
A Appendix454

A.1 Preliminaries for Proofs455

In this section, we give some preliminaries which will be used to prove the theorems, proposition456

and lemmas shown in our main body. In what follows, we fix a unary predicate set P1 and a binary457

predicate set P2.458

Definition 16. A R2-GNN is defined to be 0/1-GNN if the recursive formula used to compute vectors459

x
(i)
v for each node v of a multi-edge graph G = {V, E , P1, P2} on each layer i is in the following460

form461

x(i)
v

= f

C(i)

x
(i�1)
v

+
X

r2P2

X

u2V

A(i)
r
x
(i�1)
u

+R(i)

X

u2V

x(i�1)
u

!
+ b(i)

!!
(5)

where C(i),A(i)
j
,R(i) are all integer matrices of size di ⇥ di�1, b(i) is bias column vector with size462

di ⇥ 1, where di�1 and di are input/output dimensions, and f is defined as max(0,min(x,1)).463

Furthermore, we restrict the final output dimension be dL = 1. Since all matrices have integer464

elements, initial vectors are set to integers by initialisation function I(·), and max(0,min(x,1)) will465

map all integers to 0/1, it’s easy to see that the output of this kind of model is always 0/1, which can466

be directly used as the classification result. We call such model 0/1-GNN. A model instance can be467

represented by {C(i),(A(i)
j
)K
j=1,R

(i),b(i)}L
i=1468

Lemma 17. Regard 0/1-GNN as node classifier, then the set of node classifiers represented by469

0/1-GNN is closed under ^, _ ,¬.470

Proof. Given two 0/1-GNN A1,A2, it suffices to show that we can construct ¬A1 and A1 ^A in 0/1-471

GNN framework. Notice that _ can be reducted to ^,¬ by De Morgan’s law, e.g., a_b = ¬(¬a^¬b).472

1. Construct ¬A1. Append a new layer to A1 with dimension dL+1 = 1. For matrices and473

bias C(L+1),(A(L+1)
j

)K
j=1,R

(L+1),b(L+1) in layer L + 1, set CL+1
1,1 = �1 and bL+1

1 = 1 and474

other parameters 0. Then it follows x
(L+1)
v = max(0,min(�x

(L)
v + 1,1)). Since x

(L)
v is the 0/1475

classification result outputted by A1. It’s easy to see that the above equation is exactly x
(L+1)
v = ¬x

(L)
v476

2. Construct A1 ^ A2. Without loss of generality, we can assume two models have same layer477

number L and same feature dimension dl in each layer l 2 {1......L}. Then, we can construct a478

new 0/1-GNN A. A has L + 1 layers. For each of the first L layers, say l-th layer, it has feature479

dimension 2dl. Let {C(l)
1 ,(A(l)

j,1)
K

j=1,R
(l)
1 ,b(l)1 },{C(l)

2 ,(A(l)
j,2)

K

j=1,R
(l)
2 ,b(l)2 } be parameters in layer l of480

A1,A2 respectively. Parameters for layer l of A are defined below481

C
(l) :=

"
C

(l)
1

C
(l)
2

#
A

(l)
j

:=

"
A

(l)
j,1

A
(l)
j,2

#
R

(l) :=

"
R

(l)
1

R
(l)
2

#
b
(l) :=

"
b
(l)
1

b
(l)
2

#
(6)

Initialization function of A is concatenation of initial feature of A1,A2. Then it’s easy to see that482

the feature x
L

v
after running first L layers of A is a two dimension vector, and the two dimensions483

contains two values representing the classification results outputted by A1,A2 respectively.484

For the last layer L+1, it has only one output dimension. We just set C
L+1
1,1 = C

L+1
1,2 = 1,bL+1

1 = �1485

and all other parameters 0. Then it’s equivalent to x
(L+1)
v = max(0,min(x(L)

v,1 + x
(L)
v,2 � 1,1)) where486

x
(L)
v,1 ,x

(L)
v,2 are output of A1,A2 respectively. It’s easy to see that the above equation is equivalent to487

x
(L+1)
v = x

(L)
v,1 ^ x

(L)
v,2 so the A constructed in this way is exactly A1 ^A2488

Definition 18. A FOC2 formula is defined inductively according to the following grammar:489

A(x), r(x,y),'1 ^ '2,'1 _ '2,¬'1,9
�ny('1(x,y)) where A 2 P1 and r 2 P2 (7)

Definition 19. For any subset S ✓ P2, let 'S(x,y) denote the FOC2 formula (
V

r2S
r(x,y)) ^490

(
V

r2P2\S ¬r(x,y)). Note that 'S(x,y) means there is a relation r between x and y if and only if491

12

r 2 S, so 'S(x,y) can be seen as a formula to restrict specific relation distribution between two492

nodes. RSFOC2 is inductively defined according to the following grammar:493

A(x),'1 ^ '2, '1 _ '2, ¬'1, 9
�ny

✓
'S(x,y) ^ '1(y)

◆
where A 2 P1 and S ✓ P2 (8)

Next, we prove that FOC2 and RSFOC2 have the same expressiveness, namely, each FOC2 node494

classifier can be rewritten in the form RSFOC2.495

Lemma 20. FOC2 = RSFOC2.496

Proof. Comparing the definitions of RSFOC2 and FOC2, it is obvious that RSFOC2 ✓ FOC2497

trivially holds, so we only need to prove the other direction, namely, FOC2 ✓ RSFOC2. In498

particular, a Boolean logical classifier only contains one free variable, we only need to prove that for499

any one-free-variable FOC2 formula '(x), we can construct an equivalent RSFOC2 formula (x).500

We prove Lemma 20 by induction over k, where k is the quantifier depth of '(x).501

