
A Notation Table

We summarize all the useful notations in this paper as Table 4. If M is a matrix, unless otherwise
specified, we use mi to denote the i-th row of M , M j to denote the j-th column of M , and M ij ,
M i,j or Mij to denote the entity at the i-th row and j-th column.

Table 4: Important notations and corresponding descriptions.
Notations Descriptions

n Number of samples/nodes
l Number of labeled samples/nodes
u Number of unlabeled samples/nodes
d Dimension of sample’s feature space
c Number of classes

xi ∈ Rd i-th sample’s feature vector
yi ∈ {k ∈ N+ | 1 ≤ k ≤ c} i-th sample’s ground-truth label value

yi ∈ {0, 1}c i-th sample’s ground-truth label vector
f i ∈ Rc i-th sample’s soft label vector

I Identity matrix
X ∈ Rn×d Node feature matrix

Y ∈ {0, 1}n×c Ground-truth label matrix
F ∈ Rn×c Soft label matrix

A ∈ {0, 1}n×n Adjacency matrix
W ∈ Rn×n Weight matrix
D ∈ Rn×n Degree matrix
L ∈ Sn+ (Combinatorial) Laplacian matrix
L ∈ Sn+ Normalized Laplacian matrix
S ∈ Sn+ Smoothing matrix

Z ∈ Rn×n
+ Distance matrix

∥ · ∥F Frobenius norm
⊙ Hadamard product

vec[·] Matrix vectorization
IA Indicator function of set A
f∗ Conjugate of function f

B Related Work

B.1 Affinity Graph Construction in GSSL

A line of recent research works indicates that the key to the success of the GSSL is to construct
high-quality graphs rather than more powerful label inference algorithms [36, 37]. Based on the
review in [52], we can divide the existing graph construction methods in GSSL into two categories:
distance metric-based methods and distance metric-based methods. The distance metric-based
approaches compute the similarities between samples based on certain distance measurements, in
which a smaller distance implies a higher level of similarity. Representative examples include the
Radial basis function (RBF) kernel and kNN graphs [17].. b-matching graph [26] solves the issue of
varying node degrees in the kNN graph. Smooth graph learning (SGL) [29] and its variants [19] are
proposed from the view of graph signal processing with theoretical guarantees on convergence. More
recent works focus on how to incorporate label information for robustness [6, 7], or probabilistic view
for interpretability [14]. The data representation-based graph methods measure the similarities by the
representation coefficients between samples and some chosen anchor nodes. Linear neighborhood
propagation (LNP) [57, 58] reconstructs each sample using a convex combination of its k nearest
neighbors. Anchor Graph Regularization (AGR) [40] enhances the scalability by introducing the
anchor nodes. There are also several recent works utilizing label information to guide the graph
construction step. ALGSSL adaptively updates the graph during the semi-supervised learning
process [74]. SSLRR graph [86] adds the low-rank representation with coefficients between two
labeled samples with different labels constrained to zero. Most recent works [24, 23, 63] further
improve the efficiency via the bipartite graph construction.

16

B.2 Unified Framework for Label Inference in GSSL

Most GSSL methods focus on the label inference step, where an affinity graph is assumed to have
been constructed already. Gaussian Random Field (GRF) [85] is the first to propose the idea of label
propagation by using the combinatorial Laplacian matrix as the smoothing matrix. It also tolerates
no prediction errors on the labeled nodes. Local and Global Consistency (LGC) [82] relaxes the
GRF method by eliminating the restriction of zero empirical risk on labeled nodes and exploits the
normalized Laplacian matrix for smoothing instead. Graph Convolutional Networks (GCN) [31]
and its variants [10, 22] are increasingly popular methods with the success of deep learning. Recent
research work has shown its deep connection with the classic label propagation algorithm [27, 65, 59].

Following the regularization framework in graph-based semi-supervised learning [52], we can recover
most of the label inference algorithms in GSSL with a unified framework as Eq. (16).

F ∗ = argmin
F

Q(F) = argmin
F

{Tr (F ⊺SF) + Tr ((F − Y)⊺Λ(F − Y))} . (16)

Table 5: Summary of several representative GSSL methods under the optimization framework in
Eq. (1).

Method S Λ

Gaussian Random Field (GRF) [85] L limλ→∞ λI
Local and Global Consistency (LGC) [82] L λI

Random Walk Smoothing [83] L′ λI

Tikhonov Smoothing [4] L

(
λI l O
O O

)
Hub & Authority Smoothing [84] (1− γ)LA + γLH λI

Manifold Smoothing [5] K+ γL

(
λI l O
O O

)
Graph Convolutional Networks (GCN) [31] L+ γL+ γ2L2 + · · ·

(
λI l O
O O

)
ℓp Laplacian Regularization [1] L(p) λI

Poisson Learning [9] Lu

(
λ0I l O
O λ1Iu

)

We summarize several representative works under this unified framework by listing the exact forms of
two key matrices S and Λ in Table 5. Gaussian Random Field (GRF) [85] is the first to propose the
idea of label propagation by using the combinatorial Laplacian matrix as the smoothing matrix. It also
tolerates no prediction errors on the labeled nodes, so the trade-off parameter can be set to infinity.
Local and Global Consistency (LGC) [82] relaxes the GRF method by eliminating the restriction of
zero empirical risk on labeled nodes and exploits the normalized Laplacian matrix for smoothing
instead. Random Walk Smoothing [83] extends LRC for directed graphs by indirectly operating LGC
on a modified undirected graph with a new normalized Laplacian matrix L′. Tikhonov Smoothing [4]
only uses the labeled nodes in the quadratic error term. Hub & Authority Smoothing [84] proposes
another random-walk-based strategy on directed graphs that is motivated by the hub and authority
web model. Its smoothing matrix is more complex with two underlying Laplacian matrices LA,LH

for in-links and out-links. Manifold Smoothing [5] adds a Mercer kernel K in the smoothing matrix,
which controls the smoothness of the predictions in the ambient space. Graph Convolutional Networks
(GCN) [31] and its variants are increasingly popular methods with the success of deep learning. We
present the result of GCN after removing all the non-linear activation functions. Recent research
work has shown its deep connection with classic label propagation algorithm [27, 35, 65, 59]. ℓp
Laplacian Regularization extends smoothness functional with p > 2 by manipulating L(p). Poisson
Learning [9] follows the idea in ℓp Laplacian Regularization by adding the Poisson equation on the
graph.

C Pseudocodes for Proposed Method BAGL

In this algorithm, we first prepare the input for Procedure GWBI in lines 1-4, including the distance
matrix Z, two linear maps T a, T b for getting out-degree and in-degree vectors, and step size settings.

17

Then we run Procedure GWBI for two blocks W ul, W uu (lines 5-6), and recover the ultimate optimal
affinity graph (lines 7-8).

Algorithm 1: Block-wise Affinity Graph Learning (BAGL)

Input: Labeled samples {x}li=1, unlabeled samples {x}l+u
i=l+1, balancing parameters α1, α2 and

β1, β2, error tolerance parameter ϵ.
Output: Weight matrix of the constructed affinity graph Ŵ .

1 Construct distance matrix Z with Zij = ∥xi − xj∥22;
2 Construct T a such that T avec[W ul] = (W ⊺

ul,W ul)1,∀W ul ∈ Ru×l
+ ;

3 Construct T b such that T bvec[W uu] = (W ⊺
uu,W uu)1,∀W uu ∈ Ru×u

+ ;
4 Set the fixed step size t1 = 2β1

l+u and t2 = β2

u ;
5 ŵul ← GWBI(vec(Zul),T a,α1,β1,t1,ϵ);
6 ŵuu ← GWBI(vec(Zuu),T b,α2,β2,t2,ϵ);
7 Reconstruct Ŵ ul, Ŵ uu based on ŵul, ŵuu respectively;

8 return Ŵ =

(
O O

Ŵ ul Ŵ uu

)
;

D More Theoretical Analysis

D.1 Robustness Interpretation

Following the proposed framework [60], we show that the proposed block-wise graph learning
framework for the optimal structure introduced in Proposition 1 can also enhance the robustness
when compared with the popular methods [29, 18] that are designed for the whole graph. To combine
Problem (5) and (6) into one optimization problem in matrix form, we may assume α = α1 =
2α2, β = β1 = β2. Therefore, we can convert the optimization problem over an asymmetric weight
matrix W into an equivalent Problem (17) over an undirected graph (12 (W +W ⊺)) for convenience.

