in L↓ are connected to all vertices in V↓ with (+) edges and to all vertices in
V↑ with (−) edges.

(b) For every index other than j∗, Bob divides the vertices in R(1) to R
(1)
↑ and R

(1)
↓ and R(2)

to R
(1)
↑ and R

(2)
↓ with the same lexigraphical order.

(c) Bob connects all vertices in R(1)(j∗) with (+) edges to V↓, R
(1)
↓ , and R

(2)
↓ , and (−) edges

to V↑, R
(1)
↑ , and R

(2)
↑ .

(d) Bob connects all vertices in R(2)(j∗) with (+) edges to V↑, R
(1)
↑ and R

(2)
↑ , and (−) edges

to V↓, R
(1)
↓ , R

(2)
↓ .

(e) Bob connects vertices in L(i∗) with (+) edges to every vertices other than R(1) and R(2).

(f) Bob connect (−) edges between all vertex pairs in (L↑×R(1)
↓), (L↑×R(2)

↓), (L↓×R(1)
↑), and

(L↓ ×R(2)
↑); furthermore, Bob connects (+) edges between all vertex pairs in (L↑ ×R(1)

↑),

(L↑ ×R(2)
↑), (L↓ ×R(1)

↓), and (L↓ ×R(2)
↓).

It is straightforward to verify that the graph constructed by Alice and Bob is complete and every
edge has a label of either (+) or (−). In what follows, we prove that Dense-Two-Clusters has a
neat structure that the optimal clustering always contains exactly 2 clusters, and the optimal and
second-optimal clusterings differ only by the cluster of L(i∗). More concretely, we have the following
lemma.

Lemma 5.1. The optimal clustering of Dense-Two-Clusters contains two clusters:

• The first cluster (the up cluster) contains the vertices of L↑, V↑, R
(1)
↑ , R

(2)
↑ (including R(2)(j∗));

• The second cluster (the down cluster) contains the vertices of L↓, V↓, R
(1)
↓ , R

(2)
↓ (including

R(1)(j∗)).

34

Furthermore, the remaining vertex L(i∗) is in the up cluster if M [i∗, j∗] = 1, and is in the down clus-
ter if M [i∗, j∗] = 0. The second-optimal clustering differs from the optimal clustering by switching
L(i∗) to the other cluster, and the cost differs by 2.

Lemma 5.1 was originally proved by [AAD+23]. We give a self-contained proof in our paper, and
our proof strategy turns out to be technically more applicable for our purposes in later steps. To
begin with, we define the notion of up vertices and down vertices by their edge connectivity to V↑
as follows.

Definition 7 (Up and down vertices). Fix a graph G = (L ∪ R(1) ∪ R2 ∪ V,E) sampled from
Dense-Two-Clusters, we say a vertex v 6= L(i∗) is an up vertex if and only if |E+(v, V↑)| ≥ |E−(v, V↑)|,
i.e. among the vertices in V↑, v has more (+) edges in V↑ than (−) edges. We say v is a down vertex
otherwise.

Note that the above definition also covers R(1)(j?) as a down vertex and R(2)(j?) as an up vertex.
Intuitively, a vertex v becomes an up vertex if it is densely connected to the ‘up side’ with (+) edges,
and vice versa. The up and down vertices have very ‘local’ properties: it has many (+) edges to one
side and many (−) edges to the other. More formally, we characterize this property as the following
condition.

Condition 1. We say two groups of vertices, namely the up and down vertices, satisfy the Cond∗

condition if there exists a global constant N such that:

1. For up-up and down-down vertex pairs, there are

(a) Every up vertex has no (−) edges and at least 50N (+) edges connecting to vertices in

R
(1)
↑ , R

(2)
↑ , V↑, and at most N (−) edges connecting other up vertices.

(b) Every down vertex has no (−) edges and at least 50N (+) edges connecting to vertices in

R
(1)
↓ , R

(2)
↓ , V↓, and at most N (−) edges connecting other down vertices.

2. For up-down vertex pairs, there are

(a) Every up vertex has no (+) edges and at least 50N (−) edges connecting to vertices in

R
(1)
↓ , R

(2)
↓ , V↓, and at most N (+) edges connecting other down vertices.

(b) Every down vertex has no (+) edges and at least 50N (−) edges connecting to vertices in

R
(1)
↑ , R

(2)
↑ , V↑ and at most N (+) edges connecting other up vertices.

We observe that the graphs sampled from Dense-Two-Clusters satisfy the Cond∗.

Observation 5.2. Cond∗ in Condition 1 holds in any graph sampled from Dense-Two-Clusters.

We now use Condition 1 and Observation 5.2 to characterize the structure of the optimal cluster-
ing. In particular, we first prove that with Condition 1, there can be at most one cluster consisting
of only up vertices and similarly for down vertices.

Claim 5.3. Assuming Cond∗ in Condition 1, there can be at most one cluster consisting of only up
vertices (similarly for down vertices).

Proof. Assume towards a contradiction that there are clusters C1 and C2 consisting of only up
vertices. Create a new clustering by merging C1 and C2 into a new cluster C. We observe that
merging into C does not change the cost induced by the edges with an endpoint in V −C. By line 1
of Condition 1, by merging C1 and C2 into C, the cost of the new clustering strictly decreases. Thus,
the original clustering was not optimal giving a contradiction. Therefore, there can be at most one
cluster consisting of only up vertices. The proof for down vertices is analogous.

35

Using Claim 5.3 together with Condition 1, we can show that any optimal clustering cannot
contain put up and down vertices into the same cluster.

Claim 5.4. Assuming Cond∗ in Condition 1, a cluster in the optimal clustering cannot contain both
up vertices and down vertices.

Proof. We first prove the statement for vertices among V ∪ R(1) ∪ R(2) and vertices among L,
respectively. Assume towards a contradiction that there is a cluster C that contains both up vertices
and down vertices among V ∪R(1)∪R(2). Create a new clustering by splitting C into clusters C↑−L
containing the up vertices and C↓ − L containing the down vertices. We observe that splitting C
does not change the cost induced by the edges with an endpoint in V −C. By line 2 of Condition 1,
there is a (−) edge from every vertex in C↑ − L to C↓ − L (for vertices in V ∪R(1) ∪R(2)), and the
cost of the new clustering strictly decreases. Thus, the original clustering was not optimal giving
a contradiction. Therefore, a cluster in the optimal clustering cannot contain both up vertices and
down vertices for vertices in V ∪R(1) ∪R(2). With the same argument as above, we can prove that
the statement holds for vertices among L.

We now proceed to prove the statement for all vertices. By Claim 5.3 and the result on vertices

among V ∪ R(1) ∪ R(2), the vertices among V↑ ∪ R(1)
↑ ∪ R

(2)
↑ must be clustered together, and we let

this cluster be C↑ − L. We assume towards a contradiction that there is a cluster C that contains
both up vertices and down vertices among L↓ ∪C↑−L. As such, we can split C into clusters C↑−L
and vertices in L↓ without affecting the cost induced by the edges with an endpoint in V − C. Fix
a vertex v ∈ L↓, although there might be at most N (+) edges between v and C↑ − L, there are
at least 50N (−) edges that leads to a strict cost decrement by this split. As such, we can obtain
a contradiction, which proves that all up and down vertices cannot stay in the same cluster in the
optimal clustering.

Using Claim 5.3, Claim 5.4 together with Observation 5.2, we can conclude that the optimal
clustering for Dense-Two-Clusters has at most three clusters; one containing L(i∗) (Ci∗), another

containing only up vertices (C↑ := L↑ ∪ V↑ ∪R(1)
↑ ∪R

(2)
↑) and the last containing only down vertices

(C↓ := L↑ ∪ V↓ ∪ R(1)
↓ ∪ R

(2)
↓). We will now use the edges of L(i∗) to conclude that L(i∗) must be

clustered together with either C↑ or C↓.

Claim 5.5. There are exactly 2 clusters in the optimal clustering, and vertex L(i∗) must be clustered
either with C↑ or C↓.

Proof. We first argue that the number of clusters is > 1. Consider that there is just one cluster
C. Remove all the up vertices and move them to a new cluster C↑. The decrease in the cost is
at least (50N)2 because of the non-edges between V↑ and V↓. The increase in the cost is at most
103N because of the edges between i∗ and the up vertices. There is a net decrease in cost and thus,
the number of clusters is > 1. We now assume towards a contradiction that there are 3 clusters
Ci∗ , C↑, C↓.