In the base case where k = 0, '(x) is just the result of applying conjunction, disjunction or negation502

to a bunch of unary predicates A(x), where A 2 P1. Given that the grammar of generating '(x) is503

the same in RSFOC2 and FOC2 when k = 0, so the lemma holds for k = 0.504

For the indutive step, we assume that Lemma 20 holds for all RSFOC2 formula with quantifier505

depth no more than m, we next need to consider the case when k = m+ 1.506

We can decompose '(x) to be boolean combination of a bunch of FOC2 formulas '1(x), . . . ,'N (x),507

each of which is in the form 'i(x) := A(x) where A 2 P1 or 'i(x) := 9
�ny('0(x,y)). See the508

following example for reference.509

Example 21. Assume '(x) :=
�
A1(x) ^ 9y(r1(x,y))

�
_
�
9y
�
A2(y) ^ r2(x,y)

�
^9y(r3(x,y))

�
. It510

can be decomposed into boolean combination of four subformulas shown as follows:511

• '1(x) = A1(x)512

• '2(x) = 9y(r1(x,y))513

• '3(x) = 9y
�
A2(y) ^ r2(x,y)

�
514

• '4(x) = 9y(r3(x,y))515

We can see that grammars of FOC2 and RSFOC2 have a common part: A(x),'1^'2,'1_'2,¬'1,516

so we can only focus on those subformulas 'i(x) in the form of 9�ny'0(x,y). In other words, if we517

can rewrite these FOC2 subformulas into another form satisfying the grammar of RSFOC2, we can518

naturally construct the desired RSFOC2 formula (x) equivalent to FOC2 formula '(x).519

Without loss of generality, in what follows, we consider the construction for '(x) = 9
�ny('0(x,y)).520

Note that '(x) has quantifier depth no more than m+ 1, and '0(x,y) has quantifier depth no more521

than m.522

We can decompose '0(x,y) into three sets of subformulas {'x

i
(x)}Nx

i=1,{'
y

i
(y)}

Ny

i=1,{ri(x,y)}
|P2|
i=1 ,523

where Nx and Ny are two natural numbers, 'x

i
,'y

i
are its maximal subformulas whose free variable524

is assigned to x and y, respectively. '0(x) is the combination of these sets of subformulas using525

^, _ ,¬.526

Example 22. Assume that we have a FOC2 formula in the form of '0(x,y) =
⇣
r1(x,y) ^527

9x(r2(x,y))
⌘
_

⇣
9y
�
9x(r3(x,y)) _ 9y(r1(x,y))

�
^9y

�
A2(y) ^ r2(x,y)

�⌘
528

It can be decomposed into the following subformulas:529

• 'x

1(x) := 9y
�
9x(r3(x,y)) _ 9y(r1(x,y))

�
;530

• 'x

2(x) := 9y
�
A2(y) ^ r2(x,y)

�
;531

• 'y

1(y) := 9x(r2(x,y));532

13

• r1(x,y)533

Assume that N := {1, . . . , Nx}, we construct a RSFOC2 formula 'x

T
(x) := (

V
i2T

'x

i
(x)) ^534

(
V

i2N\T ¬'x

i
(x)), where T ✓ N . It is called the x-specification formula, which means 'x

T
(x) is535

true iff the following condition holds: for all i 2 T , 'x

i
(x) is true and for all i 2 N \ T , 'x

i
(x) is536

false.537

By decomposing '0(x,y) into three subformula sets, we know Boolean value of '0(x,y) can be538

decided by Boolean values of these formulas {'x

i
(x)}Nx

i=1,{'
y

i
(y)}

Ny

i=1,{ri(x,y)}
|P2|
i=1 . Now for any539

two specific subsets S ✓ P2, T ⇢ N , we assume'S(x,y) and'x

T
(x) are all true (Recall the definition540

of 'S(x,y) in Definition 19). Then Boolean values for formulas in {'x

i
(x)}Nx

i=1,{ri(x,y)}
|P2|
i=1 are541

determined and Boolean value of '0(x,y) depends only on Boolean values of {'y

i
(y)}

Ny

i=1. Therefore,542

we can write a new FOC2 formula 'y

S,T
(y) which is a boolean combination of {'y

i
(y)}

Ny

i=1. This543

formula should satisfy the following condition: For any graph G and two nodes a,b on it, the following544

holds,545

'S(a,b) ^ '
x

T
(a))

⇣
'0(a,b) , 'y

S,T
(b)
⌘

(9)

By our inductive assumption, '0(x,y) has a quantifier depth which is no more than m, so546

{'x

i
(y)}Nx

i=1,{'
y

i
(y)}

Ny

i=1 also have quantifier depths no more than m. Therefore, each of them547

has RSFOC2 correspondence. Furthermore, since ^, _ ,¬ are allowed operation in RSFOC2,548

'x

T
(x) and 'y

S,T
(y) can also be rewritten as RSFOC2 formulas.549

Given that 'S(x,y) and 'x

T
(y) specify the boolean values for all {'x

i
(y)}Nx

i=1,{'
r

i
(x,y)}|P2|

i=1 formulas,550

so we can enumerate all possibilities over S ✓ P2 and T ✓ N . Obviously for any graph G and a551

node pair (a,b), there exists an unique (S,T) pair such that 'S(a,b) ^ 'x

T
(a) holds.552

Hence, combining Equation (9), '0(x,y) is true only when there exists a (S,T) pair such that553

'S(x,y) ^ 'x

T
(x) ^ 'y

S,T
(y) is true. Formally, we can rewrite '0(x,y) as following form:554

'0(x,y) ⌘
_

S✓P2,T✓N

⇣
'S(x,y) ^ '

x

T
(x) ^ 'y

S,T
(y)
⌘

(10)