min
W∈Rn×n

+

∥W ⊙Z∥1 − α1⊺ log(W1) + β∥W ∥2F

s.t. W ll = O.
(17)

Following common practice [18, 44], we suppose that there exists a ground-truth Laplacian matrix
L∗ that admits the eigendecomposition L∗ = χΛ∗χ⊺. Further, the channel of node feature Xi (i-th
column of X) is independently and identically (i.i.d.) generated by the factor analysis model as Xi =
χh+ui+δ, where h ∼ N (0,Λ∗†) is the hidden variable, ux is the mean of Xi, and δ ∼ N (0, δ2ϵI)
is the Gaussian noise with mean zero and covariance δ2ϵI . We can further rewrite Problem (17) in
terms of L since there exists a bijective mapping between the weight matrix W and the Laplacian
matrix L for undirected graphs. Namely, we have ∥W⊙Z∥1 = 2Tr(X⊺LX) = 2d

∑d
i=1 X

⊺
i LXi,

and there exists a function R : Sn+ → R such that R(L) = −α1⊺ log(W1) + β∥W ∥2F . To get rid
of the equality constraint, we transform the original problem into a bi-level optimization problem by
introducing the ambiguity set A.

min
L∈Sn

+

{
max
q∈A

EXi∼q(Xi)[X
⊺
i LXi] +R(L)

}
, (18)

where A = {q ∈ P(µ,Σ) | (µ − µ̂d)
⊺L(µ − µ̂d) ≤ ρ1, ∥Σ − Σ̂d∥2F ≤ ρ2,µ ∈ Rn,Σ ∈ Sn+}.

Here, P(µ,Σ) denotes the set of probability distributions with mean µ ∈ Rn and covariance Σ ∈ Sn+.
µ̂d = 1

d

∑d
i=1 Xi, Σ̂d = 1

d

∑d
i=1(Xi − µ̂d)(Xi − µ̂d)

⊺ are the empirical mean and empirical
covariance of the observed features, respectively.

We can show that, with high probability, the ambiguity set A contains the ground-truth distribution
p(Xi) with mean µ∗ and covariance Σ∗ when choosing ρ1, ρ2 according to Theorem 4 and 5. These
results are directly adapted from [60].

18

Theorem 4. For ∀ξ ∈ (0, 1
e2) and let ρ1 = c1

d ln2(1ξ) with the constant c1 > 0, we have,

P [(µ∗ − µ̂d)
⊺L(µ∗ − µ̂d) > ρ1] ≤ ξ.

Theorem 5. For ∀ξ ∈ (0, 1
e2) and we set ρ2 properly as ρ2 = c2√

d
ln3/2(4d

3/2

ξ)∥Σ∗∥F + c3
d ln2(2ξ)

with constants c2 > 0, c3 > 0, we have,

P
[
∥Σ∗ − Σ̂d∥F > ρ2

]
≤ ξ.

Theorem 4 and 5 guarantee that the hidden ground-truth distribution of the node feature will be
contained in the introduced ambiguity set. Even if there exists some noise in the observed features,
we can still recover the ground-truth distribution as long as the number of node feature channels d is
sufficiently large (ρ1 → 0, ρ2 → 0 when d→∞). However, previous works [29, 18] only use the
empirical distribution p̂ of the node feature as EXi∼p̂(Xi) [X

⊺
i LXi], which may suffer from the issue

of noise. Because they tend to yield an affinity graph where the given noisy node features {Xi}di=1
are smooth, but the clean node features generated by the actual hidden distribution p are not. Our
proposed block-wise graph learning framework can mitigate this problem by inexplicitly manipulating
an approximation distribution q of ground-truth p in a relaxed ambiguity set. Consequently, from
Theorem 4 and 5, the robustness of our method with respect to noisy node features is guaranteed with
high probability.

Theorem 4 and 5 can be viewed as a theoretical interpretation or analysis of our proposed method
when the underlying data generation model is assumed to be the factor analysis model. Under these
assumptions, BAGL can guarantee that the hidden ground-truth distribution of the sample feature will
be contained in an introduced ambiguity set. Even if there exists some noise in the observed features,
we can still recover the ground-truth distribution as long as the number of node feature channels is
sufficiently large.

We further validate the robustness to node feature noise in the proposed method via empirical
experiments, where we add different levels of Gaussian noise to the given node features. More details
can be found in Appendix G.3.

D.2 Generalization Bond Improvement Interpretation

We further investigate how the proposed optimal graph structure can facilitate the downstream label
inference algorithm through the lens of expected generalization error. In the transductive semi-
supervised learning setting, we care about the generalization ability of the algorithm on the unlabeled
data only, unlike the classic supervised setting. Therefore, we use the expected generalization error
for theoretical analysis. In other words, we are interested in the generalization behavior of the learning
algorithm compared to a properly defined optimal risk minF Q(F). Formally, we have Theorem 6 as
follows. Note that, Theorem 6 can be viewed as an adaptation of Theorem 1 in [28] by instantiating
the loss function as the least square loss. Theorem 1 in [28] holds for any affinity graph constructed
in GSSL. We thereby follow the same assumptions regarding the label distributions as those made
in [28] and omit the details here.
Theorem 6. If the label inference algorithm in (1) is performed on the optimal graph structure
proposed in Proposition 1, the expected generalization error over the labeled samples index set Dl,
uniformly drawn without replacement from Dn = {1, 2, · · · , n}, can be upper bounded as

EDl

[
1

u

∑
i∈Du

Iŷi ̸=yi

]
≤ 16min

F
{Q(F)}+ Tr(Λ) Tr(S−1)

nl
, (19)

with Du = Dn −Dl, Q(F) = Tr (F ⊺s(W ∗)F) + Tr ((F − Y)⊺Λ(F − Y)).

Theorem 6 reveals that our method could enjoy better generalization capability due to a tighter
error upper bound, when compared with other graph construction methods without the optimal
structure. It analyzes the generalization capability of the fixed label inference algorithm on different
graph construction methods. If we use our proposed graph construction method, we have the upper
bound in Theorem 6. Indeed, we can also obtain an almost identical upper bound in Eq. (19) when
other graph construction methods, like kNN graph, are employed as input for the label inference
step, but Q(F) changes to Q′(F) = Tr (F ⊺s(W)F) + Tr ((F − Y)⊺Λ(F − Y)). Note that the

19

additional second term is unchanged. Based on the definition of W ∗ in Definition 1, it is easy to see
Q(F) ≤ Q′(F) thanks to the optimality of W ∗. Hence, our proposed optimal structure can induce a
tighter generalization error bound for GSSL methods, providing a stronger guarantee for the learning
performance.

E Proofs

We present the detailed proofs in this section and some of them are adapted from [47, 53, 60, 28].

E.1 Proof of Theorem 1

Proof. From Definition 1, we know
F = (s(W) +Λ)−1ΛY ,

so we can rearrange it and get
(s(W) +Λ)F = ΛY ,

and thus,
F ⊺s(W)F = F ⊺ΛY − F ⊺ΛF . (20)

By plugging Eq. (20) into Eq. (3), we can simplify Eq. (3) as
W ∗ = argmin

W
{Tr(F ⊺s(W)F) + Tr ((F − Y)⊺Λ(F − Y))}

= argmin
W

{Tr (F ⊺ΛY − F ⊺ΛF) + Tr ((F − Y)⊺Λ(F − Y))}

= argmin
W

{Tr(F ⊺ΛY − F ⊺ΛF + F ⊺ΛF − F ⊺ΛY − Y ⊺ΛF + Y ⊺ΛY)}

= argmin
W

{Tr(Y ⊺ΛY)− Tr(Y ⊺ΛF)} .

(21)

Note that the first term Tr(Y ⊺ΛY) is irrelevant to W , and thus we have,
W ∗ = argmax

W
Tr(Y ⊺ΛF), (22)

with F = (s(W) +Λ)−1ΛY .

By decomposing Y as Y ⊺ = (Y ⊺
l Y ⊺

u) with Y l ∈ {0, 1}l×c being the first l rows of Y and

Y u ∈ {0, 1}u×c being the last u rows of Y . Similarly, we have
(

Λl O
O Λu

)
and F =

(
F l

F u

)
.

Also recall that we initialize Y u = O, so we further simplify Eq. (22) as
W ∗ = argmax

W
Tr(Y ⊺

l ΛlF l). (23)

From Eq. (23), if we recall that F ∈ [0, 1]n×c is a normalized predicted probability score matrix
according to the definition of the soft label matrix and Λ ∈ Sn+, we can easily show that W ∗ is the
minimizer if and only if

Y l = F l,

which proves the necessity and the sufficiency of this condition.