We first consider the case where Ci∗ contains only vertex i∗. Move i∗ to C↑. The increase in the
cost is at most N due to the non-edges to some up vertices. But the decrease in the cost is at least
50N because of edges to V↑. Thus, we get a contradiction in this case.

We now consider the case where Ci∗ also contains vertices other than i∗. Let there be u up
vertices and d down vertices in Ci∗ and wlog assume u > 0. Move the up vertices in Ci∗ to C↑. The
decrease in cost is u ·d+u · |C↑| where the first term is from the non-edges between the up and down
vertices in Ci∗ and the second term is from the edges between the up vertices in Ci∗ and C↑. The
increase in cost is at most u which is only due to edges between i∗ and the up vertices. So there the
net decrease in cost is u · d+ u · |C↑| − u > 0 (even when d = 0).

36

Finalizing the proof of Lemma 5.1. By Claim 5.3, Claim 5.4, and Claim 5.5, there are exactly
two clusters C↑ (containing all up vertices) and C↓ (containing all down vertices) and i∗ is a part
of one of these depending on its edges to j∗↑ and j∗↓ . As such, we can observe L(i∗) joins C↑ if it

has (+) edge to R
(2)
↑ (j∗) and (−) edge to R

(1)
↑ (j∗), and vice versa. The two scenarios corresponds

exactly to M [i∗, j∗] = 1 and M [i∗, j∗] = 0. Finally, note that if we move the assignment of L(i∗),
the cost increases exactly 2, while the cost increases by at least 48N if we move any other vertex.
As such, the second-best clustering is to keep C↑ and C↓, and switch L(i∗) to the other cluster.

5.2 Multi-copy correlation clustering structure

We now slightly tweak our original model by introducing ‘duplicates’ for each vertex in the Dense-Two-Clusters
distribution. In particular, for each vertex in L, R(1), R(2) and V , we make it as a group of K vertices
for some K ≥ 1 which we specify later. In other works, for each L(i) (resp. R(1)(i), R(2)(i), V (i))
in the Dense-Two-Clusters family, we have a group L(i) (resp. R(1)(i), R(2)(i), V(i)) of K vertices.
Inside each group of vertices, we connect the vertices as a clique of (+) edges; between different
groups, we add K2 edges with the same label as the single labeled edge in Dense-Two-Clusters. We
will eventually argue that the best clustering of such a family remains a 2-cluster structure, and the
cost gap between the best and the second-best clustering becomes O(K).

We now give a formal description of the augmented family of instances as follows.

Duplicate-Dense-Two-Clusters(K): A family of graphs from INDEX

1. Alice and Bob samples a graph G′ from Dense-Two-Clusters.

2. For each vertex L(i), the players make a group L(i) of K copies of vertices. In the same manner,
they make each vertex in R(1)(i), R(2)(i) and V (i) to groups R(1)(i), R(2)(i) and V(i) with K
vertices in each group.

3. Fix any group A and two vertices (u, v) ∈ A, add a (+) edge between u and v.

4. For any two groups A and B such that u ∈ A and v ∈ B, add an edge whose label is consistent
with the edge between the two vertices in G′ that induces the groups.

Let G be the resulting group sampled from Duplicate-Dense-Two-Clusters(K), we now prove that
the new family of instances retains the two-cluster structure. To proceed formally, we introduce new
notation of L, R(1), V, R(2) to denote the set of the vertices of all groups induced by the vertices

in L, R(1), V , and R(2). In the same manner, we use L↑, R(1)
↑ , V↑, R(2)

↑ (resp. L↓, R(1)
↓ , V↓, R(2)

↓)

to denote the vertices in the groups induced by L↑, V↑, R
(1)
↑ , R

(2)
↑ (resp. L↓, V↓, R

(1)
↓ , R

(2)
↓). The

structure of the optimal clustering can be characterized as follows.

Lemma 5.6. The optimal clustering of Duplicate-Dense-Two-Clusters(K) for any integer K ≥ 1
contains two clusters:

• The first cluster (the up cluster) contains the vertices of L↑,V↑,R(1)
↑ ,R(2)

↑ (including R(2)(j∗));

• The second cluster (the down cluster) contains the vertices of L↓,V↓,R(1)
↓ ,R(2)

↓ (including

R(1)(j∗)).

Furthermore, all of the remaining vertices of L(i∗) is in the up cluster if M [i∗, j∗] = 1, and is in the
down cluster if M [i∗, j∗] = 0.

37

Towards the proof of Lemma 5.6, we first show that the optimal clustering for Duplicate-Dense-Two-Clusters(K)

follows the same two-cluster structure on (L↑,V↑,R(1)
↑ ,R(2)

↑) and (L↓,V↓,R(1)
↓ ,R(2)

↓) as happened
for Dense-Two-Clusters.

Claim 5.7. In the optimal clustering, there exists a cluster C1 that contains all vertices in L↑,V↑,R(1)
↑ ,R(2)

↑

and a cluster C2 that contains all vertices in L↓,V↓,R(1)
↓ ,R(2)

↓ .

Proof. The claim is a natural generalization of Claim 5.3 and Claim 5.4. Similar to Definition 7, we
define the up vertices as the vertices (except from the group L(i∗)) whose (+) edges to L↑ is more
than the (−) edges. Note that by copying each vertex K times and adding edges with the rules in
Lines 3 and 4, we never add (+) edges between the up vertices and down vertices among the vertices
in R(1), R(2), and V. Furthermore, for each vertex u in L(i) for any i 6= i∗, suppose w.log. that the
vertex is an up vertex, we add at most K ·N (+) edges to other down vertices and at most K ·N
(−) edges to other up vertices. As such, Cond∗ in Condition 1 holds with global constant K ·N . As
such, we can apply Claim 5.3 and Claim 5.4 to obtain the desired claim.

We now need to handle the clustering of the vertices among the group of L(i∗), R(1)(j∗) and
R(2)(j∗). We show that the vertices should be clustered together rather than being split apart,
which is sufficient to prove Lemma 5.6 by further applying Claim 5.5.

Claim 5.8. In the optimal clustering of Duplicate-Dense-Two-Clusters(K) for any integer K ≥ 1,
all vertices inside L(i∗) are in the same cluster.

Proof. Assume towards a contradiction that there are at least 2 clusters with vertices from L(i∗)
(in the optimal clustering). Consider clusters C1 and C2 with multiple vertices u1, u2, · · · , um from
L(i∗). Let I1 be all vertices from L(i∗) in cluster C1 and let R1 be the remaining vertices in C1.
Similarly, define I2 and R2 as the vertices in cluster C2 that are inside and outside L(i∗). We observe
that if we move vertices between C1 and C2 the cost to vertices with endpoint in V − (C1 ∪ C2)
remains unchanged. Consider any vertex u in L(i∗) and calculate the cost c1 of clustering it in C1

with respect to R1, R2, i.e. the number of (+) edges to R2 plus the number of (−) edges to R1.
Similarly calculate the cost c2 of clustering it in C2 with respect to R1, R2. Suppose w.log. that
c1 ≤ c2, we can create a new clustering by moving all copies of i∗ in C2 to C1. Since c1 ≤ c2 the
cost to R1 ∪R2 can only decrease (for each u of L(i∗) moved). Also, the cost induced by the vertex
pairs u1 ∈ I1 and u2 ∈ I2 for any u1 and u2 goes to 0. Thus, the clustering cost strictly decreases,
which forms a contradiction to the optimality of the clustering.

Finalizing the proof of Lemma 5.6. By Claim 5.7, there are exactly two clusters C↑ (containing
all up vertices) and C↓ (containing all down vertices) and all vertices in L(i∗) are part of one of the
clusters depending on its edges to j∗↑ and j∗↓ . As such, we can observe vertices of L(i∗) join C↑ if it

has (+) edge to R
(2)
↑ (j∗) and (−) edge to R

(1)
↑ (j∗), and vice versa. As such the optimal clustering

structure as prescribed in Lemma 5.6 is obtained.

5.3 Cost Testing Lower Bound – A Variate of the Hard Instance

So far, we have not discussed the separation of costs in the yes and no instances. Indeed, one can
observe that although the optimal clustering changes in a regulated manner depending on the values
of M [i?, j?], the cost of the optimal clusters are the same. We now apply a trick to ‘tweak’ the
construction in Section 5.1 such that the clustering structure remains except vertices in the special
group (i?, j?). Such a trick was first employed in [AAD+23]; however, the trick was only applied to a
single vertex in their case, and the analysis is much more straightforward. Our technical contribution
here is to show that the trick applies even with multiple copies of vertices in each group.

