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Abstract

In this work, we aim to establish a strong connection between two significant bodies
of machine learning research: continual learning and sequence modeling. That
is, we propose to formulate continual learning as a sequence modeling problem,
allowing advanced sequence models to be utilized for continual learning. Under
this formulation, the continual learning process becomes the forward pass of a
sequence model. By adopting the meta-continual learning (MCL) framework, we
can train the sequence model at the meta-level, on multiple continual learning
episodes. As a specific example of our new formulation, we demonstrate the
application of Transformers and their efficient variants as MCL methods. Our
experiments on seven benchmarks, covering both classification and regression,
show that sequence models can be an attractive solution for general MCL.1

1 Introduction

Continual learning (CL) refers to the ability to learn from a non-stationary stream of data. A CL
data stream is typically a series of distinct tasks, and the model cannot access previous data while
learning the current one. For example, in CL benchmarks based on image classification, each task
typically consists of a small subset of classes. Since the model’s access to the past data is restricted,
standard training with stochastic gradient descent (SGD) consistently overwrites previously learned
knowledge, which often leads to catastrophic forgetting. As learning usually implies SGD updates in
the deep learning literature, most CL approaches try to combat catastrophic forgetting while relying
on SGD to update model parameters. However, using SGD is generally not a necessity of CL; one
may choose any update rule other than SGD.

In this regard, we point out that CL is inherently a sequence modeling problem. The basic struc-
ture of CL, which trains a model on a training stream ((x1, y1), · · · , (xT , yT )) and evaluates it
on a test set {(xn, yn)}n, can be considered as predicting the next token yn of the sequence
(x1, y1, · · · , xT , yT , xn). From this perspective, the CL process and the test-time inference are
a sequence model’s forward pass, with no SGD update. Instead, we can train the sequence model
at the meta-level with a set of CL episodes. This meta-continual learning (MCL) framework is
technically equivalent to conventional sequence model training, where a sequence model is trained
on a set of sequences. Therefore, we argue that any recent and future advances in sequence models
can be directly applied to MCL research. As a precaution, our approach should not be confused with
continually learning a sequence model [40, 5], which is a conventional CL setting (not MCL) where
each datapoint x is a sequence.

As a particular instance of our new framework, we test Transformers [43], which are considered as the
current state-of-the-art sequence model. In the past several years, Transformers have revolutionized
various sequence modeling tasks such as language modeling [28, 29, 6], translation [43, 1], speech
recognition/generation [30, 44], and protein analysis [33, 31], to name a few. When Transformer-
based language models (LMs) are scaled up and trained with a massive collection of text data, they
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exhibit an interesting ability called in-context learning [6]. Within a forward pass, they can learn
new patterns and knowledge from the previous tokens in the current context and apply them to solve
new tasks. Our framework maximizes this in-context learning ability of sequence models through
meta-training and applies it as a solution to CL.

An immediate question may come to one’s mind: if Transformer is a parallel architecture that can
attend to all the training data at test time, is this even a valid CL setting? Borrowing the words of
Katharopoulos et al. [17], Transformers with causal attention can be considered as recurrent neural
networks (RNNs; 13). We can think of a Transformer’s attention keys and values as the internal state
of a recurrent model. When a new token comes in, this state is updated to include new key-value pairs.
At test time, the Transformer queries the key-value pairs in the internal state, not the raw training data.
Therefore, with proper implementation, using Transformers does not violate the assumptions of CL.

One drawback of standard Transformers is that the cost of handling each example grows linearly along
with the internal state. Therefore, the computational complexity of handling an episode of length
T becomes O(T 2). Fortunately, there is a considerable amount of work on efficient Transformers
[42], which have sub-quadratic complexity. Especially, the efficient Transformers with linear O(T )
complexity maintain a constant computational cost to handle each token. In this work, we test Linear
Transformer [17] and Performer [8] as such examples.

By conducting extensive experiments on seven diverse benchmarks covering both classification
and regression tasks, we demonstrate that Transformers, including the efficient variants, have great
potential as a general MCL approach, especially in large-data regimes. Furthermore, it is important
to note that our approach is not limited to Transformers. By offering a novel perspective on MCL,
we open up the possibility for other sequence models, including those that may be developed in the
future, to be applied to this challenging problem.

Lastly, our approach offers a unique advantage in terms of biological plausibility. Despite its uni-
versality in modern deep learning, backpropagation has long been criticized for being biologically
implausible [36, 26, 21, 12]. This is due to the lack of convincing proof to suggest that biological
neurons perform the complex backpropagation process of (i) storing their activations during the for-
ward pass, (ii) computing the error derivatives, and (iii) transmitting them backward. Our formulation
is free from such criticism since the learning process is a simple forward pass of the sequence model.
Only the meta-level optimization, which would have been performed by the evolutionary process in
nature, is replaced by more efficient backpropagation.

2 Background and Related Work

2.1 Meta-Continual Learning (MCL)

Due to the additional layer of complexity from meta-level optimization, compounded by the absence
of a standardized lexicon, there exists a high likelihood of confusion in discerning the settings of
MCL and related domains. Due to the limited space, this section summarizes only the most relevant
works. For a comprehensive comparison of MCL with other fields, such as continual meta-learning,
we recommend referring to [39].

Continual Learning (CL). A continual learning episode D consists of a stream of training data
Dtrain = ((x1, y1), · · · , (xT , yT )) and a test set Dtest = {(x1, y1), · · · , (xN , yN )} where x∗ ∈ X
and y∗ ∈ Y are the input and target variables. The data in the training stream can only be accessed one
at a time, and it is not possible to access previously seen data. If we assume a buffer that temporarily
holds each task, this formulation can also cover the offline CL settings where the stream is segmented
by tasks rather than examples. The training stream is generally assumed to be a concatenation of
K task streams, i.e., Dtrain = Dtrain

1 ⊕ · · · ⊕ Dtrain
K , each of which is a stationary sequence of

data sampled from a distinct distribution. The test set is the union of the task-specific test sets:
Dtest = Dtest

1 ∪ · · · ∪ Dtest
K . The objective of the CL algorithm is to continually learn a good model

fθ : X → Y from the stream by optimizing parameter θ. For example, in the popular CL benchmarks
of image classification, fθ is a classifier that takes an image x ∈ X as input to output its class y ∈ Y .