Remark. Theorem 1 is a necessary and sufficient condition on the optimality definition of W ∗ in
Problem 3. If the affinity graph is optimal, then after we perform the label inference algorithm for
GSSL on W ∗, the predicted soft labels for the labeled nodes would coincide with the ground truth
precisely (i.e. Y l = F ∗

l , with F ∗ = (F ∗
l ,F

∗
u) = (s(W ∗) +Λ)−1ΛY).

The converse of this observation also holds true. If we find that Y l = F l, when running the label
inference algorithm on some affinity graph, then this affinity graph satisfies the optimality definition
in Definition 1. Theorem 1 serves as an equivalent statement of Definition 1. The proposed optimal
structure in Proposition 1 actually derives from Theorem 1.

Note that at the very beginning we establish Eq. (20) in which we substitute the regularization
term F ⊺s(W)F with F ⊺ΛY − F ⊺ΛF , which does not include s(W). That is how we avoid the
appearance of s(W) in the later derivation. Note that the starting point is the fact that F is fixed as
F = (s(W) +Λ)−1ΛY . Therefore, our proposed optimal structure is irrelevant to the exact forms
of s(W) or S.

20

E.2 Proof of Proposition 1

Proof. We take the LRC algorithm [82] as an example for simplicity. Proofs for other label inference
algorithms under the unified GSSL framework discussed in Appendix B.2 follow in the similar
manner.

Note that we have,

F = (s(W) +Λ)−1ΛY = λ2(
1

λ
L+ I)−1Y .

By ignoring the irrelevant leading coefficient λ since the final prediction ŷi = ŷ(f i) =
argmax1≤j≤c F

∗
ij is only dependant on the relative value in F , and decomposing (1

λ
L + I)−1

as (
I + 1

λD
− 1

2

ll (Dll −W ll)D
− 1

2

ll − 1
λD

− 1
2

ll W luD
− 1

2
uu

− 1
λD

− 1
2

uu W ulD
− 1

2

ll I + 1
λD

− 1
2

uu (Duu −W uu)D
− 1

2
uu

)
,

we can get, (
I +

1

λ
D

− 1
2

ll (Dll −W ll)D
− 1

2

ll

)
F l −

1

λ
D

− 1
2

ll W luD
− 1

2
uu F u = Y l.

Recall that if W is optimal in Definition 1, based on Theorem 1, we immediately have

D
− 1

2

ll (Dll −W ll)D
− 1

2

ll Y l = D
− 1

2

ll W luD
− 1

2
uu F u. (24)

A naive solution of Eq. (24) is to set both W ll = O, and W lu = O, which yields the optimal graph
structure for W ∗ as

W ∗ =

(
O O

W ul W uu

)
.

Remark. From this lemma and the fact F = λ2(1
λ
L + I)−1Y at the beginning of the proof, We

can also easily show that under the optimal structure of W ∗, the predicted soft label matrix for has
become

F u = (I − µW uu)
−1W ulY L,

when absorbing all irrelevant coefficients into some constant µ.

We review the logic of Proposition 1 again. We first start from Problem (3) in Definition 1 to get an
ad-hoc solution in Eq. (4), which is optimal under Definition 1. Note that Eq. (4) only specifies how
optimal graph structure should be like (partitioned into four blocks according to the label indices
with two zeros) and the exact entries in each block (W ul,W uu) of Eq. (4) will be further optimized.
Hence, we have Eq.(7)-(8) to optimize the exact weights in each block. Note that Problem (5) and
Problem (6) strictly follow the optimal structure in Eq. (4) by splitting it into two similar problems.

Some may wonder whether the asymmetric structure of W ∗ may lead to unclear positive semidefinite
definition of the resulted smoothing matrix s(W ∗) or S. In fact, we do not even care about the exact
definition of s(·) or S and the positive semi-definiteness of S when deriving an ad-hoc solution of
Problem (3) in Definition 1 as long as F is fixed as F = (s(W) +Λ)−1ΛY . Note that we do not
figure out all the optimal solutions to Problem (3). Instead, we only give an ad-hoc solution in Eq. (4)
that does not depend on specific forms of S as long as F is fixed as F = (s(W) +Λ)−1ΛY . In this
way, we can subtly circumvent the issue of positive semi-definiteness of S or the exact forms of S.

E.3 Proof of Dual Problem Derivation

Proposition 2. The dual problem of Problem (7) is given as minλ F (λ) +G(λ) equivalently, where
F (λ) = f∗(T ⊺λ) and G(λ) = g∗(−λ).

21

Proof. The Lagrangian function with the Lagrangian multipliers λ ∈ Rn is given as L(w,v,λ) =
f(w) + g(v)− ⟨λ,Tw − v⟩. Therefore, the dual problem can be written as

max
λ

min
w,v
L(w,v,λ)

= max
λ
−{max

w,v
−L(w,v,λ)}

= max
λ
−
{
max
w
{⟨T ⊺λ,w⟩ − f(w)}+max

v
{⟨−λ,v⟩ − g(v)}

}
= max

λ
−{f∗(T ⊺λ) + g∗(−λ)}

= −min
λ
{f∗(T ⊺λ) + g∗(−λ)}.

E.4 Proof of Properties of Objective Functions

Lemma 1. f(w) = w⊺z + β∥w∥22 + I{w≥0} is 2β-strongly convex.

Proof. Since β∥w∥22 is twice continuously differentiable and ∇2β∥w∥22 = 2β. Thus, β∥w∥22 is
strongly convex with the parameter 2β. Note that w⊺z + I{w≥0} is also convex. Then by the
definition of the convexity and strong convexity, it is easy to see that f(w) is strongly convex with
the parameter 2β.

Lemma 2. F (λ) = f∗(T ⊺λ) has the following properties.

(1) F (λ) is differentiable and∇F (λ) = Tx∗, where

x∗ = argmax
x
{(T ⊺λ)⊺x− f(x)}

.

(2) ∇F (λ) is Lipschitz continuous with parameter L = l+u
2β .

Proof. (1) We know that
x∗ = argmax

x
{(T ⊺λ)⊺x− f(x)}

if and only if
T ⊺λ ∈ ∂f(x∗),

which is equivalent to
x∗ ∈ ∂f∗(T ⊺λ).

Since x∗ is a unique maximizer, ∂f∗(T ⊺λ) contains only one element, which means

∂f∗(T ⊺λ) = {∇f∗(T ⊺λ)} = {x∗}.
Therefore, this implies F (λ) is differentiable and

∇F (λ) = T∇f∗(T ⊺λ) = Tx∗.

(2) From Lemma 1, we know f(w) is 2β-strongly convex. Thus, we have, ∀x,x′,T ⊺λ ∈
∂f(x),T ⊺λ′ ∈ ∂f(x′),

(T ⊺λ− T ⊺λ′)⊺(x− x′) ≥ 2β∥x− x′∥22. (25)

Also we have x ∈ ∂f∗(T ⊺λ) and x′ ∈ ∂f∗(T ⊺λ′). By (1), we must further have
x = ∇f∗(T ⊺λ) and x′ = ∇f∗(T ⊺λ′). Substituting this into (25) gives

(T ⊺λ− T ⊺λ′)⊺(∇f∗(T ⊺λ)−∇f∗(T ⊺λ′))

≥2β∥∇f∗(T ⊺λ)−∇f∗(T ⊺λ′)∥22.
(26)

By Cauchy-Schwarz inequality, we have

∥∇f∗(T ⊺λ)−∇f∗(T ⊺λ′)∥2 · ∥T ⊺λ− T ⊺λ′∥2
≥(T ⊺λ− T ⊺λ′)⊺(∇f∗(T ⊺λ)−∇f∗(T ⊺λ′))

≥2β∥∇f∗(T ⊺λ)−∇f∗(T ⊺λ′)∥22.

22

Also note that ∥T ∥2 is the spectral norm of T , we then obtain

∥∇f∗(T ⊺λ)−∇f∗(T ⊺λ′)∥2

≤ 1

2β
∥T ⊺λ− T ⊺λ′∥2

≤ ∥T
⊺∥2
2β

∥λ− λ′∥2.

(27)

Further, we have
∥∇F (λ)−∇F (λ′)∥2
= ∥T∇f∗(T ⊺λ)− T∇f∗(T ⊺λ′)∥2

≤ ∥T ∥
2
2

2β
∥λ− λ′∥2.

