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Abstract

Cooperative multi-agent reinforcement learning (MARL) is a challenging task, as
agents must learn complex and diverse individual strategies from a shared team
reward. However, existing methods struggle to distinguish and exploit important
individual experiences, as they lack an effective way to decompose the team
reward into individual rewards. To address this challenge, we propose DIFFER,
a powerful theoretical framework for decomposing individual rewards to enable
fair experience replay in MARL. By enforcing the invariance of network gradients,
we establish a partial differential equation whose solution yields the underlying
individual reward function. The individual TD-error can then be computed from
the solved closed-form individual rewards, indicating the importance of each
piece of experience in the learning task and guiding the training process. Our
method elegantly achieves an equivalence to the original learning framework
when individual experiences are homogeneous, while also adapting to achieve
more muscular efficiency and fairness when diversity is observed. Our extensive
experiments on popular benchmarks validate the effectiveness of our theory and
method, demonstrating significant improvements in learning efficiency and fairness.
The code is available in https://github.com/cathyhxh/DIFFER.

1 Introduction

In widely adopted cooperative multi-agent systems [1–4], a team of agents typically operates under
the constraint of individual local observations and limited communication capabilities. In each
time step, all agents collectively interact with the environment by taking team actions, leading to
a transition to the subsequent global state and the provision of a team reward. Consequently, the
agents must acquire the ability to effectively coordinate their actions and maximize the cumulative
team return. Over the past few years, cooperative multi-agent reinforcement learning (MARL) has
demonstrated remarkable achievements in addressing such challenges and has exhibited promising
potential across diverse domains, including multi-player games[5–9], autonomous cars [10, 11],
traffic light control [12, 13], economy pricing [14] and robot networks [15, 16].

In recent years, value factorization methods [17–20] have emerged as leading approaches for address-
ing cooperative multi-agent tasks [21–23]. These methods are rooted in the centralized training and
decentralized execution (CTDE) paradigm [24–26]. Specifically, each agent’s network models the
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individual action-value using the agent’s local action-observation history [27] and the last action.
These individual action-values are then integrated into a global state-action value through a mixing
network. The parameters of both the agent networks and the mixing network are optimized by
minimizing the team TD-error. To enhance data utilization, value factorization methods commonly
employ experience replay. Here, experience represents the atomic unit of interaction in RL, i.e.,
a tuple of (observation, action, next observation, reward) [28]. In traditional MARL experience
replay algorithms, the replay buffer stores team experiences and allows algorithms to reuse them for
updating the current network, which encompasses both the agent networks and the mixing network.

Figure 1: Screenshots of the MMM2 sce-
nario in SMAC, highlighting the impor-
tance of individual experiences for the
Medivac unit, given its unique sub-task
and limited number.

However, the utilization of team experience overlooks
the inherent differences among individual experiences,
thereby failing to leverage individual experiences worthy
of learning. This issue becomes especially pronounced
when the agents within the team exhibit heterogeneity in
their roles and capabilities. To develop a clearer under-
standing, let us consider the scenario of MMM2 (as shown
in Fig. 1) within The StarCraft Multi-Agent Challenge
(SMAC) environment [29]. In this setup, a team com-
prises 1 Medivac (responsible for healing teammates), 2
Marauders (focused on offensive actions), and 7 Marines
(also dedicated to attacking). Each unit is controlled by a
distinct agent, and the team’s objective is to eliminate all
enemy units. Learning an effective strategy for the Medi-
vac unit proves particularly challenging due to its unique
sub-task and limited number. Consequently, the individual
experiences of the Medivac unit are deemed more likely to provide valuable insights for learning.
Unfortunately, extracting these individual experiences from the team experiences proves difficult
in the aforementioned MARL setting, as the individual rewards associated with each individual
experience are unavailable.

In this paper, we introduce a novel method called Decomposing Individual Reward for Fair
Experience Replay (DIFFER), to address the above challenges associated with multi-agent re-
inforcement learning (MARL) experience replay. The fairness in MARL experience replay refers to
the equitable sampling of individual experiences based on their importance. DIFFER addresses this
by decomposing team experiences into individual experiences, facilitating a fair experience replay
mechanism. We begin by proposing a method to calculate the individual reward for each individual
experience, ensuring that DIFFER maintains equivalence with the original learning framework when
the individual experiences are indistinguishable. To achieve this, we establish a partial differential
equation based on the invariance of agent network gradients. By solving this differential equation, we
obtain an approximation function for the individual rewards. Consequently, the team experience can
be successfully decomposed into individual experiences. These individual experiences are then fed
into a fair experience replay, where they are sampled for training the agent networks. The sampling
probability is determined proportionally to the temporal difference (TD) error of each individual
experience. Moreover, it adapts effectively to enhance both efficiency and fairness in scenarios where
diversity is observed. Importantly, DIFFER is a generic method that can be readily applied to various
existing value factorization techniques, thereby extending its applicability in MARL research.

We evaluate DIFFER on a diverse set of challenging multi-agent cooperative tasks, encompassing
StarCraft II micromanagement tasks (SMAC) [29], Google Football Research (GRF) [30], and
Multi-Agent Mujoco [31] tasks. Our experimental findings demonstrate that DIFFER substantially
enhances learning efficiency and improves performance.