Meta-Continual Learning (MCL). Rather than manually crafting a CL algorithm, MCL aims
to learn how to continually learn. More formally, we introduce the concept of continual learner
Hη : (X × Y)× (X → Y) → (X → Y), which is a functional that takes a data point (xt, yt) and
an old model fθt−1

as inputs and produces an updated model fθt . For convenience, we additionally

2



define another functional Gη : (X × Y)∗ → (X → Y) that sequentially processes a training stream
as input and outputs a trained model: fθt = Gη(((x1, y1), · · · , (xt, yt))) = Hη((xt, yt), fθt−1).
This sequential refinement of the model parameter θ is commonly referred to as the inner loop,
which is the training phase of standard CL. MCL adds another layer of optimization for tuning the
meta-parameter η of the learner, which is often called the outer loop. The contents of η can vary
widely depending on the method, e.g., the initial parameters of a model, a meta-learned encoder, etc.
Unlike traditional CL settings where a model is trained on a single training data stream and evaluated
on a test set, an MCL setting consists of multiple CL episodes split into the meta-training set and
the meta-test set, as shown in Fig. 1a. The episodes of the two meta-splits are assumed to be drawn
from the same distribution. Generally, they are created by first randomly splitting available tasks
into two groups, where each episode is built as a random combination of the tasks from the group
corresponding to its meta-split. Since there are no overlapping tasks between the meta-splits, one
cannot achieve a high meta-test score by simply memorizing all tasks in meta-training. For each
episode D, a model is produced by the learner, i.e., fθT = Gη(Dtrain) and evaluated on the test set
Dtest to produce the meta-loss L(fθT ,Dtest). Then η is updated by meta-gradient descent, i.e., SGD
with ∇ηL(fθT ,Dtest), to reduce this meta-loss during the meta-training phase. During the meta-test
phase, the learner Hη is evaluated on multiple CL episodes in the meta-test set. While this description
represents the most basic form of MCL that our work is based on, meta-training can deviate from this
scheme as long as the integrity of the meta-test is maintained, e.g., [16, 4].

Prior Works in MCL. Online aware Meta-Learning (OML; 16) splits a model into an encoder and a
small prediction network on top of it. In the inner loop, only the prediction network is updated by
SGD, while the encoder remains frozen. In the outer loop, the encoder and the initial parameters of
the prediction network are optimized. A Neuromodulated Meta-Learning algorithm (ANML; 4) has
an additional meta-learned component named neuromodulatory network with the same architecture
as the encoder. Its output is passed through the sigmoid and multiplied to the encoder’s output, gating
some features. Meanwhile, there are several MCL approaches specialized to classification. Initially
introduced as a few-shot learning method, Prototypical Network (PN; 38) has a meta-trained encoder
and computes the average embedding, i.e., prototype, for each class during training. By computing
the average embeddings online, PN can be directly used in MCL settings [3]. Generative MCL
(GeMCL; 3) extends PN by (i) additionally modeling a diagonal covariance matrix of the embeddings
for each class and (ii) adopting a Bayesian formulation.

2.2 Transformers

At the core of Transformers is the self-attention mechanism, which interchanges information among
different positions within a sequence. In self-attention, each element in the input sequence of
length T is linearly projected to produce d-dimensional queries, keys, and values, each represented
by Q,K,V ∈ RT×d. The attention matrix is computed as softmax(QKT/

√
d) where softmax

is applied row-wise. It is then multiplied to the value matrix to produce the output of the layer
O = softmax(QKT/

√
d)V . If self-attention is computed in this manner, it is more precisely called

bi-directional self-attention since every token can attend to all the other tokens in both directions.

While it is used for encoding a sequence in parallel, uni-directional, or causal self-attention is
generally used for decoding a sequence one token at a time. In causal attention, each token’s output
depends only on the preceding tokens, allowing new input tokens to be added without recomputing
the existing embeddings. For efficient parallel training, this is typically implemented using a causal
attention mask that zeros out the upper triangular elements in the attention matrix. Transformers
that only have causal attention layers are called decoder-only Transformers [23] which have become
the backbone of many large language models [28, 29, 6]. In addition to decoding, decoder-only
Transformers are also suitable for encoding a streaming sequence where the tokens become available
one at a time. This property makes them a perfect fit for our use case in MCL settings.

Efficient Transformers. One drawback of Transformers is their quadratic computational cost that
arises from computing the T × T attention matrix. The computational complexity of O(T 2) can be a
severe bottleneck in handling long sequences. Therefore, there has been extensive research on more
efficient variants of Transformers. In the following, we describe the kernel-based approaches that we
test in our experiments. These models have O(T ) complexity and can be applied to decoding. Refer
to [42] for a more comprehensive review of efficient Transformers.
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(a) A meta-CL dataset
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Figure 1: Schematic illustrations of the key concepts. (a) In MCL, multiple CL episodes are split into
meta-training and meta-test sets. For each CL episode, a continual learner produces a model from
the training stream (blue), which is evaluated on the test set (green). The learner is meta-trained on
multiple CL episodes in the meta-training set and evaluated on the meta-test set. (b) In many MCL
approaches, the learner mainly depends on SGD to update the model in the inner loop. (c) In our
framework, a recurrent sequence model plays both the roles of the learner and the model.

Kernel-Based Efficient Transformers (KETs). It approximates the attention matrix as the product of
Q′ = ϕ(Q) and K ′ = ϕ(K) where ϕ : Rd → Rr is a non-linear kernel function that transforms each
row of Q and K into an r-dimensional feature. The kernel function is meticulously designed such
that softmax(QKT) ≈ D−1(Q′K ′T) where D = diag(Q′(K ′T1T )) is the normalizing term that
ensures each row in the approximated attention matrix to sum to one. Through this approximation, we
can change the computation order to compute K ′TV first: softmax(QKT)V ≈ D−1Q′(K ′TV ).
The overall complexity becomes linear to the sequence length, i.e., O(T ). Linear Transformer [17]
and Performer [8] are examples of KETs and differ only in their choice of kernel function. The kernel
function of Linear Transformer is defined as ϕ(x) = elu(x) + 1d where elu is the exponential linear
unit (ELU; 9) applied element-wise. Performer [8] uses ϕ(x) = exp

(
Wx− ∥x∥2/2 · 1r

)
where

the rows of W ∈ Rr×d are orthogonal random vectors.