(28)

Recall that we have W1 = T 1w, which denotes that T simply maps the vector w to the
out-degree vector of the weight matrix. Then it is easy to see

T 1T
⊺
1 = lI.

Similarly, we have
T 2T

⊺
2 = uI.

Recall that

T =

(
T 1

T 2

)
,

and we can easily get

TT ⊺ =

(
lIu 1u1

⊺
l

1l1
⊺
u u1l

)
.

So now we know its eigenvalues λ can be then computed as the roots of the characteristic
polynomial as

det(TT ⊺ − λI)

= det((l − λ)Iu) det

(
(u− λ)I l − 1l1

⊺
u(

1

l − λ
Iu)1u1

⊺
l

)
= (l − λ)u det

(
(u− λ)I l −

u

l − λ
1l1

⊺
l

)
= (l − λ)u(u− λ)l det(I l −

u

(u− λ)(l − λ)
1l1

⊺
l)

= (l − λ)u(u− λ)l
(
1 + Tr(

−u
(u− λ)(l − λ)

1l1
⊺
l)

)
+ (l − λ)u(u− λ)l det(

−u
(u− λ)(l − λ)

1l1
⊺
l)

= (l − λ)u(u− λ)l(1 +
−ul

(u− λ)(l − λ)
)

= λ(l − λ)u−1(u− λ)l−1(λ− l − u)

Let det(TT ⊺ − λI) = 0 and assume u > l, we immediately know λ1 = l + u > λ2 =
· · · = λl = u > λl+1 = · · · = λn−1 = l > λn = 0. Therefore, ∥T ∥22 = λ1 = l + u. By
substituting this into Eq. (28), we finally have

∥∇F (λ)−∇F (λ′)∥2 ≤
l + u

2β
∥λ− λ′∥2.

23

E.5 Proof of w̄k Derivation

w̄k = argmax
w

{
(T ⊺µk)⊺w − f(w)

}
= argmin

w

{
w⊺z + β∥w∥22 − (T ⊺µk)⊺w + I{w≥0}

}
= argmin

w

{∥∥∥∥w +
z − T ⊺µk

2β

∥∥∥∥2 + I{w≥0}

}

= argmin
w

{
1

2

∥∥∥∥w − T ⊺µk − z

2β

∥∥∥∥2 + 1

2
I{w≥0}

}

= prox 1
2 I{w≥0}

(
T ⊺µk − z

2β

)
= PR+

(
T ⊺µk − z

2β

)
=

[
T ⊺µk − z

2β

]
+

.

E.6 Proof of Updating Step of Dual Variables

Proposition 3. The updating step λk = proxtG
(
µk − t∇F (µk)

)
can be written equivalently as

the following three steps.

w̄k =

[
T ⊺µk − z

2β

]
+

,

ūk =
(T w̄k − t−1µk) +

√
(T w̄k − t−1µk)⊙ (T w̄k − t−1µk) + 4αt−11

2
,

λk = µk − t(T w̄k − ūk),

where [·]+ = max(0, ·) and ⊙ denotes element-wise multiplication.

Proof. By Lemma 2, we know ∇F (µk) = T w̄k with

w̄k = argmax
w

{
(T ⊺µk)⊺w − f(w)

}
= argmin

w

{
w⊺z + β∥w∥22 − (T ⊺µk)⊺w + I{w≥0}

}
= argmin

w

{∥∥∥∥w +
z − T ⊺µk

2β

∥∥∥∥2 + I{w≥0}

}

= argmin
w

{
1

2

∥∥∥∥w − T ⊺µk − z

2β

∥∥∥∥2 + 1

2
I{w≥0}

}

= prox 1
2 I{w≥0}

(
T ⊺µk − z

2β

)
= PR+

(
T ⊺µk − z

2β

)
=

[
T ⊺µk − z

2β

]
+

.

Let pk = µk − tT w̄k. By the extended Moreau decomposition [43],

proxγh(z) + γ proxγ−1h∗(z/γ) = z, ∀z.

24

We have
proxtG(p

k) = pk − tproxt−1G∗(t−1pk)

= pk + tproxt−1g(−t−1pk)

= µk − tT w̄k + tproxt−1g(T w̄k − t−1µk)

= µk − t(T w̄k − ūk).

Here, ūk = proxt−1g(T w̄k − t−1µk). Note that g(v) = −α1⊺ log(v) and by the definition of
proximal mapping, it is easy to prove that

proxt−1g(v) =
v +
√
v ⊙ v + 4αt−11

2
.

Therefore,

ūk =
(T w̄k − t−1µk) +

√
(T w̄k − t−1µk)⊙ (T w̄k − t−1µk) + 4αt−11

2
,

λk = µk − t(T w̄k − ūk),

E.7 Proof of Theorem 2

Proof. Recall that the dual sequence {λk} is generated by Procedure GWBI equivalently as the
following iterations.

µk = λk−1 +
k − 2

k + 1
(λk−1 − λk−2),

λk = proxtG
(
µk − t∇F (µk)

)
.

Let θk = 2
(k+1) and we also introduce another intermediate variable νk. Initialize ν0 = λ0. Then by

substituting the expression for νk in formula for µk, we can rewrite the iteration in Procedure GWBI
as

µk = (1− θk)λk−1 + θkνk−1,

λk = proxtG(µ
k − t∇F (µk)),

νk = λk−1 +
1

θk
(λk − λk−1).

For notation simplicity, we let λ+ = λk, λ = λk−1, µ+ = µk, ν+ = νk, ν = νk−1 and θ = θk.
Then we have

µ+ = (1− θ)λ+ θν, (29)

λ+ = proxtG(µ
+ − t∇F (µ+)), (30)

ν = λ+
µ+ − λ

θ
, (31)

ν+ = λ+
λ+ − λ

θ
. (32)

We can get the upper bound on G from the definition of proximal mapping.

G(λ+) ≤ G(λ′) + ξ⊺(λ+ − λ′) ∀λ′, (33)

where ξ ∈ ∂G(λ+). Since λ+ = proxtG(µ
+−t∇F (µ+)), then by the subgradient characterization,

we have µ+ − t∇F (µ+)− λ+ ∈ ∂(tG)(λ+) = t∂G(λ+). So we can get

1

t

(
µ+ − t∇F (µ+)− λ+

)
∈ ∂G(λ+).

From Eq. (33), for all λ′, we have

25

G(λ+) ≤ G(λ′) +
1

t

[
µ+ − t∇F (µ+)− λ+

]⊺
(λ+ − λ′)

= G(λ′) +

[
∇F (µ+) +

1

t
(λ+ − µ+)

]⊺
(λ′ − λ+)

= G(λ′) +∇F (µ+)⊺(λ′ − λ+) +
1

t
(λ+ − µ+)⊺(λ′ − λ+). (34)

Recall that∇F (λ) is Lipschitz continuous with parameter L = l+u
2β from Lemma 2 and the step size

is fixed as t = 1
L = 2β

l+u . By the upper bound from Lipschitz property, for all λ′, we have,

F (λ+) = F (λ′) +∇F (λ′)⊺(λ+ − λ′)

+

∫ 1

0

(λ+ − λ′)⊺
(
∇F (λ′ + τ(λ+ − λ′))−∇F (λ′)

)
dτ

≤ F (λ′) +∇F (λ′)⊺(λ+ − λ′) +
L

2
∥λ′ − λ+∥22

= F (λ′) +∇F (λ′)⊺(λ+ − λ′) +
1

2t
∥λ′ − λ+∥22. (35)

Let λ′ = µ+ in Eq. (35), we immediately have,

F (λ+) ≤ F (µ+) +∇F (µ+)⊺(λ+ − µ+) +
1

2t
∥µ+ − λ+∥22. (36)

Combining Eq. (34) and Eq. (36), we can obtain, for ∀λ′

Q(λ+) = F (λ+) +G(λ+)

≤ G(λ′) + F (µ+) +∇F (µ+)⊺(λ′ − µ+) (37)

+
1

t
(λ+ − µ+)⊺(λ′ − λ+) +

1

2t
∥µ+ − λ+∥22

≤ G(λ′) + F (λ′) +
1

t
(λ+ − µ+)⊺(λ′ − λ+) +

1

2t
∥µ+ − λ+∥22

= Q(λ′) +
1

t
(λ+ − µ+)⊺(λ′ − λ+) +

1

2t
∥λ+ − µ+∥22. (38)

Therefore, we have,

Q(λ+)−Q(λ′) ≤ 1

t
(λ+ − µ+)⊺(λ′ − λ+) +

1

2t
∥λ+ − µ+∥22 ∀λ′. (39)

By making a convex combination of the RHS of Eq.(39) for λ′ = λ and λ′ = λ∗. We have,

θ
(
Q(λ+)−Q(λ∗)

)
+ (1− θ)

(
Q(λ+)−Q(λ)

)
= Q(λ+)− θQ(λ∗)− (1− θ)Q(λ)

≤ 1

t
(λ+ − µ+)⊺

(
θλ∗ + (1− θ)λ− λ+

)
+

1

2t
∥λ+ − µ+∥22

=
1

2t

(
∥µ+ − (1− θ)λ− θλ∗∥22 − ∥λ

+ − (1− θ)λ− θλ∗∥22
)

=
θ2

2t

(
∥ν − λ∗∥22 − ∥ν+ − λ∗∥22

)
. (40)

From Eq.(40), we have

Q(λ+)− θQ(λ∗)− (1− θ)Q(λ) ≤ θ2

2t

(
∥ν − λ∗∥22 − ∥ν+ − λ∗∥22

)
.