38

We now introduce the value-testing trick as an algorithm that given an oracle for correlation
clustering with o(n2−Ω(1)) (purely) additive error, returns the correct answer of INDEX:

CC-INDEX-ALG: An algorithm for INDEX given Tool-CC(ε) – an oracle that returns
the optimal cost of correlation clustering with (1, 1

106 · n2−ε) error

1. Alice and Bob construct a graph G from Duplicate-Dense-Two-Clusters(K) with K = N
1
ε−1 for

arbitrarily small ε > 0.

2. The players run two subroutines:

(a) In the first subroutine, the players run Tool-CC(ε) on graph G, and obtain cost1.

(b) In the second subroutine, the players run Tool-CC(ε) on graph G′ as follows:

i. Arbitrarily pick 10CN vertices from V↓ on G, and name the set as V ′↓.
ii. For each vertex u ∈ L(i?), change the (+) edge between u and V ′↓ to a (−) edge (note

that Bob exclusively controls all edges incident on V so he can do this).

iii. The players obtain the cost cost2.

3. If cost1 − cost2 ≥ 10K2N − 1
25K

2, return M [i?, j?] = 1; otherwise, return M [i?, j?] = 0.

We will eventually show that CC-INDEX-ALG succeeds with the same probability as Tool-CC(ε),
which is sufficient to establish the reduction and prove Theorem 4. To this end, we will prove the
optimal clustering structure for both subroutines in both cases, and show that the cost gap is greater
than 10K2N − 1

25K
2 if and only if M [i?, j?] = 1. We start with observing the basic clustering

structure is preserved in G′ for the second subroutine.

Observation 5.9. In the optimal clustering for both G and G′, there exists a cluster C1 that contains

all vertices in L↑,V↑,R(1)
↑ ,R(2)

↑ and a cluster C2 that contains all vertices in L↓,V↓,R(1)
↓ ,R(2)

↓ , and
the vertices in L(i?) are in the same clusters.

Proof. The property holds for G simply by Claim 5.7 and Claim 5.8. Furthermore, only edges
incident on L(i?) change in G′, which does not affect the correctness of Claim 5.7. Finally, we never
used any property for edges with endpoint(s) outside L(i?), R(1)(j?) and R(2)(j?) in the proof of
Claim 5.8; as such, the property in Claim 5.8 still holds.

Based on Observation 5.9, we now establish the optimal clustering for the graph G′ in the second
subroutine for both the yes and no cases. We can then analyze the cost difference therein.

Lemma 5.10. The optimal clustering of G′ for M [i?, j?] = 0 contains two clusters:

• The first cluster (the up cluster) contains the vertices of L↑,V↑,R(1)
↑ ,R(2)

↑ (including R(2)(j∗))
and L(i∗);

• The second cluster (the down cluster) contains the vertices of L↓,V↓,R(1)
↓ ,R(2)

↓ (including

R(1)(j∗)).

Furthermore, the optimal clustering cost of G′ (cost2) decreases by
(
10K2N − 2K2

)
in comparison

to the optimal clustering cost of G (cost1).

39

Proof. We first prove the clustering structure. By Observation 5.9, the only undecided clustering is
the cluster that contains L(i?). There are three possible cases: L(i?) forms an individual cluster,

L(i?) is clustered with C1 = L↑∪V↑∪R(1)
↑ ∪R

(2)
↑ , and L(i?) is clustered with C1 = L↓∪V↓∪R(1)

↓ ∪R
(2)
↓ .

The only part that induces variate costs between the 3 clustering schemes are the edges with exactly
one endpoint in L(i?). As such, it suffices to choose the optimal scheme that minimizes the costs
induced by these edges.

If the vertices of L(i?) form an individual cluster, there are at least 90KN (+) edges from every
vertex in L(i?) to V. As such, the cost induced by edges with exactly one endpoint in L(i?) is at
least 90K2N . On the other hand, if L(i?) joins the cluster C2, each vertex in L(i?) has at least
50KN (+) edges to C1 and 10KN (−) edges in C2, which induces a cost of at least 60K2N . Finally,
if L(i?) joins the cluster C1, it has at most 40KN (+) between V↓. Furthermore, it has at most
3KN other edges that can possibly induce any cost. This makes the induced cost to be at most
43K2N . As such, clearly the cluster that contains L(i?) should join cluster C1.

We now analyze the optimal cost of correlation clustering on G′ compared to cost1 on G. Since
only the clustering of L(i?) changes, it suffices to analyze the cost difference induced by the edges
with exactly one endpoint in L(i?). We first observe that the costs induced by the following set of
edges do not change between cost1 and cost2:

1. Edges between L(i?) and L(j) for any j 6= i?;

2. Edges between L(i?) and R(1) −R(1)(j?);

3. Edges between L(i?) and R(2) −R(2)(j?).

As such, we only analyze the edges between L(i?) and V, L(i?) and R(1)(j?), L(i?) and R(2)(j?). In
the optimal clustering of G, the edges between L(i?) and V always induce a cost of 50K2N . On the
other hand, in the optimal clustering of G′, the edges between L(i?) and V induce a cost of 40K2N
since there are 10K2N (−) edges that do not induce cost. As such, among the edges between L(i?)
and V, the cost2 is 10K2N smaller than cost1.

We now look at the edges between L(i?) and R(1)(j?),R(2)(j?). Note that in the optimal
clustering of G, these edges induce 0 all (+) edges are in the same cluster and all (−) edges are in
different ones. On the other hand, for the optimal clustering on G′, each set of edges will induce
a cost of K2. Therefore, among the edges between L(i?) and R(1)(j?),R(2)(j?), the cost2 is 2K2

larger than cost1.
Summing up the above terms gives us the conclusion that the cost difference between cost2 and

cost1 is 10K2N − 2K2.

From Lemma 5.10, we can see that the clustering cost reduction comes from the (−) edges
between L(i?) and V ′↓. However, since the optimal clustering of G′ ‘switches’ the partition of L(i?),
it further incurs some increment of the cost. In contrast, we will show next that in the yes case, i.e.
M [i?, j?] = 1, the optimal clustering remains the same as in G. As such, the optimal clustering does
not pay the extra cost induced by the ‘switching’ of vertices in L(i?). The formal statement of the
above intuition is as follows.

Lemma 5.11. The optimal clustering of G′ for M [i?, j?] = 1 is the same as the optimal clustering
of G, i.e.:

• The first cluster (the up cluster) contains the vertices of L↑,V↑,R(1)
↑ ,R(2)

↑ (including R(2)(j∗))
and L(i∗);

40

• The second cluster (the down cluster) contains the vertices of L↓,V↓,R(1)
↓ ,R(2)

↓ (including

R(1)(j∗)).

Furthermore, the optimal clustering cost of G′ (cost2) decreases by 10K2N in comparison to the
optimal clustering cost of G (cost1).

Proof. We define C1 and C2 in the same way as in Lemma 5.10, and the clustering structure proof
follows from exactly the same argument as the proof of Lemma 5.10. We omit the details to avoid
excessive repetition.

We now analyze the optimal cost of correlation clustering on G′ compared to cost1 on G. Again,
the same as the analysis of Lemma 5.10, we only need to analyze the edges between L(i?) and V,
L(i?) and R(1)(j?), L(i?) and R(2)(j?).

Among the edges between L(i?) and V, we can obtain that cost2 is 10K2N smaller than cost1
with exactly the same argument as in Lemma 5.10. Furthermore, for the edges between L(i?) and
R(1)(j?),R(2)(j?), note that the cluster of L(i?) does not change between the optimal clusterings of
G and G′, as such, the cost induced by these edges stays 0.

Summing up the above terms gives us the conclusion that the cost difference between cost2 and
cost1 is 10K2N .

Finalizing the proof of Theorem 4. If the oracle for correlation clustering has additive error
of 1

106 · n2−ε and no multiplicative error, the cost estimation errors in both subroutines are at most
1032

106 ·K2−2εN2−2ε ≤ 1
50K

2. As such, if M [i?, j?] = 0, the estimation gap between cost1 and cost2 is
at most 10K2N − 24

25K
2 < 10K2N − 1

25K
2. On the other hand, if M [i?, j?] = 1, the estimation gap

between cost1 and cost2 is at least 10K2N − 1
25K

2, as desired.
Finally, the communication complexity of the problem is Ω(N2), and we have n = 103KN =

O(N1/ε). As such, any such Tool-CC(ε) must have a communication complexity of Ω(n2ε) bits,
which implies the desired Ω(nε) space lower bound for the streaming algorithms.