Decoding with KETs. In theory, the causal attention of KET can be computed by (i) computing the
approximate attention matrix D−1Q′K ′T, (ii) applying the causal mask, and (iii) multiplying V .
However, this naive process requires O(T 2) computation, and it necessitates all tokens at once as
input. Fortunately, an alternative method exists to sequentially compute the same output with O(T )
complexity [17, 8]. Here we represent a vector corresponding to a row of the matrix as the lowercase
letter, e.g., V = [v1; · · · ;vT ]

T. At each time step t, the new t-th input embedding is linearly
projected to produce the query qt, key kt, and value vt. The recurrent internal state at time t holds
the matrix K ′T

t Vt =
∑t

t′=1 ϕ(kt′)v
T
t′ and the sum of the key features dt =

∑t
t′=1 ϕ(kt′). Note that

both can be computed recurrently: K ′T
t Vt = K ′T

t−1Vt−1 + ϕ(ki)v
T
i and dt = dt−1 + ϕ(kt). The

attention output at time t is computed as ot = (K ′T
t Vt)

Tϕ(qt)/d
T
t ϕ(qt).

3 Continual Learning as Sequence Modeling

Many existing MCL (and also CL) approaches rely heavily on SGD to update the model [16, 4]
as summarized in Fig. 1b and Alg. 1. When each data point (xt, yt) is made available, the model
prediction ŷt = fθt−1(xt−1) is compared with yt to produce the loss. The gradient of the loss w.r.t.
the parameters θt−1 is fed into an SGD-based update rule, which sometimes accompanies additional
treatments to prevent forgetting, to produce updated parameters θt.
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In contrast, we propose to formulate CL as a sequence modeling problem and let a sequence
model play both roles of the continual learner and the model, as presented in Fig. 1c. In our
framework, the inner loop and outer loop are equivalent to the forward pass and SGD update of the
sequence model, respectively. To comply with the assumptions of CL, the sequence model should be
representable as a recurrent learner Hη that iteratively refines an internal state ht as new data arrive,
i.e., ht = Hη(ht−1, (xt, yt)). We will explain in § 3.1 that Transformers can be seen as a recurrent
model. Since the Markov property holds between the internal states, ht should summarize all the
data seen up to a time step t. The combination of ht and the sequence model’s parameter η thus
defines a virtual model fθt : (X → Y) with θt = (η, ht). After forwarding a training stream Dtrain

of length T , we obtain a virtual model fθT trained in-context. Then, each test input xn is considered
as the next token xT+1, and ŷn = fθt(xn) is produced from the forward pass of the sequence model
conditioned on hT . The meta-loss function is defined to maximize the conditional log-likelihood:

L(fθT ,Dtest) =
∑

(xn,yn)∈Dtest

− log p(yn|xn; θT ) =
∑

(xn,yn)∈Dtest

− log p(yn|xn, hT ; η). (1)

This meta-loss in the MCL perspective is technically equivalent to the popular next-word prediction
loss in language modeling [28, 29]. That is, we update η to minimize the meta-loss via SGD, as
commonly done for language model training. Although we mainly assume all test examples come
after the training stream, it is also possible to feed test examples in the middle of a training stream if
the corresponding task is already learned. To avoid unnecessary complexity, however, we mainly
assume all test examples to come after the training stream.

An important characteristic of our approach is that the target y is also taken as an input of the
sequence model. Since conventional MCL algorithms maintain an explicit model fθ : X → Y , the
only way for them to inject the knowledge from y into the model is the SGD update with the inner
loss ∇θL(fθt(x), y) (Alg. 1:L6). On the other hand, our sequence modeling approach replaces the
SGD update with the forward pass, which incorporates y’s information by taking it as input. The
forward pass can potentially learn a far more flexible update rule compared to SGD. As presented in
Fig. 1c, we denote the state after seeing xt as h+t−1 to differentiate it from ht, the state after seeing
both xt and yt.

Using sequence models can also be advantageous in terms of scalability. A major drawback of the
SGD-based MCL is computing the meta-gradient ∇ηL(fθT ,Dtest) in the outer loop. Its computation
involves calculating higher-order derivatives and large memory for the entire computation graph of
the inner loop, which holds every revision of the parameters {θt}Tt=1, the gradients {∇θt−1

Lt}Tt=1,
and their intermediate calculations. Thus, it is hard to scale the model size or the length of the inner
loop. On the other hand, our framework has no such meta-gradient (i.e., our meta-loss is a normal
sequence model loss), which allows us to use a much larger and more powerful architecture within
the same computational budget.

It is worth mentioning that there are other meta-learning approaches that frame various learning
scenarios as the forward pass of a neural network. For instance, [35, 32] employ RNN-based
architectures for few-shot learning, while [24] utilize a combination of temporal convolution and
attention layers for both supervised and reinforcement learning.

3.1 Transformers as Meta-Continual Learning Methods

As an instantiation of our framework, we demonstrate that Transformers can be utilized as a general
MCL mechanism. We only consider decoder-only Transformers, which are suitable for handling the
streaming data in CL settings.

Initially, it may not be apparent how the decoder-only Transformers can be represented as a recurrent
model in Fig. 1c since Transformers are frequently described as a parallel computation graph over the
whole sequence. As highlighted in [17], however, Transformers with causal attention can be regarded
as recurrent models. A decoder-only Transformer layer consists of two sublayers: a causal attention
layer and a feed-forward layer. Since the feed-forward layers work on each token independently,
information transfer across time steps occurs exclusively through the causal attention sublayer, and
only in the temporal direction (→). Therefore, at any time t, all the past information is represented as
keys {kl

t′}tt′=1 and values {vl
t′}tt′=1 in each attention head l, which are accessed by the query ql

t. We
can think of the keys and values in each attention layer as the internal state of a recurrent sequence
model: ht =

⋃
l h

l
t where hlt = {(kl

t′ ,v
l
t′)}tt′=1. At every time step, this internal state is updated to
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include the keys and values from the current time step, as highlighted in Alg. 2. In Alg. 2, also notice
that yt is regarded as the input of Transformers (L8-9), and the virtual model f(η,hT ) is evaluated on
the test set to produce the meta-loss (L11).