Then we can get

Q(λk)−Q(λ∗) ≤(1− θk)
(
Q(λk−1)−Q(λ∗)

)
+

(θk)
2

2t

(
∥νk−1 − λ∗∥22 − ∥νk − λ∗∥22

)
.

(41)

26

Thus, we obtain,

t

(θk)2

(
Q(λk)−Q(λ∗)

)
+

1

2
∥νk − λ∗∥22

≤ (1− θk)t

(θk)2

(
Q(λk−1)−Q(λ∗)

)
+

1

2
∥νk−1 − λ∗∥22.

(42)

Moreover, recall that θk = 2
k+1 with θ1 = 1, and thus it is easy to prove that

1− θk

(θk)2
≤ 1

(θk−1)2
∀k ≥ 2.

Therefore, note that ν0 = λ0 we obtain from Eq. (42),

t

(θk)2

(
Q(λk)−Q(λ∗)

)
+

1

2
∥νk − λ∗∥22

≤ (1− θk)t

(θk)2

(
Q(λk−1)−Q(λ∗)

)
+

1

2
∥νk−1 − λ∗∥22

≤ t

(θk−1)2

(
Q(λk−1)−Q(λ∗)

)
+

1

2
∥νk−1 − λ∗∥22

≤ · · ·

≤ (1− θ1)t

(θ1)2
(
Q(λ0)−Q(λ∗)

)
+

1

2
∥ν0 − λ∗∥22

=
1

2
∥λ0 − λ∗∥22.

Finally, recall that t = 2β
l+u , and we have

Q(λk)−Q(λ∗) ≤ (θk)2

2t
∥λ0 − λ∗∥22 =

l + u

β(k + 1)2
∥λ0 − λ∗∥22.

E.8 Proof of Theorem 3

Proof. Let us define
h1(w) = f(w)− ⟨T ⊺λ,w⟩,
h2(v) = g(v) + ⟨λk,v⟩.

Similar to the sequence wk = argmaxw{⟨T
⊺λk⟩ − f(w)}, we also construct another sequence

vk = argmaxv{⟨−λ
k,v⟩ − g(v)}. Then, we immediately have,

L(w,v,λk) = h1(w) + h2(v) ∀w,∀v, (43)

wk = argmin
w

h1(w), (44)

vk = argmin
v

h2(v). (45)

By Lemma 1, it follows that h1(w) is also 2β-strongly convex. Therefore, by Eq. (44) and the strong
convexity of h1(w), we know that

h1(w)− h1(w
k) ≥ β∥w −wk∥22 ∀w. (46)

Similarly, by Eq. (45) and the convexity of h2(v), we also know that

h2(v)− h2(v
k) ≥ 0 ∀v. (47)

By summing Eq. (43), Eq. (44) and Eq. (45) on both sides, we then obtain

L(w,v,λk)− L(wk,vk,λk) ≥ β∥w −wk∥22 ∀w,∀v. (48)

27

By introducing the primal optimal solution (w∗,v∗) and substituting w = w∗ and v = v∗ = Tw∗,
we get

L(w∗,v∗,λk)− L(wk,vk,λk) ≥ β∥w∗ −wk∥22. (49)
Additionally, based on the definition of wk and vk, we have

L(wk,vk,λk) = −
{
⟨T ⊺λk,wk⟩ − f(wk) + ⟨−λk,vk⟩ − g(vk)

}
= −f∗(T ⊺λk)− g∗(−λk)

= −F (λk)−G(λk)

= −Q(λk).

L(w∗,v∗,λk) = f(w∗) + g(v∗)− ⟨λk,Tw∗ − v∗⟩
= f(w∗) + g(Tv∗)

= −Q(λ∗).

The last equality follows from the strong duality in Proposition 2. Therefore, from Eq. (49) and
Theorem 2, we have

β∥w∗ −wk∥22 ≤ Q(λk)−Q(λ∗) ≤ l + u

β(k + 1)2
∥λ0 − λ∗∥22

. Finally, we obtain

∥w∗ −wk∥2 ≤
√
l + u

β(k + 1)
∥λ0 − λ∗∥2

Remark. Our method applies the FISTA algorithm to the dual formulation (Eq. (8)) of the original
problem (Eq. (7)). This will change the original convergence analysis of the FISTA algorithm when
applied to the primal formulation directly. Theorem 2 follows the standard convergence analysis
of the FISTA algorithm in terms of the dual variable λ, while Theorem 3 analyzes the convergence
result in terms of the primal variable w, that we actually care about in Procedure GWBI. We need to
use the result of Theorem 5 to prove Theorem 6. Our method achieves the SOTA global convergence
rate with provable guarantees for the graph construction step in GSSL, as far as we know.

E.9 Proof of Moment Growth Condition

Lemma 3. Assume that the channel of node feature Xi (i-th column of X) is independently and
identically (i.i.d.) generated by the factor analysis model as Xi = χh+ui+δ, where h ∼ N (0,Λ∗†)
is the hidden variable, ux is the mean of Xi, and δ ∼ N (0, δ2ϵI) is the Gaussian noise with mean
zero and covariance δ2ϵI . Then the probability distribution p(Xi) with mean µ∗ = ui must satisfy
the moment growth condition [48]: there exists a constant c > 0 such that for ∀r ≥ 1,

EXi∼p(Xi) [∥Xi − µ∗∥r2] ≤ (cr)r/2.

Proof. Note that the latent variable h follows a degenerate zero-mean multivariate Gaussian distri-
bution with the precision matrix defined as the eigenvalue matrix Λ∗ of the graph Laplacian L∗,
i.e.,

h ∼ N (0,Λ∗†),

where Λ∗† is the Moore-Penrose pseudoinverse of Λ. Based on the generative model Xi =
χh+ ui + δ and the isotropic noise model δ ∼ N (0, δ2ϵI), the conditional probability of Xi given
h, and the probability of Xi as:

Xi | h ∼ N (χh+ ui, δ
2
ϵI),

Xi ∼ N (ui,L
∗† + δ2ϵI).

Since Xi follows the Gaussian distribution, based on the probabilistic techniques developed in
Lemma 5.5 in [56], we can show that there exists a constant c > 0 such that ∀r ≥ 1, such that

EXi∼p(Xi) [∥Xi − µ∗∥r2] ≤ (cr)r/2.

28

E.10 Proof of Theorem 4

Proof. Suppose L is compact and, thus, we have maxL ∥L∥ < +∞. Together with Lemma 3, we
obtain that there exists a constant c > 0 such that for all r ≥ 1,

max
L

{
EXi∼p(X1)

[
∥L1/2(Xi − µ∗)∥r2

]}
≤ (cr)r/2.

Let us define ζi = L1/2(Xi−µ∗) for i = 1, 2, · · · , d, and let τ1, · · · , τd be i.d.d. Bernoulli random
variables. Since EXi∼p(Xi) [ζi] = 0 for i = 1, · · · , d, by the convexity of x 7→ |x|r on R+ for any
r ≥ 1, we have

EXi∼p(Xi)

[∥∥∥∥∥
d∑

i=1

ζi

∥∥∥∥∥
r

2

]
≤ 2rE

[∥∥∥∥∥
d∑

i=1

τiζi

∥∥∥∥∥
r

2

]
.