6 A Lower Bound for O(n) Additive error

In this section, we show that any dynamic streaming algorithm that gets a (c, εn)-approximation
for c < 1.2 and O(n) additive error needs Ω (

√
n) bits of space. Here, and throughout, we will call

this lower bound the linear lower bound. Formally, we have:

Theorem 5. Let c ∈ [1, 6
5) and ε ∈ (0, 6

5 − c). Any single-pass streaming algorithm that estimates
the optimal value OPT of correlation clustering by a (c, εn)-approximation (i.e., an estimated value
that is at most (c · OPT + ε · n)) with probability at least 99

100 has to use a memory of Ω (
√
n) bits,

even on labeled (complete) graphs.

Similar to the case in Theorem 4, Theorem 5 does not require the stream to be dynamic. Com-
pared with the almost-quadratic lower bound we show in Section 5, the lower bound in Theorem 5 is
weaker in the additive sense. However, it allows the multiplicative approximation of the algorithm
to be > 1, while the lower bound in Section 5 only rules out algorithms with purely additive errors.

6.1 Gap Cycle Counting with Odd Cycles

Our lower bound uses the celebrated machinery from Boolean Hidden Hypermatching (BHH) and
Gap Cycle Counting (GCC) pioneered by [VY11]. The Gap Cycle Counting (GCC) lower bound
states that for any algorithm to distinguish whether a graph consists of cycles with length 2t or

cycles with length 4t for some t ≥ 2, a memory of Ω
(
n1− 1

t

)
bits is necessary. On a high level, our

plan is to show that for graphs similar to the ones prescribed in the GCC problem, the values of

41

correlation clustering are different by an additive gap of O(n). Therefore, by a reduction argument,
any algorithm that breaks this barrier of additive gap requires ω (polylog(n)) memory.

The roadblock here is that the original version of Gap Cycle Counting, which only supports even
cycles, is not sufficient to distinguish the values for correlation clustering. In fact, one can show that
for graphs consisting of cycles with any even length, the optimal cost for correlation clustering is
always n

2 . To overcome this challenge, we modify the reduction from Boolean Hidden Hypermatching
to obtain new hardness results on Gap Cycle Counting with odd cycles. More concretely, we prove
the following lemma.

Lemma 6.1. Any single-pass streaming algorithm that distinguishes graphs of cycles with length
(2t + 1) from cycles with length 2 · (2t + 1) with probability at least 99

100 has to use a memory of

Ω
(
n1− 1

t

)
bits.

To prove Lemma 6.1, we need to formally introduce the Boolean Hidden Hypermatching (BHH)
problem as follows.

Definition 8 (Boolean Hidden Hypermatching (BHHm,t), [VY11, LW16a, AKL17]). The Boolean
Hidden Hypermatching problem (denoted as BHHm,t) is a one-way communication problem between
two players, namely Alice and Bob. Alice is given a boolean vector x ∈ {0, 1}m, where where m = 2kt
for some integer k ≥ 1 and Bob gets a perfect t-hypermatching M on m vertices, and a boolean vec-
tor w ∈ {0, 1}mt . Let Mx denote the length m

t boolean vector (
⊕

1≤i≤t xM1,i, · · · ,
⊕

1≤i≤t xMm/t,i),
where {M1,1, · · · ,M1,t}, ..., {Mm/t,1, · · · ,Mm/t,t} are the indices corresponds to the vertices matched
by hypermatching M = {M1, · · · ,Mm/t}. It is promised that either Mx

⊕
w = 0 or Mx

⊕
w = 1 .

The goal of the problem is to output Yes when Mx
⊕
w = 0 and No when Mx

⊕
w = 1.

Note that we use m to denote the number of vertices in the Boolean Hidden Hypermatching to
avoid ambiguity in the reduction, where we are going to construct a new graph with n vertices. It
is known that solving BHHm,t is hard even when Bob’s vector is deterministically all zero. More
formally, the following result is standard in the literature.

Proposition 6.2. (Communication Complexity of BHHm,t, [VY11]) Let m = 2kt for some in-
teger k ≥ 1 and t ≥ 2 as prescribed in Definition 8. Any one-way communication protocol that

solves BHHm,t with probability at least 99
100 requires Ω

(
n1− 1

t

)
bits in the message. Furthermore, the

communication complexity holds even Bob’s vector is known to be 0m/t.

We will the hardness result of Proposition 6.2 to prove the hardness of a new version of the Gap
Cycle Counting problem, defined as follows.

Definition 9 (Gap Cycle Counting – Odd Cycle). The Gap Cycle Counting with odd cycle problem
is a one-way communication problem between two players, namely Alice and Bob. The input to the
players is as follows.

• Both players are given n vertices, of which 1
2t+1 fraction of the vertices are special.

• Alice is given a set of edges EA which is a matching between the vertices that are not special.

• Bob is given a set of edges EB which consists of two edges on each of the special vertex.

The promise is that EA ∪ EB is either a disjoint union of cycles with (2t + 1) length, or a disjoint
union of cycles with 2 · (2t + 1) length. The goal for the players is to answer Yes for the former
scenario and No for the latter.

42

We show that the above GCC with odd cycle problem requires the same communication com-
plexity as Definition 8.

Claim 6.3. Any one-way communication protocol that solves the Gap Cycle Counting – Odd Cycle

problem with probability at least 99
100 requires Ω

(
n1− 1

t

)
bits in the message.

Proof. We prove this by a reduction from the BHHm,t problem. Suppose we have a communication
protocol PROT that solves Gap Cycle Counting – Odd Cycle problem with probability at least 99

100

and a message of o
(
n1− 1

t

)
bits, we show that it is possible to get a communication protocol that

solves BHHm,t with probability 99
100 and the same message. This contradicts the lower bound of

Proposition 6.2. Therefore, the only conclusion is that such a PROT cannot exist.
The communication protocol to solve BHHm,t can be given as follows.

PROT′: a communication protocol for BHHm,t
Input: An instance of BHHm,t.
Output: The decision of whether Mx = 0 or Mx = 1.

1. Alice and Bob both create an all-one vector y = 12m/t, and append it after their own vectors
(without communication).

2. Alice locally creates vertices and edges:

(a) For each xi, create 4 vertices: ui, vi, u
′
i, v
′
i.

(b) If xi = 0, add (ui, vi) ∈ EA and (u′i, v
′
i) ∈ EA.

(c) If xi = 1, add (ui, v
′
i) ∈ EA and (u′i, vi) ∈ EA.

(d) For each yj , create two vertices ũj , ũ
′
j , and add no edge to them.

3. Bob locally creates vertices and edges:

(a) For each vertex zi in the BHHm,t instance, create vertices ui, vi, u
′
i, v
′
i in the same manner

of Alice.

(b) For each hyperedge Mj , denote (Mj,1,Mj,2, · · · ,Mj,t) as the indices of the vertices.

(c) For ` = 1 to t− 1, Bob adds edges between (v`, u`+1) ∈ EB and (v′`, u
′
`+1) ∈ EB .

(d) Bob further create two vertices ũj , ũ
′
j for each yj , and assign to j-th matching by adding

four edges: (vt, ũj) ∈ EB , (v′t, ũ
′
j) ∈ EB , (ũj , u1) ∈ EB , (ũ′j , u

′
1) ∈ EB .

4. The players runs PROT, and answers as the output of PROT, i.e. answer Yes if PROT returns
Yes (graph is of (2t+ 1) cycles), and vice versa.

An intuitive understanding of the edges added by Alice can be found in Figure 1. Observe that
as in the figure, if we always put vertices u and v to the ‘outer’ circle of the vertices and u′ and v′ to
the ‘inner’ one, then the edges added by Alice are ‘parallel’ when xi = 0 and ‘crossing’ when xi = 1.
Bob always adds ‘parallel’ edges between the corresponding vertices.