2 Preliminaries

Problem Formulation. A fully cooperative multi-agent problem can be described as a decentralized
partially observable Markov decision process (Dec-POMDP) [32], which consists of a tuple G =<
I, S,A, P, r,Ω, O,N, γ >. I is the finite set of N agents. For each time step, each agent i ∈
I := {1, · · · , N} receives individual observation oi according to the observation function O(s, i) ≡
S× I → Ω. Then, each agent determines its action with individual policy πi(ai|oi) : Ω×A→ [0, 1].
Given the team action a = {a1, · · · , aN}, the environment transits to a next state according to the
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transition function P (s′|s,a) : S×AN×S → [0, 1] and gives a team reward R(s,a) ≡ S×AN → R,
which is shared by all agents. Each team policy π(a|o) = [π1(a1|o1), ..., πN (aN |oN )] has a team
action-value function Qt

tot(o
t,at, st) = Est+1:∞,at+1:∞ [Returnt(st,at)], where Returnt(st,at) =∑∞

k=0 γ
kRt+k is a discount return and γ is the discount factor. The target of a Dec-POMDP

problem is to maximize the accumulated return of the team policy, i.e. optimal team policy π∗ =
argmaxπ Return(π) = Es0∽d(s0),a∽π[Q

t
tot(o

t,at, st)], where d(s0) represents the distribution of
initial state.

Multi-Agent Deep Q-learning. Deep Q-learning [33] uses a neural network parameterized by
θ to represent the action-value function Q. In the multi-agent Dec-POMDP problem, multi-agent
deep Q-learning methods usually adopt the replay buffer [34] to store experience (o,a,o′, R).
Here R is the team reward received after taking team action a with team observation o, and o′

represents team observation in the next step. During the training process, the parameter θ is updated
by minimizing the Temporal Difference (TD) error with a mini-batch of data sampled from the
replay buffer, which is shown as LTD(θ) = E(o,a,r,o′)∈D[(r + γQ̃(o′; θ−)−Q(o,a; θ))2], where
Q̃(o′; θ−) = maxa′ Q(o′,a′; θ−) is the one-step expected future return of the TD target and θ− is
the parameter of the target network [35]. δ = |r + γQ̃(o′; θ−)−Q(o,a; θ)| is known as TD-error.

Multi-Agent Value Factorization. The value factorization framework comprises N agent networks
(one for each agent) and a mixing network. At time step t, the agent network of agent i takes the
individual observation oti, thereby computing the individual action-value, denoted as Qi. Subse-
quently, the individual action-values {Qi}i∈I are fed into the mixing network, which calculates the
team action-value, denoted as Qtot. The mixing network is constrained by Individual-Global-Max
(IGM) principal[1], ensuring the congruity between the optimal team action deduced from Qtot and
the optimal individual actions derived from {Qi}i∈I . The N agent networks share parameters. We
denote θm and θp as the parameters of mixing network and agent networks, respectively. During the
training phase, the mixing network is updated based on the TD loss of Qtot, while the agent networks
are updated through gradient backward propagation. During the execution phase, each agent takes
action with individual policy derived from its agent network in a decentralized manner.

3 Method

In this section, we present DIFFER, a novel experience replay method designed to foster fairness in
multi-agent reinforcement learning (MARL) by decomposing individual rewards. DIFFER offers a
solution to enhance the adaptivity of MARL algorithms. Instead of relying solely on team experiences,
DIFFER trains the agent networks using individual experiences. This approach allows for a more
granular and personalized learning process.

At a given time step, agents interact with the environment and acquire a team experience χteam =
(o,a,o′) = ((oi)i∈I , (ai)i∈I , (o

′
i)i∈I , R) = ((oi, ai, o

′
i)i∈I , R). Here, oi, ai, and o′i represent the

observation, action, and next observation for each agent i ∈ I , respectively. These team experiences
are stored in a replay buffer and subsequently sampled to train the mixing network and agent network
parameters. We aim to decompose a multi-agent team experience into N single-agent individual
experiences {χind

i }i∈I = {(oi, ai, o′i, ri)}i∈I , then utilize these individual experiences to update the
agent networks.

The DIFFER framework comprises two stages: (1) Decomposer: Calculating individual rewards
to decompose team experiences; (2) Fair Experience Replay: Selecting significant individual
experiences to train the agent networks.

3.1 Exploring Individual Rewards through Invariance of Gradients

The DIFFER framework necessitates individual rewards {ri}i∈I to decompose the team experience
χteam into individual experiences {χind

i }i∈I . However, in the context of shared team reward POMDP
problems, these individual rewards are not readily available. Therefore, the key challenge for DIFFER
is to devise a strategy for calculating individual rewards.

In the traditional experience replay methods, agent networks are updated by the team TD-loss, which is
calculated based on team experience and denoted as Ltot = (R+γQ̃tot(o

′,a′; θ−)−Qtot(o,a; θ))
2.
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Figure 2: (a) In DIFFER, the mixing network is trained using the team TD-loss LTD
tot , while the

parameters of the agent networks remain unchanged. (b) The decomposing individual experiences
are inputted into Fair Experience Replay, from which they are sampled to calculate the individual
TD-loss LTD

ind for training the agent networks. (c) In traditional MARL experience replay methods,
the mixing network and agent networks are updated using the team TD-loss LTD

tot derived from team
experiences.