Now by Jensen’s Inequality, conditioned on ζi, we have for r ≥ 2

Eτ

[∥∥∥∥∥
d∑

i=1

τiζi

∥∥∥∥∥
r

2

]
< rr/2

(
d∑

i=1

∥ζi∥22

)r/2

≤ dr/2−1rr/2

(
d∑

i=1

∥ζi∥r2

)
.

By Markov’s inequality, for any t > 0 and r ≥ 2, we obtain

P

[∥∥∥∥∥1d
d∑

i=1

ζi

∥∥∥∥∥
2

> t

]
≤ t−rd−rEXi∼p(Xi)

[∥∥∥∥∥
d∑

i=1

ζi

∥∥∥∥∥
r

2

]
≤ 2rcr/2rr

trdr/2
.

If we choose t = e
√
4c/d ln(1/ξ), r = t

e

√
4c/d ≥ 2 (since we have ξ ∈ (0, 1

e2)), we conclude that

P
[
(µ∗ − µ̂d)

⊺L(µ∗ − µ̂d) >
4ce2

d
ln2(1/ξ)

]
= P

[∥∥∥∥∥1d
d∑

i=1

ζi

∥∥∥∥∥
2

> ρ1

]
≤ ξ,

where ρ1 = c1
d ln2(1ξ) and c1 = 4ce2.

E.11 Proof of Theorem 5

Proof. We define

Σ̃d =
1

d

d∑
i=1

(Xi − µ∗)(Xi − µ∗)⊺,

and we want to first prove there exists some constant c2 > 0 such that

∥Σ̃d −Σ∗∥F ≤
c2√
d
ln3/2(4n3/2/ξ)∥Σ∗∥

will hold with high probability at least 1− ξ/2. For i = 1, · · · , d, we let

Qi = Σ∗−1/2(Xi − µ∗)(Xi − µ∗)⊺Σ∗−1/2 − In.

It is easy to show that EXi∼p(Xi) [Qi] = 0 for i = 1, · · · , d. Also from Lemma 3, we know that
there exists a constant c′ > 0 such that for all r ≥ 1,

EXi∼p(Xi)

[∥∥∥Σ∗−1/2(Xi − µ∗)
∥∥∥r
2

]
≤ (c′r)r/2.

Together with Proposition 5 in [48], we show that for any r ≥ 1,

EXi∼p(Xi)

∥∥∥∥∥
d∑

i=1

Qi

∥∥∥∥∥
r

Sr

 ≤ 2rdr/2rr/2(n+ (2c′r)r).

Here, we use ∥A∥Sr to denote the Schatten r-norm of A ∈ Rq1×q2 ; i.e., ∥A∥Sr
:= ∥σ(A)∥r, where

σ(A) is the vector of singular values. Note that ∥v∥2 ≤ q1/2∥v∥r for any v ∈ Rq and r ≥ 2. By
applying Markov’s inequality, we get , for any r ≥ 2 and t > 0, that

P

[∥∥∥∥∥1d
d∑

i=1

Qi

∥∥∥∥∥
F

> t

]
= P

∥∥∥∥∥1d
d∑

i=1

Qi

∥∥∥∥∥
r

S2

> tr

 ≤ 2rrr/2n1/2

trdr/2
(n+ (2c′r)r).

29

By setting c = max{c′, 1
4}, t =

c2√
d
ln3/2(4n3/2/ξ), c2 = 4c(2e3)

3/2, r =
(

t
√
d

4c3/2

)2/3
≥ 2 (since

we have ξ ≤ 1
e2), we have

2rrr/2n1/2

trdr/2
(n+ (2c′r)r) =

n3/2 + n1/2(2c′r)r

e3r/2(2cr)r
≤ ξ

2
.

Finally, recall that

∥Σ̃d −Σ∗∥F =

∥∥∥∥∥Σ∗1/2

(
1

d

d∑
i=1

Qi

)∥∥∥∥∥
F

,

we have

P
[
∥Σ̃d −Σ∗∥F >

c2√
d
ln3/2(4n3/2/ξ)∥Σ∗∥

]
≤ ξ

2
.

It is easy to observe that Σ̃d = Σ̂d + (µ̂d − µ∗)(µ̂d − µ∗)⊺. Hence, we obtain

∥Σ̂d −Σ∗∥F
≤ ∥Σ̂d − Σ̃d∥F + ∥Σ̃d −Σ∗∥F
= (µ̂d − µ∗)⊺(µ̂d − µ∗) + ∥Σ̃d −Σ∗∥F .

Similar to Theorem 4, we can deduce, there exists c3 > 0 such that

P
[
(µ̂d − µ∗)⊺(µ̂d − µ∗) >

c3
d
ln2(2/ξ)

]
≤ ξ

2
.

By union bound, we finally show that

P
[
∥Σ∗ − Σ̂d∥F >

c2√
d
ln3/2(

4d3/2

ξ
)∥Σ∗∥F +

c3
d
ln2(

2

ξ
)

]
≤ ξ.

E.12 Proof of Theorem 6

Proof. We introduce the following notations. Let il+1 ̸= i1, · · · , il be an integer randomly sampled
from Du and let Dl+1 = Dl ∪ {il+1}. Let F̂ (Dl+1) be the graph-based semi-supervised learning

method in Eq. (1) using the training data in Dl+1 with Λ =

(
1
λlI l O
O O

)
, we have

F̂ (Dl+1) = argmin
F

1

l

∑
j∈Dl+1

ϕ(f j ,yj) + λTr(F ⊺SF)

 ,

where ϕ(f j − yj) =
∑c

k=1 ϕ0(f j,k,yj,k) and ϕ0(f j,k,yj,k) = (f j,k − yj,k)
2. It is easy to verify

that ϕ0(x, y) enjoys the following properties.

1. ϕ0(x, y) is non-negative and convex in x.

2. When y = 0, 1 and ϕ0(x, y) ≤ 1
16 , we have |∇xϕ0(x, y)| ≤ 1

2 .

3. minx{ϕ0(x, 1) ≤ 1
16} −maxx{ϕ0(x, 0) ≤ 1

16} =
1
2 .

We first show two lemmas.

Lemma 4. For each k = 1, · · · , c, we have

|F̂ (Dl+1)il+1,k − F̂ (Dl)il,k| ≤
S−1

il+1,il+1

2λl
|∇kϕ(F̂ (Dl+1)il+1

,yl+1)|,

where ∇kϕ(F̂ (Dl+1)il+1
,yl+1) denotes the gradient of ϕ(F̂ (Dl+1)il+1

,yl+1) with respect to
F̂ (Dl+1)il+1,k.

30

Proof. We know that there exists a gradient ∇kϕ such that the following first-order condition holds,

−2λlS−1F̂ (Dl)·,k =
∑
h∈Dl

∇kϕ(F̂ (Dl)j ,yj)ej ,

where ej is the n-dimensional vector with all zeros except for the j-th component with value one.
Similarly, we have,

−2λlS−1F̂ (Dl+1)·,k =
∑

h∈Dl+1

∇kϕ(F̂ (Dl+1)j ,yj)ej .

Now, we let G = F̂ (Dl) and H = F̂ (Dl+1). By subtracting the above two equations, and taking
the inner product with H ·,k −H ·,k, we obtain,

− 2λl(H ·,k −G·,k)
⊺S(H ·,k −G·,k)

= ∇kϕ(Hil+1
,yil+1

)(Hil+1,k −Gil+1,k)

+
∑
j∈Dl

(
∇kϕ(Hj ,yj)−∇kϕ(Gj ,yj)

)
(Hj,k −Gj,k)

≤ −∇kϕ(Hil+1
,yil+1

)(Hil+1,k −Gil+1,k).

The last inequality is based on the convexity of ϕ. Using Cauchy-Schwarz inequality, we have,

2λl(Hil+1,k −Gil+1,k)
2

= 2λl
(
(H ·,k −G·,k)

⊺eil+1

)2
≤ 2λl(H ·,k −G·,k)

⊺S(H ·,k −G·,k)e
⊺
il+1

S−1eil+1

≤ |∇kϕ(Hil+1
,yil+1

)| · |Hil+1,k −Gil+1,k|S
−1
il+1,il+1

.

Therefore, we have |Hil+1,k −Gil+1,k| ≤
S−1

il+1,il+1

2λl |∇kϕ(Hi),yil+1
|, which completes the proof.

Lemma 5.

Iŷil+1
(Dl)̸=yil+1

≤ max
k=k0,il+1

{
16ϕ0(F̂ (Dl+1)il+1,k,yil+1,k

) +
1

λl
S−1

il+1,il+1

}
.