It is straightforward to verify that the inputs constructed by Alice and Bob is valid for PROT: the

fraction of the special vertices is indeed 2m/t
4m+2m/t = 1

2t+1 . We now show that the graph constructed

by the two players is with cycles of length (2t+1) if and only if Mx = 0, and cycles of length 2·(2t+1)
if and only if Mx = 0. Note that for a graph with only ‘parallel’ edges, each matching in the BHHm,t

43

u1

t = 3

u′1

Edges of Alice xi = 0

Edges of Bob

Edges of Alice xi = 1

v1 v′1

v′3

v3

u′3
u3

v2
u2

v′2u′2

ũj

ũj

Figure 1: The BHHm,t instance to Gap Cycle Counting with odd cycles. In the instance of the
figure, Alice has x3 = 1 (for matching j). Therefore, we have Mx = 1 and the graph is one 14-length
cycle. One can verify that if one more set of ‘cross edges’ is added, the graph goes to two separate
cycles.

instance induces two cycles of length (2t+ 1). If one of the vertex pairs switches to ‘cross’ edges, the
tours of the cycles intersect and the two cycles merge into one cycle with length 2·(2t+1). Inductively,
one can show that if there is an even number of ‘cross’ edge connections, the two (2t + 1)-length
cycles remain separate; and if there is an odd number of ‘cross’ edge connections, the two (2t+ 1)-
length cycles merge. Therefore, the type of cycle induced by the BHHm,t instance depends uniquely
on the value of Mx for each matching. Furthermore, the cycles are constructed independently from
each matching, and there are no other edges. This gives us the desired correspondence between the
length of the cycles and the value of Mx.

Since the assumption is that PROT succeed with probability at least 99
100 , and the reduction in

PROT′ is deterministic, PROT′ can answer BHHm,t successfully with the same probability. Therefore,

any such PROT must have a communication complexity of at least Ω
(
n1− 1

t

)
.

Proof of Lemma 6.1. The proof of Lemma 6.1 now follows from a standard reduction by
Claim 6.3. Suppose a streaming algorithm that can distinguish graphs of cycles 2t+1 from graphs of
cycles 2 · (2t+ 1) exists, one can use the streaming algorithm to simulate a communication protocol:
Alice runs the streaming algorithm, send the memory of the streaming algorithm as the message,
and Bob uses the memory to run the rest of the streaming algorithm. Therefore, such a streaming

algorithm must use a memory of at least Ω
(
n1− 1

t

)
bits.

6.2 The lower bound

We now formally state and prove the additive approximation gap for correlation clustering. To start
with, we first show a lower bound for dynamic streaming algorithms that allows the operations of the
insertion and removal of (+) and (−) edges (see Section 2.3 for the detailed definition). Switching
to dynamic streams simplifies the reduction, and we will deal with an additional technical part to
prove the lower bound for insertion-only streaming algorithms later.

44

Lemma 6.4. Let c ∈ [1, 6
5) and ε ∈ (0, 6

5 − c). Any single-pass dynamic streaming algorithm
that estimates the optimal value OPT of correlation clustering by a (c, εn)-approximation (i.e., an
estimated value that is at most (c · OPT + ε · n)) with probability at least 99

100 has to use a memory
of Ω (

√
n) bits, even on labeled (complete) graphs.

Proof of Lemma 6.4. We use the simple instance of cycles with length 5 versus cycles of length 10
from the results of Lemma 6.1. We again use the reduction argument: given a dynamic streaming
algorithm ALG that achieves a (c, ε)-approximation for the optimal cost of correlation clustering on
labeled graphs, we can design a streaming algorithm to distinguish graphs with cycles of length 5
and cycles of length 10 in the following way:

1. (−) edges: By the start of the stream, for each vertex pair (u, v), insert a (−) edge.

2. (+) edges: For each arriving edge (u, v) ∈ E, remove the (−) edge between (u, v), and add a
(+) edge.

3. Run ALG and output with the following rules: if the cost is less than 3n
5 , output No (graph of

cycles of length 10); otherwise, output Yes (graph of cycles of length 5).

We show that provided the correct probability of ALG, we can distinguish the scenarios of length-
5 and length-10 cycles with the same probability. Note that by the construction, the (+) edges are
the cycle edges. For a graph with (+) edges of length-10 cycles, there is a way to induce a cost of
n
2 : on each cycle, we can put two vertices in the same cluster, and create 5 clusters. In this way, we
pay a cost of 5 by splitting (+) edges, and there are n

10 such cycles.
On the other hand, when the graph is of disjoint cycles of length 5, we show that the cost is at

least 3n
5 . To see this, we first note that an optimal clustering never puts two vertices from different

cycles in the same cluster, as there are only (−) edges between them. Among any cycle, the optimal
clustering is to put 2 vertices in one cluster, and the other 3 in the same cluster. This induces a cost
of 3, and there are n

5 such cycles, which gives us the desired solution.
Finally, note that if ALG achieves (c, ε)-approximation in the given parameter range, the value

is strictly less than 3n
5 when the graph is of disjoint length-10 cycles. Therefore, we get the desired

reduction.

We now generalize the results to insertion-only streams. To this end, we will need the following
variation of the Gap Cycle Counting with odd cycles.

Lemma 6.5. Suppose a complete graph has two types of edges: the normal edges and the special
edges. Let G be a graph whose special edges form disjoint cycles of length (2t+ 1), and G̃ be a graph
whose special edges forms disjoint cycles of length 2 · (2t+ 1). Any single-pass streaming algorithm

that distinguishes G from G̃ with probability at least 99
100 has to use a memory of Ω

(
n1− 1

t

)
bits.

Proof. We can prove Lemma 6.5 by slightly tweaking the Gap Cycle Counting with odd cycle problem
of Definition 9. Now suppose the edges EA and EB that are given to Alice and Bob are the special
edges, and we further provide other normal edges to make the graph complete. The goal for the
players is to distinguish the length of the cycles from the special edges.

Let us call this problem GCC-odd-C (‘C’ stands for ‘complete’). There is a straightforward reduc-
tion from the BHHm,t problem to this new variate GCC-odd-C. Suppose we have a communication
protocol that solves GCC-odd-C. Then, Alice can mark all the edges she added in the reduction of
Claim 6.3 as special, and add normal edges between all other pairs between (ui, vi, u

′
i, v
′
i) for each

45

i. Bob can similarly mark all the edges he added in the reduction of Claim 6.3 as special, and add
normal edges between the vertex pairs of different ` and (ũj , ũ

′
j) whenever there is not a special

edge. Such a protocol can solve BHHm,t with output of GCC-odd-C. Therefore, any communication

protocol that solves GCC-odd-C requires Ω
(
n1− 1

t

)
bits communication, and the streaming lower

bound follows.

Finalizing the proof of Theorem 5. We can prove the lower bound for insertion-only streaming
algorithms based on Lemma 6.5. Note that now we can mark each special edge as a (+) edge, and
each normal edge as a (−). The graph in GCC-odd-C is complete, which means we can construct an
input to the insertion-only streaming algorithm without any extra memory cost. As such, combining
the proof of Lemma 6.4 and the result of Lemma 6.5 yields the result.

7 Experiments
We describe in this section the experiments of algorithms on the synthetic graph streams generated
by the Stochastic Block Model and the Erdos-Renyi random graphs. These experiments show that for
a very natural family of graphs, our algorithms can actually achieve a very competitive performance
on the estimated cost values, and the performances are often much better than the worst-case
theoretical analysis. Furthermore, our algorithms are capable of separating “well-clusterable” vs.
“badly-clusterable” instances.

7.1 Experimental Settings

The synthetic data and the graph stream. As we have discussed, we perform our experiments
on the data generated from the well-studied Stochastic Block Model (SBM). For the correlation
clustering application, we use the variate of the SBM that plants ground-truth clusters with sizes
Ω(n), samples (+) edge between vertex pairs (xi, xj) in the same planted cluster with probability
p > 0.5, and samples (+) edges between vertex pairs (xi, xj) in different clusters with probability
1−p. The SBM captures a lot of real-world scenarios, including social networks [HLL83], community
detection [Abb17b], graph clustering [LW19], and Bioinformatics [MGC21], to name a few.

When the probability p in the above description is sufficiently large, we can assume the ground-
truth clusters are the optimal correlation clustering solutions, and obtain the optimal cost by count-
ing the edges. As such, we run our algorithms on SBM instances that are reasonably “clusterable”,
i.e., we set p = 0.8 with vertices n = 500, n = 1000, and n = 2000. Note that since we are dealing
with labeled complete graphs, the number of edges scales quadratically w.r.t. n, which gives us a
non-trivial scale of instances.