However, in DIFFER, agent networks are updated using the individual TD-loss, which is calculated
based on individual experience and denoted as Li = (ri + γQ̃i(o

′
i, a

′
i; θ

−
p ) − Qi(oi, ai; θp))

2. To
preserve the overall optimization objective of value factorization methods, it is desirable for an ideal
individual reward approximation strategy to maintain invariance between the gradients of Ltot (before
decomposition) and the sum of Li (after decomposition) with respect to the parameters of the agent
networks. The optimization equivalence can be formulated as follows:

(Invariance of Gradient)
∂Ltot

∂θp
=

∑
i∈I

∂Li

∂θp
, (1)

where θp represents the parameters of the agent networks (noting that the agent networks of each
agent share parameters). It is important to emphasize that this discussion focuses solely on the
gradient of a single team experience. By solving the above partial differential equation, we are able
to obtain an individual reward function that satisfies the invariance of gradients.

Proposition 1. The invariance of gradient in Equ.(1) is satisfied when individual reward of agent i is
given by:

ri = (R+ γQ̃tot −Qtot)
∂Qtot

∂Qi
− γQ̃i +Qi. (2)

for any agent i ∈ I .

A rigorous proof and analysis of above proposition can be found in Appendix. Therefore, we
approximate the individual rewards ri for individual experiences χind

i while preserving the original
optimization objective. In this way, a team experience χteam is decomposed into N individual
experiences {χind

i }Ni=1 successfully.

3.2 Fair Experience Replay Guided by Individual Experiences

After decomposition, we obtain a set of individual experience E = {χind
j }N ·B

j=0 from a team experience
mini-batch. Here, j denotes the index of the individual experience in the set, B represents the mini-
batch size, and N indicates the number of agents involved. Our objective is to construct a fair
experience replay, a method that selects significant individual experiences from E to train the agent
network. Similar to Priority Experience Replay (PER) method [28], the TD-error of each individual
experience is used as a metric to measure its significance. A larger TD-error for an individual
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Algorithm 1 Fair Experience Replay.

Require: The agent set I , the maximum steps tmax, the mini-batch and target network update period
M ;

1: Initialize replay memory D, set tstep = 0;
2: Initialize the mixing network, agent network and target network with random parameters;
3: while tstep ≤ tmax do
4: For each episode, observe initial centralized observation {o0i }i∈I ;
5: set t = 0;
6: while Not terminal do
7: With probability ϵ select a random action ati, otherwise ai = argmaxat

i
Qi(o

t
i, a

t
i) for each

agent i;
8: Take action at, then receive team reward Rt and observation {ot+1

i }i∈I ;
9: t← t+ 1;

10: end while
11: tstep ← tstep + t;
12: Insert the current episode data into buffer D;
13: Sample a random episode mini-batch of team experiences Bteam from D;
14: Calculate total TD-loss Ltot

TD as Equ. (6) and update parameters of mixing network;
15: Calculate individual reward as Equ. (8) and decompose team experience mini-batch Bteam to

individual experience set E ;
16: Calculate sample probability as Equ. (3) of each individual experience in mini-batch E;
17: Calculate the sample ratio ηtstep and sample significant individual experiences from E;
18: Calculate individual TD-loss Lind

TD as Equ. (7) and update parameters of agent networks;
19: Update target network parameters with period M .
20: end while

experience indicates that it is more valuable for the current model, and thus more likely to be selected
for training. The individual experience χind

j is sampled with probability:

P (χind
j ) =

pαj∑
k p

α
k

, (3)

where pj = |δj |+ ϵ. δj is the TD-error of χind
j and ϵ is a small positive constant in case TD-error

is zero. The hyper-parameter α determines the degree of prioritization. It degenerates to uniform
sample cases if α = 0. To correct the bias, χind

j is weighted by importance-sampling (IS) weights as
follows:

ωj = (
1

N
· 1

P (χind
j )

)β/max
k

ωk. (4)

The hyper-parameter β anneals as introduced in PER.

In cases where the agents within a team are homogeneous, their individual experiences tend to
exhibit similar TD-errors. As a result, these individual experiences are assigned similar probabilities
during the fair experience replay process. In such circumstances, the fair experience replay approach
employed by DIFFER effectively degenerates into a traditional method that utilizes team experiences.

Let E′ denote the selected individual experience set, which is a subset of the original individual
experience set E. We define the sample ratio as η := #E′/#E, where #E′ and #E are the numbers
of individual experiences in E′ and E, respectively. Since the model is initially at a low training level
and Q-value estimation errors are large, only a small portion of the individual experiences is worth
training. However, this portion increases as the training progresses. Thus, motivated by the warm-up
technique proposed in [36], we set η < 1.0 at the beginning of training and gradually increase it
as the number of training steps increases. The sample ratio ηti for a given training step ti can be
expressed as follows:

ηti =

ηstart + (ηend − ηstart)
ti

ptmax
, ti < ptmax

ηend, ti ≥ ptmax

(5)

Here, the hyper-parameters ηstart and ηend denote the initial and final values of the sample ratio,
respectively. The hyper-parameter p is the proportion of the time steps at which the sample ratio
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increases, and tmax is the overall number of training steps. The ablation studies regarding the
warm-up technique are provided in Appendix.