Proof. If F̂ (Dl) does not make an error on the il+1-th sample. That is

Iŷil+1
(Dl) ̸=yil+1

= 0,

and thus the inequality automatically hold.

Assume that F̂ (Dl) makes an error on the il+1-th sample, then we immediately have
Iŷil+1

(Dl)̸=yil+1
= 1. So there exists some ko ̸= yil+1

such that F̂ (Dl)il+1,yil+1
≤ F̂ (Dl)il+1,k0 .

This means that for any constant d, either we have F̂ (Dl)il+1,yil+1
≤ d or F̂ (Dl)il+1,k0

≥ d. Let

d =

(
min
x
{ϕ0(x, 1) ≤

1

16
}+max

x
{ϕ0(x, 0) ≤

1

16
}
)
/2,

and notice that we also have

min
x
{ϕ0(x, 1) ≤

1

16
} −max

x
{ϕ0(x, 0) ≤

1

16
} = 1

2
.

Therefore, we either have

min
x
{ϕ0(x, 1) ≤

1

16
} − F̂ (Dl)il+1,yil+1

≥ 1

4
,

or we have
F̂ (Dl)il+1,k0

−max
x
{ϕ0(x, 0) ≤

1

16
} ≥ 1

4
.

31

It follows that there exists k = k0 or k = yil+1
such that either

ϕ0(F̂ (Dl+1)il+1,k,yil+1,k
) ≥ 1

16
,

or

|F̂ (Dl+1)il+1,k − F̂ (Dl)il+1,k| ≥
1

4
.

From Lemma 4, we have either

16ϕ0(F̂ (Dl+1)il+1,k,yil+1,k
) ≥ 1,

or

S−1
il+1,il+1

2λl
≥ 1

2
.

This implies that

16ϕ0(F̂ (Dl+1)il+1,k,yil+1,k
) +

S−1
il+1,il+1

λl
≥ 1 = Iŷil+1

(Dl)̸=yil+1
.

With these two lemmas in hand, we are ready to prove Theorem 6. We denote D(j)
l+1 as the subset of l

samples in Dl+1 with the j-th sample left out. From Lemma 5, we have,

I
ŷil+1

(D
(j)
l)̸=yj

≤ 16ϕ0(F̂ (Dl+1)il+1,k,yj) +
1

λl
S−1

j,j .

Therefore, we can get,

EDl

 1

u

∑
j∈Du

Iŷi ̸=yi


= EDl+1

[
Iŷ(Dl+1

l+1)l+1 ̸=yl+1

]
=

1

l + 1
EDl+1

 ∑
j∈Dl+1

I
ŷ(D

(j)
l+1)̸=yj


≤ 16l

l + 1
EDl+1

1
l

∑
j∈Dl+1

ϕ(f j ,yj) + λTr(F ⊺SF)

 (50)

+
1

l + 1
EDl+1

 ∑
j∈Dl+1

1

λl
S−1

jj


= 16

 1

n

n∑
j=1

ϕ(f j ,yj) +
λl

l + 1
Tr(F ⊺SF)

+
1

λl

 1

n

m∑
j=1

S−1
jj


= 16min

F
{Q(F)}+ Tr(Λ) Tr(S−1)

nl
.

The last equality follows from the definition of F ∗ in Eq. (1) and Λ =

(
1
λlI l O
O O

)
.

32

F Experiment Settings

F.1 Datasets Description

ORHD 1 (Optical Recognition of Handwritten Digits Data Set), USPS 2, MNIST 3, and EMNIST
Letters 4 are four popular digits image datasets. COIL100 5 is an object image dataset. TDT2 6 is a
text dataset. We fix the number of anchor nodes as 1000 in four datasets (COIL100, USPS, ORHD,
and TDT2), while for the rest two datasets (MNIST, EMNIST-Letters), the number of anchors is fixed
as 2000 instead. We also perform tf-idf and principal component analysis (PCA) as the pre-processing
step on the TDT2 dataset to reduce the running time. The features in the other five datasets are
normalized with the popular Zscore method.

F.2 Implementation Details

All the experiments are conducted on a hardware configuration with a 3.8 GHz 8-Core Intel Core i7
CPU with 32 GB 2667 MHz DDR4 RAM. The software configuration is MATLAB with the R2021b
version.

All the hyper-parameters are fine-tuned with the grid search method. We list all the common hyper-
parameters settings in all baseline methods and the optimal hyper-parameters settings in our proposed
method on the six datasets. Other uncovered parameters are fixed as their original papers suggest.
We repeat the experiment 20 times for each case and report the average result with optimal parameter
setting in efficacy and robustness analysis. Unless otherwise specified, the default label inference
algorithm is LGC, and the label rate is ten labeled samples per class.

RBF Because it is not straightforward to find an adequate value for the kernel bandwidth when the
labeled examples are scarce. We estimate its value by a third of the average distance between each
sample and its k-th nearest neighbor, as suggested in [26].

kNN The sparsification parameter k is chosen from the range {1,2,4,5,8,10,20,50}.

SGL The trade-off parameters α, β are chosen from two ranges, {0.01,0.02,0.05,0.1,0.2,0.5,1} and
{0.001,0.002,0.005,0.01,0.02,0.05,0.1}, respectively.

RGCLI The number of neighbors considered in kNN ke is fixed at 50 while the number of
neighbors considered in RGCLI ki is chosen from the range {5,10,20,30,40,50}.

AGR The k-means clustering centers are taken as anchor nodes. The number of the nearest anchors
s for each sample is fixed as 3.

GraphEBM The label-level threshold γl to restrict the choice of neighborhood is chosen
from the range {5, 10, 15, 20, 25}. The feature-level threshold is chosen from the range
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8}.

BCAN The trade-off parameter that balances the graph and label inference α is chosen from the
range {0.001,0.01,0.1,1,10,100,1000}.

BAGL We have 4 main hyper-parameters. The trade-off parameters α1, α2 are chosen from the
range {0.01,0.02,0.05,0.1,0.2,0.5,1} while the trade-off parameters β1, β2 are chosen from the range
{0.001,0.002,0.005,0.01,0.02,0.05,0.1}.

We summarize all the optimal hyper-parameter settings for BAGL on the six datasets as Table 6.

1http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html\#usps
3http://yann.lecun.com/exdb/mnist/
4https://www.nist.gov/itl/products-and-services/emnist-dataset
5https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
6http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

33

Table 6: Hyperparameter settings for optimal classification accuracy on the six datasets.
α1 β1 α2 β2

ORHD
GRF 0.2 0.01 0.1 0.01
LGC 0.5 0.02 0.1 0.005
GCN 0.2 0.005 0.1 0.01

USPS
GRF 0.5 0.02 0.2 0.01
LGC 0.5 0.01 0.2 0.01
GCN 0.5 0.02 0.1 0.01

COIL100
GRF 0.2 0.01 0.02 0.002
LGC 0.1 0.005 0.05 0.002
GCN 0.1 0.005 0.05 0.005

TDT2
GRF 0.2 0.02 0.05 0.02
LGC 0.2 0.01 0.1 0.01
GCN 0.2 0.01 0.1 0.02

MNIST
GRF 0.2 0.02 0.05 0.02
LGC 0.5 0.05 0.05 0.005
GCN 0.5 0.02 0.1 0.005

EMNIST Letters
GRF 0.2 0.02 0.02 0.01
LGC 0.2 0.02 0.02 0.05
GCN 0.2 0.02 0.02 0.05

G Experiment Results

G.1 Classification Results on Other Datasets

We still conduct experiments under extremely low label rates with LGC fixed as the label inference
method on other datasets. Fig. 4 demonstrates that BAGL performs relatively well with varying label
rates, especially on the TDT2 and EMNIST Letters datasets.

G.2 Convergence Results on Other Datasets

We continue to show the faster convergence rate of BAGL on other large-scale datasets. We still only
sample 1% nodes in each dataset for the convenience of presentation in Fig. 5. Its superiority in terms
of the convergence rate becomes apparent when constructing large-scale graphs.

G.3 Robustness Analysis

For starters, to validate the robustness of BAGL, we add Gaussian noise N (0, γσi) on i-th feature
channel with the corresponding variance σi and γ ranging from {0, 1, 2, 4}. Fig. 6 reveals that BAGL
is exceptionally robust to feature noise, especially on the TDT2 and MNIST datasets.