In order to simplify the formula above, let �T (x) denote the following formula:555

�T (x,y) :=
_

S✓P2

⇣
'S(x,y) ^ '

y

S,T
(y)
⌘

(11)

Then we can simplify Equation (10) to the following form:556

'0(x,y) ⌘
_

T✓N

⇣
'x

T
(x) ^ �T (x,y)

⌘
(12)

Recall that '(x) = 9
�ny('0(x,y)), so it can be rewritten as:557

'(x) ⌘ 9
�ny

✓ _

T✓N

�
'x

T
(x) ^ �T (x,y)

�◆
(13)

Since for any graph G and its node a, there exists exactly one T such that 'x

T
(a) is true. Therefore,558

Equation (13) can be rewritten as the following formula:559

'(x) ⌘
_

T✓N

✓
'x

T
(x) ^ 9

�ny(�T (x,y))

◆
(14)

Let b'T (x) := 9
�ny(�T (x,y)). Since ^,_ are both allowed in RSFOC2. If we want to rewrite560

'(x) in the RSFOC2 form, it suffices to rewrite b'T (x) as a RSFOC2 formula, which is shown as561

follows,562

b'T (x) := 9
�ny(�T (x,y)) = 9

�ny

✓ _

S✓P2

⇣
'S(x,y) ^ '

y

S,T
(y)
⌘◆

(15)

14

Similar to the previous argument, since for any graph G and of of its node pairs (a,b), the relation-563

specification formula 'S(x,y) restricts exactly which types of relations exists between (a,b), there is564

exactly one subset S ✓ P2 such that 'S(a,b) holds.565

Therefore, for all S ✓ P2, we can define nS as the number of nodes y such that 'S(x,y) ^ '
y

S,T
(y)566

holds. Since for two different subsets S1,S2 ✓ P2 and a fixed y, 'S1(x,y) and 'S2(x,y) can’t hold567

simultaneously, the number of nodes y that satisfies 'S(x,y)^'
y

S,T
(y) is exactly the sum

P
S✓P2

nS .568

Therefore, in order to express Equation (15), which means there exists at least n nodes y such that569 W
S✓P2

�
'S(x,y)^'

y

S,T
(y)
�

holds, it suffices to enumerate all possible values for {nS |S ✓ P2} that570

satisfies (
P

S✓P2
nS) = n, nS 2 N. Formally, we can rewrite b'T (x) as follows:571

b'T (x) ⌘
_

(
P

S✓P2
nS)=n

⇣ ^

S✓P2

9
�nSy('S(x,y) ^ '

y

S,T
(y))

⌘
(16)

Note that 9�nSy('S(x,y)^'
y

S,T
(y)) satisfies the grammar of RSFOC2, so b'T (x) can be rewritten572

as RSFOC2. Then, since 'x

T
(x) can also be rewritten as RSFOC2 by induction, combining573

Equation (14) and Equation (15), '(x) is in RSFOC2. We finish the proof.574

A.2 Proof of Proposition 2575

Proposition 2. FOC2 6✓ R2-GNNs and R2-GNNs 6✓ FOC2 on some universal graph class Gu.576

Proof. First, we prove FOC2 * R2-GNNs.577

Consider the two graphs G1,G2 in Figure 1. (G1,a),(G2,a) can be distinguished by the FOC2578

formula '(x) := 9
�1y(p1(x,y) ^ p2(x,y)). However, we will prove that any R2-GNN can’t579

distinguish any node in G1 from any node in G2.580

Let’s prove it by induction over the layer number L of R2-GNN. That’s to say, we want to show that581

for any L � 0, R2-GNN with no more than L layers can’t distinguish any node of G1 from that of582

G2.583

For the base case where L = 0, since each node feature vector is initialized by the unary predicate584

information, so the result trivially holds.585

Assume any R2-GNN with no more than L = m layers can’t distinguish nodes of G1 from nodes of586

G2. Then we want to prove the result for L = m+ 1.587

For any R2-GNN model A with m+ 1 layers, let A0 denote its first m layers, we know outputs of A0588

on any node from G1 or G2 are the same, suppose the common output feature is x
(m).589

Recall the updating rule of R2-GNN in Equation (2).We know the output of A on any node v in G1590

or G2 is defined as follows,591

x
(m+1)
v

= C(m+1)

✓
x
(m)
v

,
⇣
A(m+1)

1 ({{x
(m)
u1(v)

}})
⌘
,A(m+1)

2 ({{x
(m)
u2(v)

}})
⌘
, R(m+1)({{x

(m)
a

,x(m)
b

,x(m)
c

,x(m)
d

}})

◆

(17)
Here C(m+1),A(m+1)

1 ,A(m+1)
2 ,R(m+1) are parameters in the layer m+ 1 of A, u1(v),u2(v) is the592

only r1,r2-type neighbor of v, and a,b,c,d are nodes from the corresponding graph G1 or G2. From593

Figure 1 we can see they are well defined.594

By induction, since any node pairs from G1 and G2 can’t be distinguished by A
0, we have595

x
(m)
v ,x(m)

u1(v)
,x(m)

u2(v)
,x(m)

a ,x(m)
b

,x(m)
c ,x(m)

d
are all the same feature x

(m). Therefore, Equation (17)596

have the same expression for all nodes v from G1 and G2, which implies any A with m+ 1 layers597

can’t distinguish nodes from G1 and G2.598

Next, we then prove R2-GNNs * FOC2.599

Assume we want to construct a classifier c which classifies a node into true iff the node has a larger600

number of r1-type neighbors than that of r2-type neighbors.601

First, we prove that we can construct an 0/1-GNN A to capture c. It only has one layer with602

parameters C(1),A(1)
1 ,A(1)