3.3 Overall Training and Evaluation

During the training phase, we first sample a team experience mini-batch Bteam from the replay
buffer. The parameters of mixing network θm are optimized with Ltot calculated on the mini-batch
by

Ltot
TD(θm) =

∑
χteam=(o,a,o′,R)∈Bteam

(R+ γ · Q̃tot(o
′, θ−m)−Qtot(o,a; θm))2. (6)

Next, we approximate the optimization equivalence of individual rewards of each individual expe-
rience as Equ. (8) and decompose a team experience into multiple individual experiences. Among
them, we select a significant individual experience set E′ with probability in Equ. (3). The parameters
of agent networks θp are optimized by

Lind
TD(θp) =

∑
χind
j =(oj ,aj ,o′j ,rj)∈E′

ωj(rj + γ · Q̃j(o
′
j ; θ

−
p )−Qj(oj , aj ; θp))

2, (7)

where ωj is a weight assigned to individual experience χind
j as calculated in Equ. (4).

During the inference phrase, agent i chooses a greedy action according to its individual action-value
Qi for decentralized execution. Therefore, the DIFFER framework meets centralized training and
decentralized execution. The overall training and evaluation are presented in Algo. 1.

4 Experiments

In this section, we conduct several experiments to answer the following questions: (1) Are the
decomposing individual rewards calculated using Equ. (8) optimization equivalent to the team reward
experimentally? (Sec. 4.2) (2) Can DIFFER improve the performance of existing value factorization
methods compared to the baselines across different environments? (Sec. 4.3) (3) Can DIFFER
determine a more reasonable agent policy compared to the baselines? (Sec. 4.3) (4) Can DIFFER
successfully distinguish and exploit the important individual experiences? (Sec. 4.4)

For every graph we plot, the solid line shows the mean value and the shaded areas correspond to the
min-max of the result on 5 random seeds. All the experiments are conducted on a Ubuntu 20.04.5
server with Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz and GeForce RTX 3090 GPU. The code
is available in https://github.com/cathyhxh/DIFFER.

4.1 Experiments Setting

Training Environments. We choose discrete action space environments The StarCraft Multi-Agent
Challenge (SMAC) [29] and Google Football Research (GRF) [30], as well as a continuous action
space environment Multi-Agent Mujoco (MAMujoco)[31] to conduct our experiments. SMAC is
currently a mainstream cooperative multi-agent environment with partial observability. We use the
default environment setting for SMAC with version SC 2.4.10. GFR is a platform that facilitates
multi-agent reinforcement learning in the field of football. We conduct the experiments on two
academy scenarios in GRF. MAMujoco is a continuous cooperative multi-agent robotic control
environment. Each agent represents a part of a robot or a single robot. All of the tasks mentioned in
this work are configured according to their default configuration.

Base Models. We select QMIX [1], COMIX [31], QPLEX [2] and MASER [37] as our base models
for comparison. QMIX and QPLEX are renowned value factorization methods that have been widely
used in discrete action space environments. COMIX is an extension of QMIX specifically designed
for continuous action space environments. These three base models employ team experience to train
their overall value factorization frameworks, as illustrated in Fig. 2(c). Furthermore, we include
MASER, a MARL experience replay method, in our evaluation. Similar to our methods, MASER
generates individual rewards and trains agent networks using individual experiences.

Implementation Hyper-parameters. All base models were implemented by faithfully adhering to
their respective open-source codes based on PyMARL. Regarding the warm_up trick for the sample
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Figure 3: Performance comparison of QMIX-divide and QMIX on SMAC scenarios, highlighting the
optimization equivalence between team reward and individual reward calculated by DIFFER.
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Figure 4: Performance comparison of QMIX-DIFFER (ours) and QMIX on SMAC scenarios,
highlighting the performance improvement of our method towards QMIX.

ratio, we initially set the ratio to 0.8, which gradually increases linearly until reaching 1.0 at 60%
of the total training steps. From that point onwards, the sample ratio remains fixed at 1.0 for the
remainder of the training process. For a comprehensive overview of the hyper-parameter settings
employed in our experiments, we refer readers to the appendix.

4.2 Optimization Equivalence of the Individual Experiences

In this section, our objective is to investigate whether the decomposition of individual experiences
in DIFFER yields an equivalence to team experiences within the original learning framework. To
accomplish this, we focus on the QMIX as the base model, which updates agent networks using the
team TD-loss computed from team experiences. We introduce a variant model named QMIX-divide.
In QMIX-divide, the agent networks are updated using the individual TD-loss calculated from all
decomposed individual experiences. Similar to QMIX, the mixing network of QMIX-divide is
updated using the team TD-loss. Compared with DIFFER, QMIX-divide preserves the decomposer
of team experiences but omits this selection phase in the fair experience replay. Our aim is to test the
hypothesis that the decomposed individual experiences have no impact on agent network optimization.
We compare the performance of QMIX-divide and QMIX on SMAC scenarios, as depicted in Fig. 3.
Our results demonstrate that QMIX-divide and QMIX exhibit nearly identical performance, providing
evidence in support of the optimization equivalence between the team reward and the approximated
individual reward. Furthermore, we highlight the critical role played by the selection phase in the fair
experience replay, as the omission of this phase in QMIX-divide leads to comparable performance
with the baselines QMIX.