3.2 Kernel-Based Efficient Transformers for Efficient Meta-Continual Learning

Algorithm 1 Inner loop of conventional
SGD-based MCL
Require: learner Hη , Dtrain, Dtest

1: T ← |Dtrain|
2: fθ0 ← initial model
3: for t← 1 to T do
4: xt, yt ← Dtrain[t]
5: Lt ← L(fθt−1(xt), yt) ▷ Loss
6: fθt ← Hη(fθt−1 ,∇θt−1Lt)
7: end for
8: return L(fθT ,D

test) ▷ Meta-loss

Algorithm 2 Inner loop of Transformer

Require: Transformer Hη , Dtrain, Dtest

1: T ← |Dtrain|
2: I ← indices of attention heads in Hη

3: h0 ← {} ▷ internal state
4: for t← 1 to T do
5: xt, yt ← Dtrain[t]
6: {(kl

t,v
l
t)}l∈I ← Hη(ht−1, xt)

7: h+
t−1 ← ht−1 ∪ {(kl

t,v
l
t)}l∈I

8: {(kl
t,v

l
t)}l∈I ← Hη(h

+
t−1, yt)

9: ht ← h+
t−1 ∪ {(kl

t,v
l
t)}l∈I

10: end for
11: return L(f(η,hT ),Dtest) ▷ Meta-loss

Algorithm 3 Inner loop of KET

Require: KET Hη , Dtrain, Dtest

1: T ← |Dtrain|
2: I ← indices of attention heads in Hη

▷ Superscript l implies ∀l ∈ I
3: hl

0 ← Or×(d+1) ▷ internal state
4: for t← 1 to T do
5: xt, yt ← Dtrain[t]
6: {(ki

t,v
i
t)}l∈I ← Hη(ht−1, xt)

7: h+,l
t−1 ← hl

t−1 + ϕ(kl
t)[v

l
t
T
; 1]

8: {(ki
t,v

i
t)}l∈I ← Hη(h

+
t−1, yt)

9: hl
t ← h+,l

t−1 + ϕ(kl
t)[v

l
t
T
; 1]

10: end for
11: return L(f(η,hT ),Dtest) ▷ Meta-loss

Meanwhile, Transformers have been criticized for their
consistently growing computational cost, which is more
commonly referred to as the quadratic complexity in the
Transformer literature. This limitation of Transformers
triggered extensive research on efficient Transformers [42]
which have sub-quadratic complexity. By bridging CL
and sequence modeling, we allow this family of advanced
Transformers to be immediately applied as CL methods.
The only requirement for the model is to support decoding,
which is required to sequentially take new examples in CL
settings.

Among the large taxonomy of efficient Transformers,
our work focuses on kernel-based efficient Transformers
(KETs), which can be adapted to decoding while having
O(T ) complexity. As explained in §2.2 the decoder version
of KET works very similarly to an RNN with an internal
state of a constant size. As summarized in L7 and L9 of
Alg. 3, the update rule corresponding to each attention head
l can be concisely expressed as adding the outer product
of the key feature ϕ(kl

t) and the value vector vl
t to the hid-

den state of a fixed size. Note that 1 is appended to vl
t to

compute the sum of the key features dl
t =

∑t
t′=1 ϕ(k

l
t′)

simultaneously. We test Linear Transformer [17] and Per-
former [8], and the only difference between the two is the
kernel function ϕ, as explained in §2.2.

Connection to Dynamic/Static-Architecture CL Ap-
proaches. Since the size of the internal states linearly
grows as more data come in, standard Transformers can
be grouped with the dynamic CL architectures. As the
size and the computational cost of dynamic-architecture
CL approaches typically grow linearly with the number
of tasks K [34, 2, 45, 20], the complexity of handling a
CL episode of length T is O(KT ). In most CL scenarios
where K ∝ T , the complexity becomes O(T 2), which is
the same as Transformers. On the other hand, KETs’ inter-
nal states remain at a constant size, which makes them the
counterparts of static-architecture CL approaches.

3.3 An Example: Continual
Learning of Image Classification as Sequence Modeling

We describe a specific example of applying our approach
to image classification, which has been widely used for
evaluating MCL methods. In this setting, x is an image,
while y is the corresponding class label. To feed into Transformers, both x and y should be encoded
into a fixed-sized vector. While we can simply use a convolutional network (which can be jointly
trained end-to-end) for x, properly encoding y requires some considerations. Since a class label is
essentially an abstract symbol, e.g., an arbitrary index of the class, it does not have any meaning on its
own. Simply hard-assigning a trainable embedding to each class would fail, as novel classes would
appear in the meta-test phase. Randomly sampling a fixed embedding every time a class appears also
turns out to be inapplicable as we experiment. The random embedding is the same as an untrained
token embedding, which is expected to be incompatible with the trained weights of Transformers.
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The general solution used in language modeling is to express everything as a combination of known
vocabulary [37]. Following the same principle, we tokenize a class label using a fixed vocabulary
V and train an embedding for each token in the vocabulary. Since class labels do not impose any
constraint on how they should be tokenized, we randomly sample a unique class code (v1, ..., vC), a
random combination of the tokens vc ∈ V , when a new class appears in an episode. Note that if the
code length C is greater than one, each token goes into a Transformer individually, i.e., an (x, y) pair
is converted to the sequence (xenc, v1, ..., vC) before going into the Transformer. At test time, the
Transformer sequentially outputs the code to predict the corresponding class. To reduce complications,
we keep C = 1 in the main experiments, and the vocabulary size is set to the maximum number of
classes that can appear in an episode. Experiments with C > 1 can be found in Appendix B.

4 Experiments

We demonstrate the potential of our approach through experiments with seven benchmarks. Unless
otherwise noted, each experiment is repeated five times, and the mean and standard deviation of the
five runs are reported. Due to space constraints, this section contains only the essential information
to understand the main result, while details, additional experiments and analyses are deferred to
Appendix A, B, and C.