2 ,R(1), and feature dimension d0 = d1 = 1. We assume that each node has603

15

2 3 2n+ 2

1

2n+ 3 2n+ 4 4n+ 2

2n blue neighbors

2n+ 1 red neighbors

G(n) :

2 3 2n+ 1

1

2n+ 2 2n+ 4 4n+ 2

2n+ 1 blue neighbors

2n red neighbors

H(n) :

Figure 5: G(n) and H(n).

the same initial feature vector, i.e., 1. We set A(1)
1,(1,1) = 1,A(1)

2,(1,1) = �1, where A(1)
1,(1,1) denotes604

the only element in A(1)
1 placed in the first row and first column (similar for A(1)

2,(1,1)) and all other605

parameters 0. It’s easy to see that A is equivalent to our desired classifier c on any graph since we606

have x
(1)
v = max(0,min(1,

P
u2NG,1(v)

1�
P

u2NG,2(v)
1)).607

Next, we show FOC2 can’t capture c on Gs. In order to show that, for any natural number n, we can608

construct two single-edge graphs G(n),H(n) as follows:609

V (G(n)) = V (H(n)) = {1,2......4n+ 2}

E(G(n)) = {r1(1,i)|8i 2 [2,2n+ 2]} [{r2(1,i)|i 2 [2n+ 3,4n+ 2]}

E(H(n)) = {r1(1,i)|8i 2 [2,2n+ 1]} [{r2(1,i)|i 2 [2n+ 2,4n+ 2]}

We prove the result by contradiction. Assume there is a FOC2 classifier ' that captures the classifier610

c, then it has to classify (G(n),1) as true and (H(n),1) as false for all natural number n. However,611

in the following we will show that it’s impossible, which proves the non-existence of such '.612

Suppose threshold numbers used on counting quantifiers of ' don’t exceed m, then we only need to613

prove that ' can’t distinguish (G(m),1),(H(m),1), which contradicts our assumption.614

For simplicity, we use G,H to denote G(m),H(m). In order to prove the above argument. First, we615

define a node-classification function CLS(·) as follows. It has G or H as subscript and a node of G616

or H as input.617

1. CLSG(1) = CLSH(1) = 1. It means the function returns 1 when the input is the center of618

G or H .619

2. CLSG(v1) = CLSH(v2) = 2, 8v1 2 [2,2m + 2],8v2 2 [2,2m + 1], which means the620

function returns 2 when the input is a r1-neighbor of center.621

3. CLSG(v1) = CLSH(v2) = 3, 8v1 2 [2m + 3,4m + 2],8v2 2 [2m + 2,4m + 2], which622

means the function returns 3 when the input is a r2-neighbor of center.623

Claim 1: Given any u1,v1 2 V (G), u2,v2 2 V (H), if (CLSG(u1),CLSG(v1)) =624

(CLSH(u2),CLSH(v2)), then any FOC2 formula with threshold numbers no larger than m can’t625

distinguish (u1,v1) and (u2,v2).626

This claim is enough for our result. We will prove that for any constant d and any FOC2 formula627

� with threshold numbers no larger than m and quantifier depth d, � can’t distinguish (u1,v1) and628

(u2,v2) given that (CLSG(u1),CLSG(v1)) = (CLSH(u2),CLSH(v2))629

The result trivially holds for the base case where d = 0. Now let’s assume the result holds for d  k,630

we can now prove the inductive case when d = k + 1.631

16

Since ^,_,¬, r(x,y) trivially follows, we can only consider the case when �(x,y) is in the form632

9
�Ny�0(x,y),N  m or 9�Nx�0(x,y),N  m, where �0(x,y) is a FOC2 formula with threshold633

numbers no more than m and quantifier depth no more than k. Since these two forms are symmetrical,634

without loss of generality, we only consider the case 9
�Ny�0(x,y),N  m.635

Let N1 denote the number of nodes v01 2 V (G) such that (G,u1,v01) |= �0 and N2 denote the number636

of nodes v02 2 V (H) such that (H,u2.v02) |= �0. Let’s compare values of N1 and N2. First, By637

induction, since we have CLSG(u1) = CLSH(u2) from precondition, so for any v01 2 V (G), v02 2638

V (H), which satisfies CLSG(v01) = CLSH(v02), �0(x,y) can’t distinguish (u1,v01) and (u2,v02).639

Second, isomorphism tells us �0 can’t distinguish node pairs from the same graph if they share the640

same CLS values. Combining these two facts, there has to be a subset S ✓ {1,2,3}, such that641

N1 =
P

a2S
NG(a) and N2 =

P
a2S

NH(a), where NG(a) denotes the number of nodes u on G642

such that CLSG(u) = a, (NH(a) is defined similarly).643

It’s easy to see that NG(1) = NH(1) = 1, and NG(a),NH(a) > m for a 2 {2,3}. Therefore, at644

least one of N1 = N2 and m < min{N1,N2} holds. In neither case 9
�Ny�0(x,y),N  m can645

distuigush (u1,v1) and (u2,v2).646

A.3 Proof of Theorem 3647

Theorem 3. FOC2 ✓ R2-GNNs on any single-edge graph class Gs.648

Proof. By Lemma 20, FOC2 = RSFOC2, so it suffices to show RSFOC2 ✓ 0/1-GNN. By649