4.3 Performance Comparison

Performance Improvement towards Value Factorization Methods. We investigated whether
DIFFER could enhance the performance of established value factorization methods. To evaluate
this, we conducted experiments using QMIX, QPLEX, and COMIX as the base models in various
environments. The training curves for each model are depicted in Fig. 4, Fig. 5, Fig. 6, and Fig. 7. As
illustrated in the figures, DIFFER exhibited notable improvements in both learning speed and overall
performance compared to the baselines during the training process. The magnitude of improvement
varied across different scenarios. Notably, DIFFER demonstrated a more significant performance
boost in scenarios where agents possessed distinct physical structures (e.g., agents with different
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Figure 5: Performance comparison of QPLEX-DIFFER (ours) and QPLEX on SMAC scenarios,
highlighting the performance improvement of our method towards QPLEX.
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Figure 6: Performance comparison of QMIX-
DIFFER (ours) and QMIX on GRF scenarios,
highlighting the performance improvement of
our method towards QMIX.
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Figure 7: Performance comparison of COMIX-
DIFFER (ours) and COMIX on MAMujoco sce-
narios, highlighting the performance improve-
ment of our method towards COMIX.

joints in Humanoid− v2_0) or subtasks (e.g., agents with different skills in 3s5z_vs_3s6z). This
observation aligns with our hypothesis that scenarios with greater dissimilarity among agents result
in a more pronounced improvement through the distinction of individual experiences facilitated by
DIFFER. Conversely, in scenarios where agents were homogeneous (e.g., 27m_vs_30m in SMAC),
DIFFER exhibited performance similar to that of the base model. In such cases, the lack of significant
differences among agents rendered the decomposition of individual experiences less impactful.
Overall, our findings demonstrate that DIFFER effectively enhances the performance of established
value factorization methods. The degree of improvement depends on the specific characteristics of
the scenarios, emphasizing the importance of considering the heterogeneity of agents when applying
DIFFER.

Comparison with MARL ER methods. In Fig. 4, we present a comparison of the performance
of DIFFER and MASER. While both models implement individual rewards and leverage individual
experiences to update agent networks, they differ in their optimization objectives. Specifically,
DIFFER retains the original objective of maximizing the team action-value Qtot. In contrast, MASER
aims to maximize a mixture of individual action-value Qi and team action-value Qtot, which alters
the original optimization objective. As a consequence of this shift in optimization objective, the
performance of MASER is observed to be worse than DIFFER in challenging environments.

Figure 8: Screenshots of QMIX (left) and QMIX-DIFFER (right)
on SMAC scenario MMM2. The red team is controlled by a trained
model, while the blue team is controlled by a built-in AI. The
Medivac in the red team is marked by an orange square. The red
team is controlled by QMIX in the left subfigure and by QMIX-
DIFFER in the right subfigure.
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Figure 9: The normalized stan-
dard deviation (std) of TD-error
of individual experiences.
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Case Study. The screenshot in Fig. 8 shows the game screen for the QMIX and QMIX-DIFFER
models in the SMAC scenario MMM2. As previously noted, learning an effective strategy for the
medivac unit is particularly challenging due to its distinct sub-task and a limited number of units. A
successful medivac strategy must incorporate a viable movement strategy that avoids enemy attacks
and reduces unnecessary damage, as well as a sound selection of healing objects that maximizes
team damage output. In the QMIX controlled agent team (Fig. 8, left), the medivac failed to learn
an appropriate movement strategy, moving too close to the enemy team and dying early in the
episode. As a result, the other agents bled out quickly and the episode ended in defeat. In contrast,
the agent team controlled by QMIX-DIFFER (Fig. 8, right) demonstrated an effective medivac
strategy, positioning the unit in a safe location to avoid enemy attacks and providing healing support
throughout the game. The resulting advantage for the red team led to a final victory.

4.4 Analysis for TD-error of Individual Experiences

In this section, we delve into the differentiation of individual experiences by analyzing their TD-
errors. Throughout the training process, we compute the standard deviation (std) of the TD-errors
of the decomposing individual experiences and normalize them using the mean TD-error. Figure 9
showcases the training curve of the normalized std of individual TD-errors. Notably, we observe a
substantial increase in the normalized std at the initial stages of training, which remains consistently
high until the conclusion of the training process. This observation underscores the substantial
distinctions that exist among individual experiences when evaluated based on their TD-errors. Our
DIFFER framework, by decomposing individual rewards, effectively captures and exploits these
distinctions among individual experiences. Consequently, DIFFER exhibits superior performance
compared to the baseline models. These findings highlight the efficacy of DIFFER in leveraging the
differentiation among individual experiences to enhance learning outcomes in MARL settings.

4.5 Visualization of Individual Rewards Produced by DIFFER

(a) timestep=4

(b) timestep=14
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Figure 10: The visualization of individual rewards produced
by our DIFFER method, along with game screenshots cap-
tured at timestep 4 and timestep 14 of the MMM2 scenario. The
index of each agent have been marked in orange number. The
consistent correlation between individual rewards and the
ongoing game situation serves as a testament to the efficacy
and rationality of our DIFFER method.

In order to provide a clear visual repre-
sentation of the individual rewards ac-
quired through our proposed DIFFER
method, we introduce game screen-
shots alongside the corresponding in-
dividual rewards for each agent, as
illustrated in Fig. 10. For the purpose
of analysis, we consider two distinct
timesteps of an episode within the
MMM2 scenario. Our team comprises
2 Marauders (index 0-1), 7 Marines
(index 2-8), and a Medivac (index
9). The team rewards assigned to
agents are proportional to the damage
inflicted on enemy units and the num-
ber of enemy unit deaths. During the
initial stage of the episode (timestep 4,
(a)), our units possess sufficient health
and do not require assistance from the
Medivac. Consequently, the contri-
bution of the Medivac to the team’s
performance is minimal. As a result,
the individual reward attributed to the
Medivac is relatively lower compared
to the Marauders and Marines, who
play active roles in offensive opera-
tions. Agents 2-5, being in closer proximity to the enemy and inflicting substantial damage, enjoy
higher individual rewards due to their effective engagement strategies. At timestep 14 (b), except
for agent 7 and 8 who have perished, the individual rewards assigned to each agent are substantially
balanced. This indicates a comparable level of contribution from all agents towards achieving team
objectives at this particular point in the game. The persistent correlation between individual rewards
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and the dynamic in-game circumstances not only reaffirms the effectiveness of our DIFFER method
but also validates its rationality.