4.1 Benchmarks

To show the generality of our approach, we conduct experiments with diverse types of tasks, including
both classification and regression. To construct the meta-training and meta-test set for a dataset, we
first divide it into a set of tasks. The tasks are then split into two disjoint sets, one for meta-training
and the other for meta-testing. The CL episodes for both meta-splits are constructed in the same
manner. To build a CL episode D, we randomly sample K unique tasks. By default, we set K = 20,
while additionally testing the K = 100 setting to compare performances with longer episodes. For
each task k, the training stream Dtrain

k and the test set Dtest
k contain five examples each (i.e., five

shots). For each experiment, we meta-train for 50K steps with a batch size of 16 (i.e., 16 episodes in
parallel) and meta-test with 1,024 episodes. Task identities are not provided in any case.

4.1.1 Classification

For simplicity, we define each class as a task. All input images are resized to 32× 32 resolution. We
report classification errors in percentage as the evaluation metric.

CIFAR-100 [18]. CIFAR-100 contains 60K images of 100 classes, with 600 images for each class.
We randomly choose 60 classes for meta-training and the other 40 for the meta-test.

Omniglot [19]. Omniglot is a handwriting dataset widely used as a benchmark for meta-learning
or MCL. It has a total of 1,623 character classes gathered from 50 alphabets. The meta-train set
consists of 963 classes (30 alphabets), and the meta-test set has 660 classes (20 alphabets). There are
20 images for each class, thus 19K images for meta-training and 13K images for meta-test.

CASIA Chinese Handwriting Database (CASIA; 22). This is another handwriting dataset that
consists of 7,356 character classes in total. The classes comprise 7,185 Chinese characters, 52 English
alphabets, 10 digits, and other frequently used symbols. The total number of images is 3.9M, which is
120 times larger than Omniglot. We randomly sample 1K classes for the meta-test and use the rest for
meta-training. To the best of our knowledge, this dataset has not been used in meta-learning or MCL
literature. However, its substantial size allows us to evaluate different aspects of MCL algorithms,
which could not be examined with smaller datasets where meta-overfitting is a major factor in the
evaluation. Our results suggest that the relative performance of MCL algorithms can differ in a large
data regime.

MS-Celeb-1M [10]. In addition to the CASIA dataset, we also propose to repurpose MS-Celeb-1M
as a large-scale MCL benchmark. It is a facial image dataset with roughly 10M images of 100K
celebrities. Similar to CASIA, we randomly select 1K classes, the celebrity IDs, for the meta-test and
use the others for meta-training.
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Table 1: Classification errors (%) in 20-task 5-shot MCL. Both meta-training and meta-test errors
are reported to highlight the relationship between the degree of meta-overfitting and the scale of the
dataset (ì : images, V: classes).

Type Method

CIFAR-100 Omniglot CASIA MS-Celeb-1M
60K ì / 0.1K V 32K ì / 1.6K V 3.9M ì / 7.2K V 10M ì / 100K V

Meta- Meta- Meta- Meta- Meta- Meta- Meta- Meta-
train test train test train test train test

Offline Offline N/A 73.3±7.2 N/A 35.0±6.8 N/A 41.7±6.2 N/A 63.3±7.7

CI PN 0.0±0.0 76.6±0.3 0.0±0.0 3.8±0.1 0.2±0.0 0.4±0.0 32.5±0.1 33.6±0.1

GeMCL 0.0±0.0 76.6±0.4 0.0±0.0 3.8±0.1 0.2±0.0 0.4±0.0 32.1±0.1 33.3±0.2

SGD OML 0.6±0.1 89.9±0.4 0.1±0.0 24.8±2.2 2.8±0.1 3.2±0.1 41.8±0.3 42.5±0.2

ANML 0.4±0.1 88.1±1.4 0.0±0.0 31.0±6.2 3.7±0.5 4.3±0.5 43.8±0.3 44.8±0.4

Ours
Transformer 0.0±0.0 82.8±0.8 0.0±0.0 13.7±0.6 0.3±0.0 0.4±0.0 29.1±0.2 30.0±0.2

Linear TF 0.1±0.1 83.4±0.5 0.0±0.0 36.0±1.4 0.4±0.0 0.7±0.0 31.1±0.3 32.4±0.3

Performer 0.0±0.0 82.9±0.3 0.1±0.1 37.1±4.6 0.5±0.0 0.7±0.0 32.5±0.5 33.7±0.2

Table 2: Classification errors (%) and regression errors of 100-task 5-shot MCL.
Type Method CASIA MS-Celeb-1M Sine Rotation Completion

Offline Offline 70.7±3.7 87.1±3.3 0.0180±0.0038 0.699±0.049 0.1713±0.0047

CI PN 0.8±0.0 44.5±0.1 N/A N/A N/A
GeMCL 0.8±0.0 44.4±0.1 N/A N/A N/A

SGD OML 6.8±0.9 54.5±0.2 0.0498±0.0004 0.524±0.087 0.1087±0.0001

Ours Transformer 1.0±0.0 40.5±0.1 0.0031±0.0002 0.031±0.001 0.0989±0.0001

Linear TF 2.3±0.1 45.3±0.1 0.0139±0.0003 0.047±0.002 0.1084±0.0001

4.1.2 Regression

Sine Wave Reconstruction (Sine). Inspired by the sine wave regression problem in [16], we design
a more challenging synthetic regression problem for MCL. A sine wave ω(τ) = A sin(2πντ + ψ) is
characterized by amplitude A, frequency ν, and phase ψ. We define the target y as the values of the
sine wave at 50 fixed points: y = [ω(τ1), · · · , ω(τ50)]. All y’s in each task share the same frequency
and phase, while they can vary in amplitudes. We corrupt y into x by shifting phase and adding
Gaussian noise, where the phase shift amount is sampled for each task. We report the mean squared
error between y and the model prediction ŷ as the evaluation metric.

Image Rotation Prediction (Rotation). A model is given an image rotated by an angle ψ ∈ [0, 2π)

and tasked to estimate an angle ψ̂. The evaluation metric is 1− cos(ψ̂ − ψ); thus, a perfect model
would score 0 while random guessing would score 1.0 on average. We use the CASIA images and
define each class as a task using the same meta-split.

Image Completion (Completion). An image completion problem involves predicting the missing
parts of an image based on the available parts. Derived from our CASIA classification benchmark,
we change the input x to be the top half of the image and the target y to be the bottom half. The
evaluation metric is the mean squared error of the predicted pixel values.