Lemma 17, 0/1-GNN is closed under ^, _ ,¬, so we can only focus on formulas in RSFOC2 of650

form '(x) = 9
�ny('S(x,y) ^ '0(y)),S ✓ P2. If we can construct an equivalent 0/1-GNN A for651

all formulas of above form, then we can capture all formulas in RSFOC2 since other generating652

rules ^, _ ,¬ is closed under 0/1-GNN. In particular, for the setting of single-edge graph class, '653

is meaningful only when |S|  1. That’s because |S| > 2 implies that ' is just the trivial ? in any654

single-edge graph class Gs.655

Do induction over quantifier depth k of '(x). In the base case where k = 0, the result trivially holds656

since in this situation, the only possible formulas that needs to consider are unary predicates A(x),657

where A 2 P1, which can be captured by the initial one-hot feature. Next, assume our result holds658

for all formulas with quantifier depth k no more than m, it suffices to prove the result when quantifier659

depth of '(x) = 9
�ny('S(x,y) ^ '0(y)) is m + 1. It follows that quantifier depth of '0(y) is no660

more than m.661

By induction, there is a 0/1-GNN model A0 such that A0 = '0 on single-edge graph class. To662

construct A, we only need to append another layer on A
0. This layer L+ 1 has dimension 1, whose663

parameters C(L+1),(A(L+1)
j

)K
j=1,R

(L+1),b(L+1) are set as follows:664

1. When |S| = 1: Suppose S = {j}, set AL+1
j,(1,1) = 1,bL+1 = 1� n, where AL+1

j,(1,1) denotes665

the element on the first row and first column of matrix A(L+1)
j

. Other parameters in this layer666

are 0. This construction represents x
(L+1)
v = max(0,min((

P
u2NG,j(v)

x
(L)
u)�(n�1),1)).667

Since x
(L)
u is classification result outputted by A

0 which is equivalent to '0,
P

u2NG,j(v)
x
(L)
u668

counts the number of j-type neighbor u of v that satisfies '0(u). Therefore x
(L+1)
v = 1669

if and only if there exists at least n j-type neighbors satisfying the condition '0, which is670

exactly what '(x) means.671

2. When |S| = 0: Let K = |P2|, for all j 2 [K], set AL+1
j,(1,1) = �1, R(L+1)

1,1 =672

1,bL+1 = 1 � n and all other parameters 0. This construction represents x
(L+1)
v =673

max(0,min((
P

u2V (G) x
(L)
u) � (

P
K

j=1

P
u2NG,j(v)

x
(L)
u) � (n � 1),1)). Since we only674

consider single-edge graph, (
P

u2V (G) x
(L)
u) � (

P
K

j=1

P
u2NG,j(v)

x
(L)
u) exactly counts675

the number of nodes u that satisfies '0(y) and doesn’t have any relation with v. It’s easy676

to see that x
(L+1)
v = 1 iff there exists at least n such nodes u, which is exactly what '(x)677

means.678

17

Hence, we finish the proof for Theorem 3 – for each FOC2 formula over the single-edge graph class,679

we can construct an R2-GNN to capture it.680

681

A.4 Proof of Theorem 4682

Theorem 4. R2-GNNs ✓ FOC2 on any bounded graph class Gb.683

If we want to prove R2-GNN ✓ FOC2, it suffices to show that for any R2-GNN A, there exists an684

equivalent FOC2 formula ' on any bounded graph class Gb. It implies that for two graphs G1,G2685

and their nodes a,b, if they are classified differently by A, there exists some FOC2 formula ' that686

can distinguish them. Conversly, if a,b can’t be distinguished by any FOC2 formula, then they can’t687

be distinguished by any R2-GNN as well.688

Definition 23. For a set of classifiers = { 1...... m}, a -truth-table T is a 0/1 string of length689

m. T can be seen as a classifier, which classifies a node v to be true if and only if for any 1  i  m,690

the classification result of i on v equals to Ti, where Ti denotes the i-th bit of string T . We define691

T () := {0,1}m as the set of all -truth-tables. We have that for any graph G and its node v, v692

satisfies exactly one truth-table T .693

Proposition 24. Let FOC2(n) denote the set of formulas of FOC2 with quantifier depth no more694

than n. For any Gb and n, only finitely many intrinsically different node classifiers on Gb can be695

represented by FOC2(n).696

Proof. Suppose all graphs in Gb have no more than N constants, then for any natural number m > N ,697

formulas of form 9
�my('(x,y)) are always false. Therefore, it’s sufficient only to consider FOC2698

logical classifiers with threshold numbers no more than N on Gb.699

There are only finitely many predicates, and each boolean combination of unary predicates using700

^, _ ,¬ can be rewritten in the form of Disjunctive Normal Form (DNF)Davey and Priestley [2002].701

So there are only finitely many intrinsically different formulas in FOC2 with quantifier depth 0.702

By induction, suppose there are only finitely many intrinsically different FOC2(k) formulas on Gb.703

and each meaningful FOC2(k + 1) formula is generated by the following grammar704

'1 ^ '2,'1 _ '2,¬'2,9
�my('0(x,y)),m  N (18)

where '1,'2 are FOC2(k + 1) formulas and '0 is FOC2(k) formulas.705

Given that only the rule 9�ny('0(x,y)) can increase the quantifier depth from k to k+1, m  N , and706

there are only finitely many intrinsically different '0(x,y) 2 FOC2(k) on Gb by induction. Therefore,707

there are only finitely many intrinsically different FOC2(k + 1) formulas of form 9
�my('0(x,y))708

on Gb. Moreover, their boolean combination using ^, _ ,¬ can be always rewritten in the DNF form,709

So there are also finitely many intrinsically different FOC2(k + 1) logical classifiers on Gb.710

Lemma 25. For any two pairs (G1, v1) and (G2, v2), where G1 and G2 are two bounded graphs711

from Gb and v1 and v2 are two nodes in G1 and G2, respectively. If all logical classifiers in FOC2(L)712

can’t distinguish v1,v2, then any R2-GNN with layer no more than L can’t distinguish them as well.713