5 Related Work

Experiment Replay (ER) is a widely used mechanism for improving data utilization and accelerating
learning efficiency in reinforcement learning (RL). ER reuses the historical experience data for
updating current policy [34, 38]. In multi-agent RL, using a single-agent ER algorithm directly
to obtain individual experience is naive if agents can obtain accurate individual rewards from the
environment [39, 40]. However, in the multi-agent problem setting addressed in this work, a team
of agents only has access to a shared team reward, making it impossible to obtain an accurate
individual reward. Consequently, multi-agent ER algorithms employ joint transitions as minimal
training data [41, 1, 2]. MASER[37] is a method similar to ours, as it calculates individual rewards
from the experience replay buffer and uses individual experience to train the individual value network.
However, MASER generates individual rewards to maximize the weighted sum of individual action-
value and team action-value, which may violate the original optimization target of multi-agent RL,
i.e., maximizing the team action-value. In our work, we propose a novel strategy for approximating
individual reward and demonstrate its optimization equivalence. To our knowledge, DIFFER is the
first work to approximate individual reward in a way that ensures optimization equivalence.

6 Conclusion

Limitation. A limitation of the DIFFER method is the introduction of additional computation when
calculating the individual reward and TD-error. This increased computational cost is an inherent
trade-off for the benefits gained in terms of fairness and improved learning efficiency. The additional
computational burden should be considered when applying this method in resource-constrained
settings or scenarios with strict real-time requirements.

In conclusion, this paper presents the DIFFER framework. By decomposing the team reward into in-
dividual rewards, DIFFER enables agents to effectively distinguish and leverage important individual
experiences. Through the invariance of network gradients, we derive a partial differential equation
that facilitated the computation of the underlying individual rewards function. By incorporating the
solved closed-form individual rewards, we calculate the individual temporal-difference error, provid-
ing the significance of each experience. Notably, DIFFER showcases its adaptability in handling both
homogeneous and diverse individual experiences, demonstrating its versatility in various scenarios.
Our extensive experiments on popular benchmarks demonstrate the effectiveness of DIFFER in terms
of learning efficiency and fairness, surpassing the performance of existing MARL ER methods. We
hope that our work provides a new perspective on experience replay methods in MARL, inspiring
further research and advancements in the field.
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A The Proof of Proposition 1

Proposition 1. The invariance of gradient is satisfied when individual reward of agent i is given by:

ri = (R+ γQ̃tot −Qtot)
∂Qtot

∂Qi
− γQ̃i +Qi. (8)

for any agent i ∈ I .

Proof. According to the chain rule,
∂Ltot

∂θp
=

∂Ltot

∂Qtot

∑
i∈I

∂Qtot

∂Qi

∂Qi

∂θp
= 2(R+ γQ̃tot −Qtot)

∑
i∈I

∂Qtot

∂Qi

∂Qi

∂θp
; (9)

∑
i∈I

∂Li

∂θp
=

∑
i∈I

∂Li

∂Qi

∂Qi

∂θp
=

∑
i∈I

2(ri + γQ̃i −Qi)
∂Qi

∂θp
. (10)

Therefore,
∂Ltot

∂θp
=

∑
i∈I

∂Li

∂θp
,

⇐⇒ 2(R+ γQ̃tot −Qtot)
∑
i∈I

∂Qtot

∂Qi

∂Qi

∂θp
=

∑
i∈I

2(ri + γQ̃i −Qi)
∂Qi

∂θp
,

⇐⇒ 2
∑
i∈I

[(R+ γQ̃tot −Qtot)
∂Qtot

∂Qi
]
∂Qi

∂θp
= 2

∑
i∈I

(ri + γQ̃i −Qi)
∂Qi

∂θp
,

⇐ (R+ γQ̃tot −Qtot)
∂Qtot

∂Qi
= ri + γQ̃i −Qi,∀i ∈ I

⇐⇒ ri = (R+ γQ̃tot −Qtot)
∂Qtot

∂Qi
− γQ̃i +Qi,∀i ∈ I.

(11)

In conclusion, a sufficient condition for invariance of gradients is as follow: individual reward of
agent i is calculated as Equ. (8) for any i ∈ I .

B The Hyper-parameters Setting

In DIFFER, the replay buffer stores the most recent 5000 episodes, and mini-batches of size 32 are
sampled from it. The target network is updated every 200 episodes. RMSProp is utilized as the
optimizer for both the mixing network and agent network, with a learning rate of 0.0005, α (decay
rate) set to 0.99, and ϵ (small constant) set to 0.00001. Gradients are clipped within the range of [-10,
10]. The discount factor for the expected reward (return) is 0.99.