4.2 Methods

For all methods, we use a five-layer CNN to encode image inputs and a three-layer MLP to encode
vector inputs (e.g., the sine regression). All components are trained end-to-end from scratch. We
group compared methods into four types: offline, class-incremental MCL, SGD-based MCL, and
ours.

Offline. We compare the scores of offline learning since it is generally perceived as the performance
upper bound of non-meta-CL. Note that MCL approaches can outperform offline learning by lever-
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aging additional meta-training data. Since the model overfits to the training data we report the best
test score achieved during training. We repeat each experiment ten times and report the average and
standard error of mean.

Class-Incremental MCL (CI). We test PN [38] and GeMCL [3] as MCL approaches that are
specialized for class-incremental settings. Although they cannot be applied to other settings, such as
regression, they show strong performance in the classification benchmarks.

SGD-Based MCL (SGD). We select OML [16] as the main baseline since it can perform both
classification and regression tasks. It has a two-layer MLP as the prediction network, on top of a
meta-learned encoder. For 20-task 5-shot classification benchmarks, we also test ANML [4], which is
an extension of OML with an additional modulatory network that regulates the features of the encoder.
However, due to its extensive memory consumption, it could not be tested on longer episodes.

Ours. We test the vanilla Transformer [43], Linear Transformer [17], and Performer [8]. All the
models share a similar architecture: 4 layers, 8 heads, and 512 hidden dimensions. Although it
is tiny compared to modern language models, it is still larger than the FC layers of the baselines.
Surprisingly, however, they require comparable or less GPU memory and time for meta-training in
our experiments due to the lack of meta-gradient computation, as noted in §3. For more analysis on
the computational cost, refer to Appendix C.

4.3 Results

In Table 1, we report the meta-training and meta-test errors of the 20-task 5-shot classification
benchmarks to show the necessity of large-scale MCL benchmarks. In CIFAR-100 and Omniglot, all
methods show a severe degree of meta-overfitting, the gap between the meta-training and meta-test
scores. Meta-overfitting is more serious in CIFAR-100 where the task (class) diversity is lower. In
such situations, the Transformers still perform competitively, but the baselines may achieve a better
meta-test score due to less meta-overfitting. On the other hand, if more data is available, as in the
CASIA and MS-Celeb-1M benchmarks, the Transformers outperform OML and ANML by a large
margin and perform on par or better than PN or GeMCL, which are specialized for classification.
Table 2 shows the results of longer 100-task 5-shot experiments in both classification and regression
domains. In this more challenging scenario, the Transformers still perform comparably to class-
incremental methods and significantly better than SGD-based approaches. The scores of offline
learning mostly fall behind other MCL methods, which implies that non-meta-CL methods are not
suitable for our experimental settings where the amount of data is far from abundant.

A strength of our approach, which comes with the use of Transformers, is parallel meta-training.
While the baselines require a sequential SGD update on the training stream, Transformers can process
the whole training stream in parallel, which can dramatically improve the meta-training efficiency
once combined with massively parallel processors like GPUs. As a result, the meta-training time of
Transformers is several times shorter than the baselines. The details can be found in Appendix C.

The tradeoff between the standard Transformer and the KETs is also worth discussing. In all experi-
ments, the KETs sacrifice some level of accuracy for greater efficiency. The accuracy degradation is
more severe in longer episodes, which is expected given that more information has to be fit into the
internal state of the same size. This tradeoff suggests that the choice between standard and efficient
Transformers ultimately depends on the required accuracy and the available computational resources.

In Appendix B, we present more experiments and analyses, including different episode configurations
and model sizes. Although preliminary, the experiments with Transformers of varying sizes are
particularly interesting, as the performance scales with the number of parameters. This is reminiscent
of the scaling law of large language models [14], suggesting that scaling might be a potential solution
to more challenging MCL problems.

5 Limitations and Conclusion

By formulating MCL as sequence modeling, we pave the way for incorporating advanced sequence
modeling technologies into the MCL field. Given the observation that our approach demonstrates
greater efficacy with increased data, it seems consistent with The Bitter Lesson, an argument popular-
ized by Sutton [41]. It states that, in the long run, general-purpose learning algorithms capable of
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leveraging more computation and data are likely to be more effective than human-designed algorithms.
We believe our work is a step forward in this direction, generalizing the SGD-based update rules in
CL with the learnable forward pass of a sequence model.

However, it is important to acknowledge that the sequence models also bring their own limitations and
challenges. Efficiently handling long sequences is one such challenge. According to our experiments,
even the efficient Transformers, which are designed to solve the exact challenge, have to trade off
a nonnegligible amount of performance for efficiency, which implies plenty of room to improve.
Nonetheless, considering the current pace of development in the sequence modeling field, we are
optimistic about the potential of our approach; if a new solution is developed for sequence modeling,
it can be readily integrated into our formulation.
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A Experimental Details

A.1 Common Training Setups

Unless explicitly stated, all methods share the same encoder for input x. For image inputs, we use
a five-layer CNN architecture. The kernel size is set to 3× 3 in all convolutional layers, and batch
normalization [15] and ReLU [25] activation are applied after each convolution. the stride is set to 2,
except for the first layer which has stride 1. The channel sizes are set to 32-64-128-256-256 for the
five layers. In the case of the vector input in the Sine benchmark, we use a simple three-layer MLP
architecture. It has three linear layers followed by batch normalization and ReLU. For all benchmarks,
we do not use any data augmentation technique.

Since there are a lot of different experimental settings in this work, we could not perform an extensive
hyperparameter search in every setting. Therefore, we mainly tune the hyperparameters to the
CASIA classification benchmark and apply the same settings to the other experiments. We find that
Transformers are very robust to the choice of hyperparameters, achieving impressive scores in all
benchmarks without any benchmark-specific hyperparameter tuning. In some baselines, however, we
had to manually tune the hyperparameters specific to a benchmark, in order to achieve a reasonable
score. Please refer to the configuration files and commands in the included code for the exact
configurations.

A.2 Benchmarks

CASIA. The CASIA dataset originally contains grayscale images of various sizes since the images
are cropped tightly to the handwriting. We preprocess these images into 32× 32 by (i) resizing the
image such that the longer edge becomes 32 pixels long and (ii) adding paddings symmetrically to
both sides of the shorter edge to fill the empty space. This maintains the original aspect ratio of the
images while standardizing their size.