Proof. By one-hot feature initialization function of R2-GNN, FOC2(0) can distinguish all different714

one-hot intial features, so the lemma trivially holds for the base case (L = 0).715

For the inductive step, we suppose Lemma 25 holds for all L  k, then we can assume v1,v2 can’t be716

distinguished by FOC2(k + 1). Let N = k + 1717

G1 and G2 are bounded graphs from Gb, so FOC2(N) has finitely many intrinsically different718

classifiers according to Proposition 24. Let T T N (v) denote the FOC2(N)-truth-table satisfied by719

v. According to Definition 23, we know that for any T 2 T (FOC2(N)), there exists a FOC2(N)720

classifier 'T such that for any node v on Gi, where i 2 1, 2, T T N (v) = T , (Gi,v) |= 'T .721

Assume there is an R2-GNN A that distinguish v1,v2 with layer L = k + 1. Let bA denote its first722

k layers. By update rule of R2-GNN illustrated in Equation 2, output of A on node v of graph G,723

x
(k+1)
v only dependent on the following three things:724

18

• output of bA on v, x
(k)
v725

• multiset of outputs of bA on r-type neighbors of v for each r 2 P2, {x
(k)
u |u 2 NG,r(v)}726

• multiset of outputs of bA on all nodes in the graph, {x
(k)
u |u 2 NG,r(v)}727

By induction, since v1,v2 can’t be distinguished by FOC2(k), they has same feature outputted by bA.728

Then there are two remaining possibilities.729

• {{T T k(u)|u 2 NG1,r(v1)}} 6= {{T T k(u)|u 2 NG2,r(v2)}} for some binary predicate r.730

Therefore, there exists a FOC2(k)-truth-table T , such that v1,v2 have differently many r-731

type neighbors that satisfies 'T . Without loss of generality, suppose v1,v2 have n1,n2(n1 <732

n2) such neighbors respectively. we can write a FOC2(k + 1) formula 9
�n2y(r(x,y) ^733

'T (y)) that distinguishes v1 and v2, which contradicts the precondition that they can’t be734

distinguished by FOC2(k + 1) classifiers.735

• {{T T k(u)|u 2 V (G1)}} 6= {{T T k(u)|u 2 V (G2)}}. Therefore, there exists a FOC2(k)-736

truth-table T , such that G1,G2 have differently many nodes that satisfies 'T . Without loss737

of generality, suppose G1,G2 have n1,n2(n1 < n2) such nodes respectively. we can write738

a FOC2(k + 1) formula 9
�n2y'T (y) that distinguishes v1 and v2, which contradicts the739

precondition that they can’t be distinguished by FOC2(k + 1) classifiers.740

Since all possibilities contradicts the precondition that v1,v2 can’t be distinguished by FOC2(k + 1),741

such an A that distinguishes v1,v2 doesn’t exist.742

We can now gather all of these to prove Theorem 4.743

Proof. For any R2-GNN A, suppose it has L layers. For any graph G 2 Gb and its node v, let744

T T L(v) denote the FOC2(L)-truth-table satisfied by v. For any T 2 T (FOC2(L)), since Gb is a745

bounded graph class, using Proposition 24, there exists a FOC2(L) classifier 'T such that for any746

node v in graph G 2 Gb, T T L(v) = T , (G,v) |= 'T747

By Lemma 25, If two nodes v1,v2 have same FOC2(L)-truth-table (T T L(v1) = T T L(v2)), they748

can’t be distinguished by A. Let S denote the subset of T (FOC2(L)) that satisfies A. By Proposi-749

tion 24, � := {'T |T 2 S} is a finite set, then disjunction of formulas in �, (
W

T2S
'T) is a FOC2750

classifier that equals to A under bounded graph class Gb.751

A.5 proof of Theorem 7752

Theorem 7. R2-GNNs ✓ R2-GNNs �F on any universal graph class Gu.753

Proof. Assume that we have a predicate set P = P1 [P2, K = |P2| and let P 0 = P [754

{primal,aux1,aux2} denote the predicate set after transformation F . For any R2-GNN A un-755

der P , we want to construct another R2-GNN A
0 under P 0, such that for any graph G under P and its756

node v, v has the same feature outputted by A(G,v) and A
0(F (G),v). Let L denote the layer number757

of A.758

We prove this theorem by induction over the number of layers L. In the base (L = 0), our result759

trivially holds since the one-hot initialization over P 0 contains all unary predicate information in P .760

Now suppose the result holds for L  k, so it suffices to prove it when L = k + 1.761

For the transformed graph F (G), primal(v) is true if and only if v is the node in the original graph762

G. Without loss of generality, if we use one-hot feature initialization on P 0, we can always keep an763

additional dimension in the node feature vector xv to show whether primal(v) is true, its value is764

always 0/1, in the proof below when we use x to denote the feature vectors, we omit this special765

dimension for simplicity. But keep in mind that this dimension always keeps so we can distinguish766

original nodes and added nodes.767

Recall that an R2-GNN is defined by {C(i),(A(i)
j
)K
i=1,R

(i)
}
L

i=1. By induction, let bA denote the first768

k layers of A, and let bA0 denote the R2-GNN equivalent with bA on F transformation such that769