Regarding the fair experience replay, we apply the "warm-up" technique to the sample ratio η. It
linearly increases from 0.8 to 1.0 over 60% of the time steps and remains constant thereafter. The
regulation parameter α, which determines the prioritization degree in fair experience replay, is set to
0.8. The regulation parameter β of the sampling probability anneals linearly from 0.6 to 1.0.

For exploration, we employ an ϵ-greedy strategy with ϵ linearly annealed from 1.0 to 0.05 over 50K
time steps and then held constant for the remainder of the training. The maximum time step during
training is set to 2005000 for all experiments. Each scenario is run with 5 different random seeds.

The agent network architecture follows a DRQN[27] structure, consisting of a GRU layer for the
recurrent layer with a 64-dimensional hidden layer. Before and after the GRU layer, there are
fully-connected layers with 64 dimensions each. The mixing network is implemented using open-
source code. All experiments on the SMAC benchmark adopt the default reward and observation
settings provided by the benchmark. For the baseline algorithms, we use the authors’ code with
hyper-parameters fine-tuned specifically for the SMAC benchmark.

The supplementary materials contain the code for our DIFFER framework. The
main codes of individual reward calculation and fair experience replay are shown in
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DIFFER_code/learners/q_learner_divide.py and DIFFER_code/ER/PER/prioritized_memory.py, re-
spectively.

The specific hyper-parameters are listed below.

Table 1: The hyper-parameters that used in our DIFFER framework.
Hyper parameters Meaning Value

epsilon_start Start value of ϵ anneal 1.0
epsilon_end End value of ϵ anneal 0.05

epsilon_anneal_time Duration step of ϵ anneal 50000
mempool_size Memory pool size in learner 5000

batch_size Batch size per training 32
target_update_interval Interval steps between 2 updates of target network 200

lr Learning rate 0.0005
regularization Weights of L1-regularizer 0.0005
tot_optimizer Optimizer in training RMSProp

tot_optim_alpha Alpha of optimizer 0.99
tot_optim_eps Epsilon of optimizer 0.00001
ind_optimizer Optimizer in training RMSProp

ind_optim_alpha Alpha of optimizer 0.99
ind_optim_eps Epsilon of optimizer 0.00001
grad_norm_clip Clip range of gradient normalization 10

ηstart Start value of η warm up 0.8
ηend End value of η warm up 1.0
p Duration step ratio of η warm up 0.6
α Regulation parameter of sampling probability 0.8
ϵ Regulation parameter of sampling probability 0.01

βstart Start value of β warm up 0.6
βend End value of β warm up 1.0

C Ablation Studies for warm_up Technique of Sample Ratio

To highlight the significance of the warm_up trick for the individual experience sample ratio η, we
conduct ablation experiments on SMAC maps MMM2. Fig. 11 showcases the performance of QMIX-
DIFFER with and without the warm_up sample ratio. In this context, the model W-warm_up (ours)
refers to the setting where the sample ratio linearly increases as the training progresses. On the other
hand, W/O-warm_up denotes the scenario where the sample ratio remains fixed throughout the
training phase. To ensure a fair comparison, we conduct experiments with different fixed values of η,
while keeping the batch-size of all three models in Fig. 11 consistent at 32. Let us assume that the
overall quantity of training data is K for W/O-warm_up-η=1.0. By employing the hyper-parameter
setting detailed in Sec. B, we can calculate that the overall training data amounts to 0.94K for
W-warm_up. Consequently, we select η from the set {0.8, 0.94, 1.0}. The results clearly demonstrate
that the warm_up trick leads to performance improvements, even when using a smaller amount of
training data. This highlights the importance of incorporating the warm_up strategy into the training
process.

D Analysis of Sampling Percentage

In this section, we present the distribution of individual experience sampling percentages across differ-
ent agent classes within the MMM2 scenario from the SMAC environment[29]. The team composition
consists of three distinct unit classes: 1 Medivac unit responsible for healing teammates, 2 Marauder
units specialized in offensive actions, and 7 Marine units dedicated to attacking. Throughout the
training process, DIFFER selects important individual experiences from a diverse set of 10 agents
to update the agent networks. We calculate the sampling percentages of individual experiences for
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Figure 11: Ablation studies regarding the warm up trick of individual transition sample ratio on MMM2.
“W-warm_up (ours)” represents the sample ratio increases as the training step increases until 1.0.
“W/O-warm_up” represents the sample ratio η is fixed during training.
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Figure 12: Average percentage of sampled individual experiences from each unit class on SMAC
scenario MMM2. The number in the label represents the quantity of unit. The sampling percentage of a
unit class is high when it poses a learning challenge.

each agent and derive the average sampling percentage for each unit class. The corresponding curves,
focusing on the later stages of training for improved stability, are depicted in Fig. 12.

The graph showcases significant variations in the average sampling percentages among the unit
classes, reflecting their distinct learning difficulties. As the learning difficulty of a particular unit
class intensifies, a larger proportion of individual experiences from that class are sampled during
training. This adaptive behavior of the DIFFER method highlights its ability to dynamically adjust
the sampling percentages to address the unique learning challenges encountered by each unit class.
Notably, achieving effective strategies for the Medivac unit proves particularly challenging due to
its distinctive sub-task and limited availability. Consequently, the average sampling percentage of
the Medivac unit surpasses that of the other two unit classes significantly. Although the number
of Marine units exceeds that of Marauder units, the Marines are encouraged to adopt a specialized
positioning strategy. This strategy requires the Marines to spread out in a fan-like formation, aiming
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to minimize the damage inflicted upon them while maximizing their effectiveness in dealing damage
to the enemy. Consequently, the Marines face higher learning difficulties compared to the Marauders.
Reflecting this distinction, the average sampling percentage of the Marine unit class surpasses that of
the Marauder unit class.