Another family of graphs we tested is the well-known Erdos-Renyi random graphs G(n, p). In
this model, a (+) edge is added to a vertex pair (xi, xj) with probability p independently across
edge slots. As such, when p is around 0.5, the graph does not appear any clusterable property, and
the cost is very high. Although it is not clear how to exactly compute the costs for the Erdos-Renyi
random graphs, we run our experiments by comparing the costs produced by our algorithm from the
Erdos-Renyi graphs with the costs from the SBM model with p = 0.95, i.e., when the instances are
very “well-clusterable” (we use n = 1000 for this test). In this way, we can observe our algorithms’
ability to distinguish “good” and “bad” instances – a property that can be extremely useful in
practice.

Implementation of the algorithms and experiments. We implement both the SDD-based
and the pivot-based algorithms. On top of following the procedure as described in Section 3 and
Section 4, we also use some ad-hoc heuristics in the implementation. For the number of edges
and vertices to be sampled, we do not scale the number by ε.δ, and instead pick a fixed constant.

46

The constant is much smaller than we used in the theoretical analysis, but the performances are
nonetheless very well. Furthermore, since our distributions have sufficiently high positive degrees,
we do not need to add the δn2 term. Finally, for the pivot-based algorithm, we slightly relax the
requirement to allow 2-pass over the stream; as such, we can use the first pass to perform greedy
MIS on the sampled vertex set, and we do not have to duplicate the storage by the 2O(1/δ) factor.

We evaluate the performances mainly based on two metrics: the multiplicative factor of the cost
estimation (which we call the “competitive ratio”) and the fraction of the edges used. To overcome
the possible effects of random seed, we fix our random seed with 0 ∼ 14, and run 15 experiments.
We include the error bars and the curves of the competitive ratios and fraction of the edges. For
the experiment to distinguish SBM and Erdos-Renyi graphs, we simply plot the two types of costs
w.r.t. experiment runs, and give the distributions of the costs.

7.2 Experimental Results

We first show that our algorithms are insensitive to the choice of parameters – this property is
evident from Figure 2 and Figure 3, where the box plots are obtained by 15 runs with different
parameters, but the results are almost identical. As such, we focus on the settings with ε = 0.01 for
the SDD-based algorithm and δ = 0.1 for the pivot-based algorithm for the rest of this section.

Figure 2: The estimation results for 15 experiment runs with the SDD-based algorithm with param-
eters ε = 0.01, 0.1, 0.2.

Figure 3: The estimation results for 15 experiment runs with the pivot-based algorithm with pa-
rameters δ = 0.1, 0.2, 0.3.

We now discuss our algorithm based on sparse dense decomposition (SDD). Figure 4 to Figure 6
give the plots of the cost estimation for the SDD-based algorithm on n = 500, n = 1000. and
n = 2000 sampled from the SBM distribution. The figures show that the approximation factor for
this algorithm is roughly between 1 and 2, and the fraction of the edges drops when n increases. For
the n = 2000 case, the SDD-based algorithm consistently uses less than 4% of the edges.

47

The task to distinguish between SBM instances with p = 0.95 and ER instances with p = 0.5
with the SDD-based algorithm is shown in Figure 7. From the figure, it can be observed that
the SDD-based algorithm outputs drastically different clustering costs of the SBM instances vs the
Erdos-Renyi instances. In addition to having much higher costs on the ER instances for all runs, we
can also observe from the left plot that the supports of the costs are disjoint. As such, by a simple
linear threshold, our SDD algorithm is able to perfectly distinguish between both types of instances
while using less than 10% of the edges (n = 1000 case).

Figure 4: The performances of the SDD-based algorithm on n = 500 SBM.

Figure 5: The performances of the SDD-based algorithm on n = 1000 SBM.

We now discuss the performances of our algorithm based on pivot. Figure 8 to Figure 10 give the
performances for the pivot-based algorithm. The approximation factor for this algorithm is slightly
worse than the SDD-based, which are roughly between 2 and 4.5; however, on average we still get

48

Figure 6: The performances of the SDD-based algorithm on n = 2000 SBM.

Figure 7: The output costs of the SBM and ER instances by the SDD-based algorithm. Left: cost
distributions; Right: costs for each run of the experiment.

49

an approximation factor less than 3, which is the expected cost of the original pivot algorithm. On
the other hand, compared to the SDD-based algorithm, the number of edges stored by the pivot
algorithm is even smaller – for the n = 2000 case, we only store ∼ 0.04% of the edges. This is partly
due to the 2-pass implementation, but it also shows the huge potential of the algorithm in practice.

The pivot-based algorithm can also effectively distinguish between well-clusterable and badly-
clusterable instances. Figure 11 shows that the estimated clustering costs of the SBM instances are
very different from the estimated clustering costs of the Erdos-Renyi instances. Again, we obtain
support-disjoint distributions of costs, and we can find a threshold cost below which we have the
SBM instances and above the ER instances. Notably, our pivot algorithm is able to achieve this and
can perfectly distinguish between both types of instances by storing ∼ 0.1% of the edges.

Figure 8: The performances of the pivot-based algorithm on n = 500 SBM.

Figure 9: The performances of the pivot-based algorithm on n = 1000 SBM.

50

Figure 10: The performances of the pivot-based algorithm on n = 2000 SBM.

Figure 11: The output costs of the SBM and ER instances by the pivot-based algorithm. Left: cost
distributions; Right: costs for each run of the experiment.

51

References

[AAD+23] Vikrant Ashvinkumar, Sepehr Assadi, Chengyuan Deng, Jie Gao, and Chen Wang.
Evaluating Stability in Massive Social Networks: Efficient Streaming Algorithms for
Structural Balance. In Nicole Megow and Adam Smith, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2023), volume 275 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 58:1–58:23, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. 5, 33, 35, 38

[Abb17a] Emmanuel Abbe. Community detection and stochastic block models: Recent develop-
ments. J. Mach. Learn. Res., 18:177:1–177:86, 2017. 3

[Abb17b] Emmanuel Abbe. Community detection and stochastic block models: recent develop-
ments. The Journal of Machine Learning Research, 18(1):6446–6531, 2017. 46

[ABH16] Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact recovery in the stochas-
tic block model. IEEE Trans. Inf. Theory, 62(1):471–487, 2016. 3

[ACG+15] Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony
Wirth. Correlation clustering in data streams. In Francis R. Bach and David M. Blei,
editors, Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference
Proceedings, pages 2237–2246. JMLR.org, 2015. 1, 2, 3

[ACL+22] Sepehr Assadi, Vaggos Chatziafratis, Jakub Lacki, Vahab Mirrokni, and Chen Wang.
Hierarchical clustering in graph streams: Single-pass algorithms and space lower
bounds. In Po-Ling Loh and Maxim Raginsky, editors, Conference on Learning Theory,
2-5 July 2022, London, UK, volume 178 of Proceedings of Machine Learning Research,
pages 4643–4702. PMLR, 2022. 1

[ACN05] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent informa-
tion: ranking and clustering. In Harold N. Gabow and Ronald Fagin, editors, Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 684–693. ACM, 2005. 1, 4

[AEKM20] Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. Fair
correlation clustering. In Silvia Chiappa and Roberto Calandra, editors, The 23rd
International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-
28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine
Learning Research, pages 4195–4205. PMLR, 2020. 1

[AKL17] Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size
in graph streams. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19, pages 1723–1742. SIAM, 2017. 42

[AW22] Sepehr Assadi and Chen Wang. Sublinear time and space algorithms for correlation
clustering via sparse-dense decompositions. In Mark Braverman, editor, 13th Innova-
tions in Theoretical Computer Science Conference, ITCS 2022, January 31 - February
3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022. 1, 2, 3, 4, 7, 8, 17, 18, 56

52

[BBC04] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Mach. Learn.,
56(1-3):89–113, 2004. 1

[BCMT22] Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Almost 3-
approximate correlation clustering in constant rounds. In 63rd IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October
31 - November 3, 2022, pages 720–731. IEEE, 2022. 1

[BCMT23] Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Single-pass stream-
ing algorithms for correlation clustering. In Proceedings of the 34th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023 (to appear), 2023. 1

[BGK13] Francesco Bonchi, David Garćıa-Soriano, and Konstantin Kutzkov. Local correlation
clustering. CoRR, abs/1312.5105, 2013. 1, 2, 4, 24, 29, 30

[BOS22] Tomer Berg, Or Ordentlich, and Ofer Shayevitz. On the memory complexity of unifor-
mity testing. In Po-Ling Loh and Maxim Raginsky, editors, Conference on Learning
Theory, 2-5 July 2022, London, UK, volume 178 of Proceedings of Machine Learning
Research, pages 3506–3523. PMLR, 2022. 1