MS-Celeb-1M. MS-Celeb-1M also contains images of various sizes. Since the images are roughly
aligned to the face, we simply resize them to 32× 32 resolution without keeping the aspect ratio. We
also exclude the classes (celebrity IDs) with fewer than 20 examples.

Rotation. In the Rotation benchmark, a model should produce an angle ψ given an image. Due to the
cyclic nature of the angle, we let the model output (cos ψ̂, sin ψ̂) instead of ψ̂. To necessitate learning
from each training stream, we additionally shift all ψ by the same random amount sampled from
range [0, 2π). Therefore, even if there is a trivial pattern in X indicating orientation, e.g., a unique
shape marking the top of an image, the model cannot predict the shifted ψ without the knowledge
from the training stream.

Completion. Although the output format is an image, we simply treat the output and target as a
512-dimensional vector (flattened from 16× 32 image). We simply use fully connected layers for
output and do not use specialized architectures, such as transposed convolution.

A.3 Baselines

As SGD-based MCL baselines, we test OML [16] and ANML [4]. While we do our best for a
fair comparison, there are several modifications made to the settings and architectures. In their
original paper, OML and ANML do not maintain a full computation graph of the inner loop during
meta-training to reduce the computation cost. Instead, they segment the training stream every five
tasks and compute the meta-gradient only within each segment. Since they do not backpropagate
through a long chain of updates, the meta-training cost is reduced at the expense of optimizing with
a suboptimal objective. However, since our Transformers can backpropagate through the whole
episode, comparing it with such a suboptimal configuration can be considered unfair. Therefore, in
our experiments, we maintain a full computation graph of the inner loop for a fair comparison. In an
effort to make the baselines more robust to the choice of hyperparameters, we also set the learning
rate of the inner loop as a learnable parameter.

The model’s classification output mechanism is also modified. In the original design, the weights
of the output head are hard-assigned to individual classes. When learning a class, the weights
corresponding to the class are randomly reinitialized, to prevent overfitting to the classes in meta-
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training. Since we developed the class representation scheme in §3.3 inspired by the tokenization
schemes in the language modeling domain, we use the same class representation for the baselines.
Using this representation, the model can output a token in the fixed vocabulary, and when a new class
is introduced, an unused token is randomly assigned to it. The model can predict a class by producing
the corresponding token. Since the tokens are randomly assigned to a class, we do not need to reset
the weights.

A.4 Transformers

In the early experiments, we observed that the (meta-)training often fails to converge, especially
when the episode length becomes longer. After a closer inspection of the attention pattern of the
failure cases, we discovered that the attention tends to be uniformly distributed across all tokens, not
transmitting any useful information to the next layer.

One possible reason is that our meta-loss (Eq. 1) is not easy to optimize. Given a test input, a
well-trained Transformer should send some attention query from the test input to the keys from the
training sequence of the corresponding task. However, since the meta-loss is simply a next-word
prediction loss, it provides only high-level guidance without enforcing any specific attention pattern.
Note that the final prediction layer and self-attention layers are two distinct mechanisms. When a
Transformer is randomly initialized, it seems hard for it to notice that attending to a specific part of
the training stream is useful for predicting the target. Therefore, the attention layers become “dead,”
which is the best thing to do if their inputs are considered random noise.

As a solution, we add an auxiliary loss called attention loss to explicitly guide the attention pattern in
the early stage of training. For each query of a test input xn of task k, we maximize the log sum of its
attention to the keys from all training examples of task k. In plain words, we guide the attention to be
headed to task k’s training sequence, but we do not care exactly which token is attended. We apply
attention loss to half of the attention heads in each layer for the first 10K steps of (meta-)training.

B Additional Experiments and Analyses

B.1 Experiments with ResNet Encoder

In the main text, we present the experiments with a simple 5-layer CNN encoder. This is mainly
because some baselines, e.g., ANML [4], require meta-training of the whole network, including the
encoder. Using more sophisticated encoders, such as ResNet [11], will increase the computational
cost, which is already high due to the meta-gradient computation. Furthermore, it is hard to define the
proper usage of the batch normalization [15], which is part of the ResNet architecture, in CL settings.

On the other hand, OML [16] and our Transformers do not update the encoder in the inner loop.
Since the encoder is updated only in the outer loop, using ResNet with these methods does not violate
the underlying assumptions of batch normalization. Here we provide the results with the ResNet-18
encoder. The ResNet-18 architecture is slightly modified from the original version since it was
originally designed for handling much larger images with 224× 224 resolution. We replace the first
7× 7 stride-2 convolution with 3× 3 stride-1 convolution, remove the next 3× 3 max-pooling, and
reduce the number of features in all layers by half. For the efficient Transformers, we test Linear
Transformer only since it generally achieves better scores than Performer. The results are presented
in Table 3. The first three columns are the classification benchmarks, while the last two are regression
benchmarks.

We find that using ResNet does not make a meaningful difference in the large benchmarks using
CASIA or MS-Celeb-1M. Since the images used in our experiments are small (32×32 resolution), the
simple CNN encoder seems sufficient to deliver the necessary information to the upper components.
In the case of Omniglot classification, the scores of all methods even degrade due to more meta-
overfitting.

B.2 Experiments with Combinatorial Class Representation

Although we introduced the combinatorial representation for classes in §3.3, we simply keep the
number of tokens for each class representation to 1 in our main experiments. In Table 4, we present
the results of the 20-task CASIA benchmark with different class representations. The default setting is
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Table 3: Experiments with ResNet encoder in 20-task 5-shot settings.
Method Omniglot CASIA MS-Celeb-1M Completion

OML 24.8±2.2 3.2±0.1 42.5±0.2 0.1092±0.0002

OML (ResNet) 27.7±1.3 3.4±0.1 44.1±0.2 0.1092±0.0002

Transformer 13.7±0.6 0.4±0.0 30.0±0.2 0.0999±0.0002

Transformer (ResNet) 25.5±1.2 0.5±0.0 32.4±0.2 0.1014±0.0002

Linear TF 36.0±1.4 0.7±0.0 32.4±0.3 0.1039±0.0003

Linear TF (ResNet) 63.6±2.1 0.7±0.0 34.9±0.1 0.1051±0.0001
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Figure 2: Scaling behavior of Transformers.

represented as |V | = 20 andC = 1, where |V | is the vocabulary size, andC is the class representation
length. We additionally test two more settings with |V | = 8, C = 2 and |V | = 8, C = 3. Note that
the total number of unique class representations is |V |C , which increases exponentially to C. We
find that the classification errors are mostly similar regardless of the representation, although there is
a slight performance degradation as the C increases. We suspected that it is caused by the increased
sequence length. Since the class representations are taken as input by the Transformer, increasing C
induces more computational cost. Nonetheless, we believe the idea of combinatorially representing a
class or a new concept is interesting and might have a useful application in the future.