19

bA = bA0
� F . We will append three layers to bA0 to construct A0 that is equivalent to A. Without loss770

of generality, we can assume all layers in A have same dimension length d. Suppose L0 is the layer771

number of bA0, so we will append layer L0 + 1,L0 + 2,L0 + 3. for all l 2 {L0 + 1,L0 + 2,L0 + 3},772

let {Ca,(l),Cp,(l),(A⇤,(l)
j

)K
j=1,A

⇤,(l)
aux1,A

⇤,(l)
aux2,R

⇤,(l)
} denote the parameters in l-th layer of A. Here,773

A⇤,(l)
aux1,A

⇤,(l)
aux2 denotes the aggregation function corresponding to two new predicates aux1,aux2,774

added in transformation F , and Cp,(l),Ca,(l) are different combination function that used for primal775

nodes and non-primal nodes. Note that with the help of the special dimension mentioned above, we776

can distinguish primal nodes and non-primal nodes. Therefore, It’s safe to use different combination777

functions for these two kinds of nodes. Note that here since we add two predicates aux1,aux2, the778

input for combination function should be in the form Cp(x0,(xj)Kj=1,xaux1,xaux2,xg) where x0 is the779

feature vector of the former layer, and xj ,1  j  K denote the output of aggregation function A⇤,(l)
j

,780

xaux1,xaux2 denote the output of aggregation function A⇤,(l)
aux1,A

⇤,(l)
aux2, and xg denotes the feature781

outputted by global readout function R⇤,(l). For aggregation function and global readout function,782

their inputs are denoted by X, meaning a multiset of feature vector. Note that all aggregation functions783

and readout functions won’t change the feature dimension, only combination functions Cp,(l),Ca,(l)784

will transform dl�1 dimension features to dl dimension features.785

1). layer L0 +1: input dimension is d, output dimension is d0 = Kd. For feature vector x with length786

d0, let x
(i), i 2 {1, . . . ,K} denote its i-th slice in dimension [(i � 1)d + 1,id]. Let [x1, . . . , xm]787

denote concatenation of x1, . . . , xm, and let [x]n denote concatenation of n copies of x, 0
n denote788

zero vectors of length n. parameters for this layer are defined below:789

Cp,(L0+1)(x0,(xj)
K

j=1,xaux1,xaux2,xg) = [x0,0
d
0�d] (19)

790

Ca,(L0+1)(x0,(xj)
K

j=1,xaux1,xaux2,xg) = [xaux1]
K (20)

791

A⇤,(L0+1)
aux1 (X) =

X

x2X

x (21)

Other parameters in this layer are set to functions that always output zero-vector.792

We can see here that the layer L0 + 1 do the following thing:793

For all primal nodes a and its non-primal neighbor eab, pass concatenation of K copies of xa to xeab ,794

and remains the feature of primal nodes unchanged.795

2). layer L0 + 2, also has dimension d0 = Kd, has following parameters.796

Cp,(L0+2)(x0,(xj)
K

j=1,xaux1,xaux2,xg) = x0 (22)
797

Ca,(L0+2)(x0,(xj)
K

j=1,xaux1,xaux2,xg) =
KX

j=1

xj (23)

798

8j 2 [1,K],A⇤,(L0+2)
j

(X) = [0(j�1)d,
X

x2X

x
(j),0(K�j)d] (24)

All other parameters in this layer are set to function that always outputs zero vectors. This layer do799

the following thing:800

For all primal nodes, keep the feature unchanged, for all added node pair eab,eba. Switch their feature,801

but for all ri 2 P2, if there is no ri relation between a,b, the i-th slice of xeab and xeba will be set to802

0.803

3). layer L0 + 3, has dimension d, and following parameters.804

Cp,(L0+3)(x0,(xj)
K

j=1,xaux1,xaux2,xg) = C(L)(x(1)0 ,(x(j)
aux1)

K

j=1,x
(1)
g

) (25)
805

R⇤,(L0+3)(X) = [R(L)({{x
(1)
v

|xv 2 X,primal(v)}}),0d
0�d] (26)

806

A⇤,(L0+3)
aux1 (X) = [A(L)

1 ({{x
(1)

|x 2 X}})......A(L)
K

({{x
(K)

|x 2 X}})] (27)

Note that C(L),A(L)
j

,R(L) are all parameters in the last layer of A mentioned previously. All other807

parameters in this layer are set to functions that always output zero vectors. We can see that this layer808

simulates the work of last layer of A as follows:809

20

• For all 1  j  K, use the j-th slice of feature vector x
(j) to simulate A(L)

j
and store results810

of aggregation function A(L)
j

on this slice.811

• Global readout trivially emulates what R(L) does, but only reads features for primal nodes.812

It can be done since we always have a special dimension in feature to say whether it’s a813

primal node.814

• We just simulate what C(L) does on primal nodes. For 1  j  K The type rj aggregation815

result (output of A(L)
j

) used for input of C(L) is exactly j-th slice of return value of816

A⇤,(L0+3)
aux1 .817

By construction above, A0 is a desired model that have the same output as A.818

819

A.6 proof of Theorem 8820

Theorem 8. FOC2 ✓ R2-GNNs �F on any universal graph class Gu.821

Proof. For any FOC2 classifier ' under predicate set P , we want to construct a 0/1-GNN A on822

P 0 = P [{primal,aux1,aux2} equivalent to ' with graph transformation F .823

Recall that FOC2 = RSFOC2 shown in Lemma 20 and 0/1-GNNs ✓ R2-GNNs, it suffices to824

prove that 0/1-GNN�F capture RSFOC2. By Lemma 17, since ^, _ ,¬ are closed under 0/1-GNN825

it suffices to show that when ' is in the form 9
�n
�
'S(x,y) ^ '0(y)

�
,S ✓ P2, we can capture it.826

We prove by induction over quantifier depth m of '. Since 0-depth formulas are only about unary827

predicate that can be extracted from one-hot initial feature, our theorem trivially holds for m = 0.828