[CALLN23] Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling corre-
lated rounding error via preclustering: A 1.73-approximation for correlation clustering,
2023. 1

[CGW03] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qual-
itative information. In 44th Symposium on Foundations of Computer Science (FOCS
2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 524–533. IEEE
Computer Society, 2003. 1

[CKP08] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic approach
to webpage segmentation. In Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao
Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang, editors, Proceedings of the
17th International Conference on World Wide Web, WWW 2008, Beijing, China, April
21-25, 2008, pages 377–386. ACM, 2008. 1

[CLM+21] Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos
Parotsidis, and Jakub Tarnawski. Correlation clustering in constant many parallel
rounds. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research, pages 2069–2078. PMLR, 2021. 1, 18

[CLN22] Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering
with sherali-adams. In 63rd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 651–
661. IEEE, 2022. 1

[CMSY15] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev.
Near optimal LP rounding algorithm for correlationclustering on complete and complete
k-partite graphs. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 219–228. ACM, 2015. 1

53

[DKPP22] Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia, and Thanasis Pittas. Streaming algo-
rithms for high-dimensional robust statistics. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International Confer-
ence on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pages 5061–5117. PMLR,
2022. 1

[DP09] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the
analysis of randomized algorithms. Cambridge University Press, 2009. 7

[EF03] Dotan Emanuel and Amos Fiat. Correlation clustering - minimizing disagreements on
arbitrary weighted graphs. In Giuseppe Di Battista and Uri Zwick, editors, Algorithms
- ESA 2003, 11th Annual European Symposium, Budapest, Hungary, September 16-19,
2003, Proceedings, volume 2832 of Lecture Notes in Computer Science, pages 208–220.
Springer, 2003. 1

[FIS08] Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams
and applications. International Journal of Computational Geometry & Applications,
18(01n02):3–28, 2008. 7

[GG06] Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number
of clusters. Theory Comput., 2(13):249–266, 2006. 1

[GT19] Venkatesan Guruswami and Runzhou Tao. Streaming hardness of unique games. In
Dimitris Achlioptas and László A. Végh, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019,
September 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA, USA,
volume 145 of LIPIcs, pages 5:1–5:12. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019. 1

[GW89] Martin Grötschel and Yoshiko Wakabayashi. A cutting plane algorithm for a clustering
problem. Math. Program., 45(1-3):59–96, 1989. 1

[HLL83] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic block-
models: First steps. Social networks, 5(2):109–137, 1983. 3, 46

[KKS15] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for
approximating MAX-CUT. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 1263–1282. SIAM, 2015. 1

[LW16a] Yi Li and David P. Woodruff. On approximating functions of the singular values in a
stream. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016, pages 726–739. ACM, 2016. 42

[LW16b] Yi Li and David P. Woodruff. Tight bounds for sketching the operator norm, schatten
norms, and subspace embeddings. In Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September
7-9, 2016, pages 39:1–39:11, 2016. 7

54

[LW19] Clement Lee and Darren J Wilkinson. A review of stochastic block models and exten-
sions for graph clustering. Applied Network Science, 4(1):1–50, 2019. 46

[MGC21] Leonardo Morelli, Valentina Giansanti, and Davide Cittaro. Nested stochastic block
models applied to the analysis of single cell data. BMC bioinformatics, 22(1):1–19,
2021. 46

[SDE+21] Jessica Shi, Laxman Dhulipala, David Eisenstat, Jakub Lacki, and Vahab S. Mirrokni.
Scalable community detection via parallel correlation clustering. Proc. VLDB Endow.,
14(11):2305–2313, 2021. 1

[Swa04] Chaitanya Swamy. Correlation clustering: maximizing agreements via semidefinite pro-
gramming. In J. Ian Munro, editor, Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, Jan-
uary 11-14, 2004, pages 526–527. SIAM, 2004. 1

[SZ22] Roy Schwartz and Roded Zats. Fair correlation clustering in general graphs. In
Amit Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022,
September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Con-
ference), volume 245 of LIPIcs, pages 37:1–37:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022. 1

[VGW18] Nate Veldt, David F. Gleich, and Anthony Wirth. A correlation clustering framework for
community detection. In Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and
Panagiotis G. Ipeirotis, editors, Proceedings of the 2018 World Wide Web Conference
on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, pages 439–448.
ACM, 2018. 1

[VY11] Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by rever-
sals, and other problems. In Dana Randall, editor, Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco,
California, USA, January 23-25, 2011, pages 11–25. SIAM, 2011. 41, 42

[ZT23] Qiaosheng Eric Zhang and Vincent Y. F. Tan. Exact recovery in the general hypergraph
stochastic block model. IEEE Trans. Inf. Theory, 69(1):453–471, 2023. 3

[ZYH14] Chong Zhang, Julian Yarkony, and Fred A. Hamprecht. Cell detection and segmenta-
tion using correlation clustering. In Polina Golland, Nobuhiko Hata, Christian Bar-
illot, Joachim Hornegger, and Robert D. Howe, editors, Medical Image Computing
and Computer-Assisted Intervention - MICCAI 2014 - 17th International Conference,
Boston, MA, USA, September 14-18, 2014, Proceedings, Part I, volume 8673 of Lecture
Notes in Computer Science, pages 9–16. Springer, 2014. 1

A Proof of Lemma 3.15

We prove Lemma 3.15 that upper-bounds the m+
βε-sparse and m̂−βε-dense with O(1/ε) ·OPT. To begin,

we state the lemma again as follows.

55

Lemma A.1 (Restatement of Lemma 3.15). Suppose G = (V,E) is any labeled graph and OPT be
the optimal correlation clustering cost, and let β, ε be such that 0 < β ≤ 1

2ε , there is

m+
βε-sparse ≤

2

βε
· OPT;

m̂−βε-dense ≤ 8 · OPT.

Similar to the argument in [AW22], we resort to a charging lemma to prove the upper bound
for a clustering that pays costs of the ε-sparse edges and ε-dense non-edges. In particular, we show
that if all edges that induce costs are at least ε-sparse (cf. if the non-edges that induce costs are at
most ε-dense), one can find proper charge-sets such that the optimal cluster O must incur costs on.

We first prove the following lemma that establishes our desired property of the charging scheme.

Lemma A.2 ([AW22]). Let Ec be the set of edges ((+) and (−)) that incur costs. Suppose there
is a choice of ChargeSet(e) for edges e ∈ Ec in the charging scheme such that for all z ∈ V and
f ∈ E(z), we have charge(z, f) ≤ α for some α ≥ 1. Then,

cost(Ec) ≤ 2α · OPT.

Proof. We have,

cost(Ec) =
∑
e∈Ec

cost(e) (by the definition of the total cost)

=
∑
e∈Ec

∑
(z,f)∈

ChargeSet(e)

|ChargeSet(e)|−1
(the inner sum is 1)

=
∑
z∈V

∑
f∈E(z)

and
cost(OPT,e)=1

charge(z, f) (by summing over charges of all vertex-edge pairs)

≤
∑
z∈V

α · |f ∈ E(z) and cost(OPT, e) = 1| (by the guarantee of the lemma statement)

=
∑
f∈E

2α · cost(OPT, e) (as each edge will be added twice (one by each endpoint))

= 2α · cost(OPT).

This concludes the proof.

By Lemma A.2, we only need to find charge-sets of the edges in Ec so that charge(z, f) is small
for all vertex-edge pairs (z, f). In particular, to prove the bounds on m+

-sparse
βε in Lemma 3.15, we

can set Ec as collection of the ε-sparse (+) edges; on the other hand, to prove the upper bound on
m̂−βε-dense, we will use a carefully-defined set of edges together with Observation 3.13 on the top of
the charging lemma.

Part I: Upper bound of m+
βε-sparse

We now analyze m+
βε-sparse by charging the cost of βε-sparse (+) edges. We assume β = 1 since we

can always scale β to get the desired conclusion. We define sparse-charge(z, f) as the contribution
from the ε-sparse (+) edges to charge(z, f). We show that,

56

Lemma A.3. Let E+
c be the the set of all ε-sparse (+) edges. There is∣∣E+

c

∣∣ ≤ 2

ε
· OPT.

Proof. We show that there exist sets ChargeSet(e) for every ε-sparse edge e ∈ E+
c , such that for all

vertex-edge pairs (z, f), there is

sparse-charge(z, f) =
1

ε
.