G.4 Sensitivity Analysis

Finally, we explore the sensitivity of the model performance with regard to the parameters α1, α2

and β1, β2. α1, α2 are chosen from the range {0.01,0.02,0.05,0.1,0.2,0.5,1} and β1, β2 are chosen
from the range {0.001,0.002,0.005,0.01,0.02,0.05,0.1}. Fig. 7 displays the performance with respect
to variations of them. Overall, BAGL is relatively insensitive to a fixed range of parameter variations.
There will be a performance drop if either the connectivity penalty term or the sparsity penalty term
dominates the objective function.

G.5 Scalability Analysis

G.5.1 Time Complexity Analysis

We now rigorously analyze the time complexity of Algorithm 1. The first step to construct the
distance matrix takes O(n2) trivially. Then it takes O(l+ u) = O(n) to construct the linear mapping
matrix T a since it is a sparse matrix and it only takes constant time to construct each row in T a

34

1 2 3 4 5 6 7 8 9 10
Number of labeled samples per class

50

60

70

80

90

100

A
cc

u
ra

cy
 (
%
)

RBF

kNN

SGL

RGCLI

AGR

GraphEBM

BCAN

BAGL

(a) COIL100

1 2 3 4 5 6 7 8 9 10
Number of labeled samples per class

50

60

70

80

90

A
cc

u
ra

cy
 (
%
)

RBF

kNN

SGL

RGCLI

AGR

GraphEBM

BCAN

BAGL

(b) TDT2

1 2 3 4 5 6 7 8 9 10
Number of labeled samples per class

60

65

70

75

80

85

90

95

A
cc

u
ra

cy
 (
%
)

RBF

kNN

SGL

RGCLI

AGR

GraphEBM

BCAN

BAGL

(c) MNIST

1 2 3 4 5 6 7 8 9 10
Number of labeled samples per class

20

30

40

50

60

A
cc

u
ra

cy
 (
%
)

RBF

kNN

SGL

RGCLI

AGR

GraphEBM

BCAN

BAGL

(d) EMNIST Letters

Figure 4: Classification results on real-world datasets with different label rates (Cont.).

given the matrix vectorization operation. Similarly, it costs O(u+ u) = O(u) to recover T b. We can
neglect the assignment for the step size since it also takes constant time. The last two steps also only
cost constant time to complete.

The major overhead now lies in the two intermediate procedure calls, and thus we need to dive
into Procedure GWBI. For each iteration, the update for µk costs O(n) according to the dimension
of λ ∈ Rn. It is easy to see that the dominant overhead in the next three update steps is the
multiplication of a spare matrix T (T ⊺) with a vector. Since T has ul + ul = 2ul none-zero entities,
the computational cost of matrix-vector multiplication is o(ul) in the next three steps. More precisely,
the update for w̄k takes O(ul + ul) = O(ul). The updates for ūk and λk both take O(ul + n).
Therefore, the computational cost for each iteration is O(ul + n). For the current optimization-based
graph construction methods in GSSL, which are often based on the primal-dual method [29] or
ADMM [18, 61], they all need O(n2) in each iteration since they operate on the whole graph. Note
that n = u+ l and O(ul+ n) ≤ O(14n

2 + n) = O(n2), our method can reduce the time complexity
of each iteration. Furthermore, thanks to the faster convergence rate, the number of iterations O(1ϵ)
to obtain the optimal solution is also significantly reduced. Here, ϵ denotes the user-defined precision
value.

In summary, the total time complexity for the proposed GWBI procedure is O(1ϵ (ul + n)). The total
time complexity for the proposed BAGL algorithm is O(1ϵun)

G.5.2 Running Time Comparison

Finally, we also compare the actual running time for each algorithm with the hardware and software
configurations provided. Table 7 summarizes the time costs of all the compared models. The best
results are bolded, and the second-best results are italicized. It is easy to check that our BAGL
algorithm is faster than all the optimization-based methods on all datasets, resulting in a large extent

35

0 100 200 300 400 500

Number of iterations

10
-15

10
-10

10
-5

10
0

10
5

SGL

SGL w/ ADMM

BAGL

(a) ORHD

0 200 400 600 800

Number of iterations

10
-15

10
-10

10
-5

10
0

10
5

SGL

SGL w/ ADMM

BAGL

(b) USPS

0 500 1000 1500

Number of iterations

10
-15

10
-10

10
-5

10
0

10
5

SGL

SGL w/ ADMM

BAGL

(c) MNIST

0 500 1000 1500

Number of iterations

10
-15

10
-10

10
-5

10
0

10
5

SGL

SGL w/ ADMM

BAGL

(d) EMNIST Letters

Figure 5: Convergence results on real-world datasets (Cont.).

of improvement. Such advantage is essential to scale for large-scale datasets and is also in agreement
with the time complexity analysis above.

Table 7: Average time cost (seconds) of compared algorithms on all real-world datasets.
Optimization-based Others

SGL SGL w/ADMM BAGL kNN AGR BCAN
ORHD 3.31 1.20 0.79 0.02 5.35 1.52
USPS 3.86 2.97 1.24 0.04 9.14 3.07

COIL100 7.12 6.56 2.93 0.95 9.35 4.16
TDT2 8.57 7.45 3.88 0.03 9.81 8.23

MNIST 102.65 48.52 35.41 1.24 70.50 82.48
EMNIST Letters 478.24 134.39 102.35 4.77 372.19 297.61

H Broader Impacts

Since our method focuses on the graph construction step to enhance the overall performance of
graph-based semi-supervised learning, BAGL makes broader impacts for social benefits. As we all
know, graph-based semi-supervised learning has substantial implications across multiple disciplines
and industry sectors, given its proficiency in learning from sparse labels within large, unstructured

36

0 1 2 4
Noise level γ

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (
%
)

RBF

kNN

SGL

RGCLI

AGR

GraphEBM

BCAN

BAGL

(a) ORHD

0 1 2 4
Noise level γ

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (
%
)

RBF

kNN

SGL

RGCLI

AGR

GraphEBM

BCAN

BAGL

(b) USPS

0 1 2 4
Noise level γ

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (
%
)

RBF

kNN

SGL

RGCLI

AGR

GraphEBM

BCAN

BAGL

(c) COIL100

0 1 2 4
Noise level γ

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (
%
)

RBF

kNN

SGL

RGCLI

AGR

GraphEBM

BCAN

BAGL

(d) TDT2

0 1 2 4
Noise level γ

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (
%
)

RBF

kNN

SGL

RGCLI

AGR

GraphEBM

BCAN

BAGL

(e) MNIST

0 1 2 4
Noise level γ

30

35

40

45

50

55

60

65

70

A
cc

u
ra

cy
 (
%
)

RBF

kNN

SGL

RGCLI

AGR

GraphEBM

BCAN

BAGL

(f) EMNIST Letters

Figure 6: Accuracy on two datasets with different noise levels of features.

datasets. Its applications span from healthcare and drug discovery to social media and web services.
In each case, the ability to exploit the structure of data can dramatically improve performance over
traditional, non-graph-based learning methods.

For example, in the field of healthcare and drug discovery, with graph-based semi-supervised learning,
researchers can predict disease progression or drug responses by analyzing biological networks,
such as gene regulatory or protein-protein interaction networks. This can facilitate personalized
medicine by identifying patients’ specific needs based on their genetic profiles or disease history. The
prediction power could also aid in discovering potential drug targets or optimizing drug combinations,
significantly accelerating the drug discovery process.

In the applications of social media and web services, graph-based semi-supervised learning offers
superior performance in understanding the vast and intricate connections within social networks.

37

(a) α1 and β1 (b) α1 and α2

Figure 7: Accuracy versus different hyper-parameters on ORHD.

It can be used to predict user behaviors, preferences, or community structures, leading to more
personalized and efficient services. For instance, it could enable better content recommendation
algorithms or improve user-targeted advertising. Besides, the learning framework could identify and
mitigate fake news or harmful content by analyzing propagation patterns.

While these impacts are largely positive, it’s important to consider potential ethical, privacy, and
security challenges. Misuse of this powerful tool could lead to issues like privacy invasion, if
used to infer sensitive personal information from social networks, or discrimination if the tool
incorporates and perpetuates biased patterns from the training data. Also, the higher accuracy in
predicting individuals’ behaviors could be exploited for manipulative purposes. Therefore, it’s crucial
to establish robust policies and mechanisms to ensure that the use of graph-based semi-supervised
learning is guided by ethical considerations and respect for privacy.

38