Table 4: Transformers with combinatorial class representation.
Method Representation CASIA error (%)

Transformer |V | = 20, C = 1 0.4±0.0

Transformer |V | = 8, C = 2 0.5±0.1

Transformer |V | = 8, C = 3 0.6±0.0
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B.3 Scaling Behavior of Transformers

Here we test how the model size of the Transformer is related to performance. This experiment is
inspired by the scaling law of large language models [14], where the performance keeps increasing
with the computational power. We test four different Transformer architectures whose number of
parameters roughly ranges from 2M to 40M. The architecture details are summarized in Table 5.
Note that we use the third architecture in other experiments.

In CL literature, which generally relies on SGD updates to incorporate new knowledge, increasing
model size does not necessarily lead to better CL ability. On the other hand, as shown in Fig. 2a
and Fig. 2b, the performance of Transformers consistently improves as more parameters are added.
This is a promising result since it implies that we can simply achieve better scores by providing more
computation and data. We speculate that scaling up the model size may be a necessary condition to
solve more realistic and challenging scenarios.

Table 5: Transformer architecture configurations.
Method nlayers dmodel nheads dheads dMLP

Transformer (S) 2 256 4 64 512
Transformer (M) 2 512 8 64 1024
Transformer 4 512 8 64 1024
Transformer (XL) 4 1024 16 64 2048

B.4 Forgetting Analysis

Fig. 3 and Fig. 4 show the forgetting analysis [7] of 100-task CASIA classification and Sine regression
benchmarks. For each task k, we measure its error increase after learning k′(> k) tasks, relative to
the error right after learning it. Each graph in Fig. 3 and Fig. 4 shows the average of five consecutive
tasks to save space. The last plot shows the average forgetting of all tasks.

Note that forgetting alone cannot be used as an evaluation metric since it measures the relative change
in performance throughout an episode. For example, if a model scores zero accuracies in all tasks
throughout the whole episode, the forgetting is measured as zero. Therefore, it should rather be used
as an additional tool for analysis.

For the forgetting analysis, we meta-train the Transformer and Linear Transformer to also handle
test examples in the middle of the training stream. For each test example of a task k, we randomly
sample the evaluation moment from the range [k,K], i.e., an example can be evaluated at the end of
any task’s training as long as the corresponding task is learned. In both benchmarks, Transformers’
forgetting is significantly lower than OML, demonstrating the effectiveness of our approach.

C Computational Cost Analysis

First, we emphasize that it is hard to define a single unified measure to compare the computational
cost. In some environments, the total memory consumption may be a hard constraint, while running
time can be the top priority in others. Moreover, the actual cost can vary dramatically depending on
the software implementation or the underlying hardware. Here we compare various aspects of the
computational cost using our PyTorch [27] implementation on NVIDIA A40 GPUs which have 48
GB of VRAM. We report the cost of meta-training with a batch size of 16.

The results of the Linear Transformer and Performer are omitted due to the current limitation of our
implementation. Theoretically, these efficient Transformers can be far more efficient than the standard
Transformer both in terms of memory and computation time. However, realizing such advantages
while maintaining high GPU utilization requires sophisticated CUDA kernel programming and cannot
be implemented with simple PyTorch code. Therefore, we explicitly compute the attention matrix,
the same as the standard Transformer, to save implementation time. This suboptimal implementation
results in a slightly worse memory and computation time compared to the standard Transformer.

Table 6 compares the number of parameters, GPU memory consumption (in GB), meta-training
speed (in episodes per second), and the classification error on the CASIA benchmark. Remarkably,
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Figure 3: Forgetting analysis of 100-task CASIA benchmark.

even the largest Transformer consumes less memory than OML, the most memory-efficient baseline.
Although OML has much fewer parameters than Transformers, they consume far more GPU memory
due to the meta-gradient computation. If we scale up OML to have a similar number of parameters
with the default Transformer architecture, which is referred to as OML (XL) in Table 6, the memory
consumption increases even further, requiring four A40 with data parallelism.

Transformers are also superior in terms of (meta-)training speed. Since they can process all the
examples in an episode in parallel, they can utilize GPUs more effectively. On the other hand,
SGD-based baselines need to sequentially process each example and also sequentially backpropagate
in the reverse direction. Therefore, Transformers have several times faster training speed compared
to the baselines.
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Figure 4: Forgetting analysis of 100-task Sine benchmark.

Table 6: Computational cost comparison.
Episode Method Parameters GPU memory Training speed CASIA error

20-task 5-shot

OML 1.5M 10.7 GB 51.2 ep/s 3.2±0.1

OML (XL) 11.5M 4 × 33.7 GB 3.5 ep/s 1.9±0.2

ANML 2.0M 18.4 GB 6.6 ep/s 4.3±0.5

Transformer (S) 2.4M 4.3 GB 278.5 ep/s 0.6±0.0

Transformer (M) 5.9M 4.7 GB 252.9 ep/s 0.5±0.0

Transformer 10.1M 5.2 GB 201.5 ep/s 0.4±0.0

Transformer (XL) 36.0M 6.2 GB 138.0 ep/s 0.4±0.0

100-task 5-shot

OML 1.5M 43.7 GB 9.40 ep/s 6.8±0.9

Transformer (S) 2.4M 22.0 GB 49.69 ep/s 1.5±0.0

Transformer (M) 5.9M 25.8 GB 38.78 ep/s 1.1±0.0

Transformer 10.1M 31.5 GB 26.80 ep/s 1.0±0.0

Transformer (XL) 36.0M 41.4 GB 16.34 ep/s 0.8±0.0
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