Define ChargeSet(e) for any (u, v) = e in E+
c := E+

ε-sparse as follows:

• Type-1 charges: when cost(OPT, e) = 1. In this case, we simply set ChargeSet(e) = {(u, e)}
itself.

• Type-2 charges: when cost(OPT, e) = 0. Note that in this case, we have that O(u) = O(v)
under the optimal clustering O, and let us denote this cluster as Ouv. Consider any vertex
w ∈ N+(u)4N+(v):

– Case A: w ∈ N+(u) and w ∈ N−(v). In this case, there is cost (OPT, (w, v)) = 1 if
O(w) = Ouv, and costOPT(w, u) = 1 if O(w) 6= Ouv.

– Case B: w ∈ N+(v) and w ∈ N−(u). In this case, there is cost (OPT, (w, u)) = 1 if
O(w) = Ouv, and cost (OPT, (w, v)) = 1 if O(w) 6= Ouv.

Therefore, in both cases, there is exactly one edge f(w) ∈ {(w, u), (w, v)} such that cost (OPT, f(w)) =
1. Let z(w) ∈ {u, v} be the vertex other than w incident on f(w). We add all pairs (z(w), f(w))
to ChargeSet(e), i.e.,

ChargeSet(e) =
{

(z(w), f(w)) | w ∈ N+(u)4N+(v)
}
.

By definition, the ε-sparse edges have∣∣N+(v)4N+(u)
∣∣ ≥ ε ·max

{
deg+(u),deg+(v)

}
;

Therefore, we have that |ChargeSet(e)| ≥ ε ·max
{

deg+(u),deg+(v)
}

.

Let us now bound the distributed charges. We have three different choices for (z, f) that can
belong to ChargeSet(e) for some edge e ∈ E+

c as follows:

• A pair (u, e) charged by a type-1 charge, where e ∈ E+
c and u is an endpoint of e:

In this case, charge(u, e) = 1 because there is only a single edge e that can make such a charge.

• A pair (z(w) = u, f(w)) charged by a type-2 charge, where w ∈ N+(u)4N+(v):

For any such charge, we increase charge(u, f(w)) by

|ChargeSet(e)|−1 ≤ (ε · deg+(u))−1.

At the same time, such a charge can only be made by edges from u to v ∈ N+(u) (so that
(u, v) ∈ E+), which are deg+(u) many. Thus, the total charge made in this case leads to
charge(u, f(w)) = 1

ε .

57

• A pair (v, f(w)) charged by a type-2 charge, where w ∈ N+(u)4N+(v) and z(w) = v:

For any such charge, we increase charge(v, f(w)) by

|ChargeSet(e)|−1 ≤ (ε · deg+(v))−1.

At the same time, such a charge can only be made by edges from v to u ∈ N+(v) (so that
(u, v) ∈ E+), which are deg+(v) many. Thus, the total charge made in this case leads to
charge(v, f(w)) = 1

ε .

Therefore, by Lemma A.2, the total cost of all ε-sparse edges is at most 2
ε · OPT.

Note that the size ε-sparse (+) edges is exactly m+
βε-sparse, which gives the desired property of

the first statement of Lemma 3.15.

Part II: Bounding the charge on Ê−βε-dense and the value of m̂−βε-dense

We now turn to the upper bound of m̂−βε-dense, which we prove by showing the upper bound of all
E′′ constructed with a given β.In particular, we show that,

Lemma A.4. Let E′′ be obtained by the following process: “add deg+(v) non-edge e that are at
most βε-dense to E′′ for each vertex v (or add all such non-edges if the total number is less than
deg+(v))” (as in Observation 3.13). For any such E′′, there is

|E′′| ≤ 4 · OPT.

Proof. Fix any such E′′, let us assign a cost of 1 for each edge e ∈ E′′. We show that there exist sets
ChargeSet(e) for every βε-dense (−) edge e ∈ E′′, such that for all vertex-edge pairs (z, f), there is

dense-charge(z, f) = 2.

To see this, define ChargeSet(e) for any (u, v) = e as follows:

• Type-1 charges: when cost(OPT, e) = 1. In this case, we simply set ChargeSet(e) = {(u, e)}
itself.

• Type-2 charges: when cost(OPT, e) = 0. Note that in this case, we have that O(u) 6= O(v)
under the optimal clustering O, i.e., the optimal cluster O does not put u and v to the same
cluster.

Consider any vertex w ∈ N+(u) ∩N+(v), if O(w) = O(u), then cost (OPT, (w, v)) = 1;
otherwise, if O(v) = O(u), then cost (OPT, (w, u)) = 1. That is to say, there is exactly one
edge f(w) ∈ {(w, u), (w, v)} such that cost (OPT, f(w)) = 1. Let z(w) ∈ {u, v} be the vertex
other than w incident on f(w). We add all pairs (z(w), f(w)) to ChargeSet(e), i.e.,

ChargeSet(e) =
{

(z(w), f(w)) | w ∈ N+(u) ∩N+(v)
}
.

We now show that the size of the ChargeSet(e) is large. Note that by definition, every (−) edge
(u, v) in the set E′′ is at most βε-dense. Hence, there is∣∣N+(v)4N+(u)

∣∣ ≤ βε ·max
{

deg+(u),deg+(v)
}
.

58

Therefore, we have that

|ChargeSet(e)| :=
∣∣N+(u) ∩N+(v)

∣∣
= deg+(u) + deg+(v)−

∣∣N+(v)4N+(u)
∣∣

≥ (1− βε) ·max
{

deg+(u),deg+(v)
}

≥ 1

2
·max

{
deg+(u),deg+(v)

}
. (as long as β ≤ 1

2ε)

As a result, we can bound the distributed charges in the same manner of the proof of Lemma A.3.
We have three different choices for (z, f) that can belong to ChargeSet(e) for some edge e ∈ E′′ as
follows:

• A pair (u, e) charged by a type-1 charge, where e ∈ E′′ and u is an endpoint of e:

In this case, charge(u, e) = 1 because there is only a single (−) edge e that can make such a
charge.

• A pair (z(w) = u, f(w)) charged by a type-2 charge, where w ∈ N+(u) ∩N+(v):

For any such charge, we increase charge(u, f(w)) by

|ChargeSet(e)|−1 ≤ (
1

2
· deg+(u))−1.

At the same time, such a charge can only be made by edges from u to v ∈ N−(u) (so that
(u, v) ∈ E−), and there are at most deg+(u) number of edges ever counted in E′′. Thus, the
total charge made in this case leads to charge(u, f(w)) = 2.

• A pair (v, f(w)) charged by a type-2 charge, where w ∈ N+(u) ∩N+(v) and z(w) = v:

For any such charge, we increase charge(v, f(w)) by

|ChargeSet(e)|−1 ≤ ((
1

2
· deg+(v))−1.

At the same time, such a charge can only be made by edges from v to u ∈ N−(v) (so that
(u, v) ∈ E−), and there are at most deg+(v) number of edges ever counted in E′′. Thus, the
total charge made in this case leads to charge(v, f(w)) = 2.

Therefore, by Lemma A.2, the total cost of all edges in E′′ is at most 4 · OPT.

Finally, by Observation 3.13, we have 2 |E′′| ≥ m̂−βε-dense, which gives us m̂−βε-dense ≤ 8 ·OPT, as
desired.

59

	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques

	2 Preliminaries
	2.1 Notation
	2.2 Problem Definition
	2.3 The Streaming Model
	2.4 Standard Technical Tools

	3 An Algorithm based on Sparse-dense Decomposition
	3.1 Sketching tools for sparse and dense edges
	3.1.1 The tool for eps-sparse edges
	3.1.2 The tool for eps-dense non-edges

	3.2 Using eps-sparse Edges and eps-dense Non-edges for Correlation Clustering
	3.3 The Sparse-dense Decomposition-based Algorithm

	4 An Algorithm based on Pivot
	4.1 A Predecessor-aware Non-Edge Sketching Tool
	4.2 A Predecessor-aware Edge Sketching Tool
	4.3 Unclustered edge Sketching Tool
	4.4 The Algorithm based on Pivot

	5 A Lower Bound for -Additive error
	5.1 A construction of correlation clustering structural
	5.2 Multi-copy correlation clustering structure
	5.3 Cost Testing Lower Bound – A Variate of the Hard Instance

	6 A Lower Bound for -Additive error
	6.1 Gap Cycle Counting with Odd Cycles
	6.2 The lower bound

	7 Experiments
	7.1 Experimental Settings
	7.2 Experimental Results

	A Proof of claim