E Discussion Related to Policy-Based Methods

E.1 Performance Comparison with Policy-Based Method COMA

In this section, we compare DIFFER with the classic policy-based method COMA[3] on four SMAC
scenarios as shown in Fig. 13. We can see that DIFFER performs better than COMA on all four
scenarios, which strongly highlight the strengths and advantages of our proposed DIFFER framework.
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Figure 13: Performance comparison of QMIX-DIFFER (ours) and a classic policy-based method
COMA on SMAC scenarios, highlighting the performance improvement of our method towards
COMA.

E.2 Potential Application to Policy-Based Approaches

Our method, DIFFER, is specifically designed to address MARL problems where individual rewards
are not available, and teams only have access to a shared team reward. In such scenarios, calculating
individual action-values becomes a challenge. However, DIFFER provides a solution by decomposing
individual trajectories, enabling the calculation and update of individual action-values. For policy-
based methods that approximate individual action-values using individual critics, such as IPPO[42]
and MADDPG[43], the traditional approach involves treating the team reward as an individual reward
and using it to update individual critics. In this context, the decomposition of team experiences
provided by DIFFER may not be directly applicable or necessary since the individual critics can
approximate action-values using the team reward. On the other hand, for policy-based methods
that do not require the approximation of individual action-values, such as MAPPO[4], our DIFFER
method might not offer significant enhancements. In such cases, where there is no need to decompose
team trajectories for individual action-values training, the contribution of DIFFER may not be as
pronounced.

F Environment Introduction

In this section, we provide a brief overview of the multi-agent environment discussed in this paper.

F.1 SMAC

The Starcraft Multi-Agent Challenge (SMAC)[29] (as shown in Fig. 14 (a)) is a prominent cooperative
multi-agent environment known for its partial observability. In this paper, we utilize the default
environment setting of SMAC, specifically version SC2.4.10. SMAC offers a variety of scenarios,
each featuring a confrontation between two teams of units. One team is controlled by a trained model,
while the other team is governed by a built-in strategy. The scenarios differ in terms of the initial
unit positions, the number and types of units in each team, as well as the characteristics of the map
terrain. In the SMAC environment, a team is deemed victorious when all units belonging to the
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Figure 14: Visualisation of three experimental environments.

opposing team are eliminated. The primary objective of the policy is to maximize the win rate across
all scenarios. To facilitate training, the environment provides a shaped reward function that takes into
account factors such as hit-point damage inflicted and received by agents, the number of units killed,
and the outcome of the battle. Learning a coordinated micromanagement strategy in diverse maps
poses a significant challenge for the agents in this environment. Such a strategy aims to maximize
the damage inflicted upon enemies while minimizing the damage sustained. Overall, the SMAC
environment demands agents to acquire sophisticated coordination and decision-making skills in
order to excel in diverse scenarios and effectively apply micromanagement strategies.

F.2 GRF

Google Research Football (GRF) environment [30] (shown in Fig. 14 (b)) presents a challenging
multi-agent reinforcement learning (MARL) setting where a team of agents must learn to pass the
ball amongst themselves and overcome their opponents’ defense to score goals. Similar to the SMAC
environment, the opposing team in GRF is controlled by a built-in strategy. In GRF, each agent
has 19 different actions at their disposal, including standard move actions in eight directions, as
well as various ball-kicking techniques such as short and long passes, shooting, and high passes
that are difficult for opponents to intercept. The agents’ observations encompass information about
their own position, movement direction, the positions of other agents, and the ball. An episode in
GRF terminates either after a fixed number of steps or when one of the teams successfully scores
a goal. The winning team receives a reward of +100, while the opposing team is rewarded with -1.
In this study, we specifically focus on two official scenarios: academy_3_vs_1_with_keeper and
academy_counterattack_hard.

F.3 MAMujoco

The Multi-Agent Mujoco (MAMujoco) environment[31] (shown in Fig. 14 (c)) is a highly versatile
and realistic simulation platform designed for multi-agent robotic control tasks. It is based on the
Mujoco physics engine and offers continuous action spaces, allowing for smooth and precise control
of robotic agents. Each agent in the environment represents a specific component or a complete robot,
enabling the simulation of complex multi-robot systems. All of the tasks mentioned in this work are
configured according to their default configuration. We set maximum observation distance to k = 0
for Humanoid− v2 and k = 1 for manyagent_swimmer.

We also provide the description of agent types in each scenario in Table 2. It aims to enhance the
reader’s understanding of the distinct performance improvements brought about by DIFFER.
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Table 2: The agent type distribution in each scenario.
Env. Scenario Name #Agent #Type Type Distribution

SMAC

27m_vs_30m 27 1 27

2c_vs_64zg 2 1 2

MMM2 10 3 1-2-7

3s5z_vs_3s6z 8 2 3-5

GRF
academy_3_vs_1_with_keeper 3 2 1-2

academy_counterattack_hard 4 2 2-2

MAMujoco
Humanoid-v2_0 2 2 1-1

manyagent_swimmer 20 10 2-2-2-2-2-2-2-2-2-2
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