Now, we assume it also holds for m  k, it suffices to prove the case when m = k + 1. Then there829

are two possibilities:830

1. When S 6= ;:831

Consider the following logical classifier under P 0:832

b'S(x) :=
⇣^

r2S

9xr(x,y)
⌘
^

⇣^

r/2S

¬9xr(x,y)
⌘

(28)

b'S(x) restricts that for any r 2 P 0, x has r-type neighbor if and only if r 2 S. Review the833

definition of transformation F , we know that for any added node eab, (F (G),eab) |= b'S if and only834

if (G,a,b) |= 'S(a,b), where 'S(x,y) is the relation-specification formula defined in Definition 19835

That is to say for any ri,1  i  K, there is relation ri between a,b if and only if i 2 S.836

Now consider the following formula:837

b' := 9
�ny

✓
aux1(x,y) ^ b'S(y) ^

⇣
9x
�
aux2(x,y) ^ (9y(aux1(x,y) ^ '0(y)))

�⌘◆
(29)

For any graph G and its node v, it’s easy to see that (G,v) |= ' , (F (G),v) |= b'. Therefore we838

only need to capture b' by 0/1-GNN on every primal node of transformed graphs. By induction,839

since quantifier depth of '0(y) is no more than k, we know '0(y) is in 0/1-GNN. b' is generated840

from '0(y) using rules ^ and 9y
�
r(x,y) ^ '0(y)

�
. By Lemma 17, ^ is closed under 0/1-GNN. For841

9y
�
r(x,y) ^ '0(y)

�
, we find that the construction needed is the same as construction for single-842

element S on single-edge graph class Gs used in Theorem 3. Therefore, since we can manage these843

two rules, we can also finish the construction for b', which is equivalent to ' on primal nodes of844

transformed graph.845

2. When S = ;846

First, consider the following two logical classifiers:847

'̄(x) :=
⇣

primal(x) ^ '0(x)
⌘

(30)

21

'̄ says a node is primal, and satisfies '0(x). Since '0(x) has quantifier depth no more than k, and848

^ is closed under 0/1-GNN. There is a 0/1-GNN A1 equivalent to '̄ on transformed graph. Then,849

consider the following formula.850

'̃(x) := 9y
�
aux2(x,y) ^ (9x,aux11(x,y) ^ '0(x))

�
(31)

'̃(x) evaluates on added nodes eab on transformed graph, eab satisfies it iff b satisfies '0851

Now for a graph G and its node v, define n1 as the number of nodes on F (G) that satisfies '̄,852

and define n2 as the number of aux1-type neighbors of v on F (G) that satisfies '̃. Since '(x) =853

9
�ny(';(x,y) ^ '

0(y)) It’s easy to see that (G,v) |= ' if and only if n1 � n2 � n.854

Formally speaking, for a node set S, let |S| denote number of nodes in S, we define the following855

classifier c such that for any graph G and its node a, c(F (G),a) = 1 , (G,a) |= '856

c(F (G),a) = 1 , |{v|v 2 V (F (G)), (F (G),v) |= '̄}|�|{v|v 2 NF (G),aux11(v), (F (G),v) |= '̃}| � n
(32)

So how to construct a model A to capture classifier c? First, by induction '̄,'̃ are all formulas with857

quantifier depth no more than k so by previous argument there are 0/1-GNN models Ā,Ã that capture858

them respectively. Then we can use feature concatenation technic introduced in Equation (6) to859

construct a model bA based on Ā,Ã, such that bA has two-dimensional output, whose first and second860

dimensions have the same output as Ā,Ã respectively.861

Then, suppose bA has L layers, The only thing we need to do is to append a new layer L+ 1 to bA,862

it has output dimension 1. parameters of it are {C(L+1),(A(L+1)
j

)K
j=1,A

(L+1)
aux1 ,A(L+1)

aux2 ,R(L+1)
} as863

defined in Equation (5). The parameter settings are as follows:864

R
(L+1)
1,1 = 1,A(L+1)

aux1,(1,2) = �1,b(L+1)
1 = 1 � n. Other parameters are set to 0, where A

(L+1)
aux1,(1,2)865

denotes the value in the first row and second column of A
(L+1)
aux1 .866

In this construction, we have867

x
(L+1)
v = max(0,min(1,

P
u2V (F (G)) x

(L)
u,1 �

P
u2NF (G),aux1(v)

x
(L)
u,2 � (n�1))), which has exactly868

the same output as classifier c defined above in Equation (32). Therefore, A is a desired model.869

A.7 proof of Theorem 9870

Theorem 9. R2-GNNs �F ✓ FOC2 on any bounded graph class Gb.871

Before we go into theorem itself, we first introduce Lemma 26 that will be used in following proof.872

Lemma 26. Let '(x,y) denote a FOC2 formula with two free variables, for any natural number n,873

the following sentence can be captured by FOC2:874

There exists no less than n ordered node pairs (a,b) such that (G,a,b) |= '.875

Let c denote the graph classifier such that c(G) = 1 iff G satisfies the sentence above.876

Proof. The basic intuition is to define mi,1  i < n as the number of nodes a, such that there are877

exactly i nodes b that '(a,b) is true. Specially, we define mn as the number of nodes a, such that878

there are at least n nodes b that '(a,b) is true. Since
P

n

i=1 imi exactly counts the number of valid879

ordered pairs when mn = 0, and it guarantees the existence of at least n valid ordered pairs when880

mn > 0. It’s not hard to see that for any graph G, c(G) = 1 ,
P

n

i=1 imi � n. Futhermore, fix a881

valid sequence (m1......mn) such that
P

n

i=1 imi � n, there has to be another sequence (k1......kn)882

such that n 
P

n

i=1 iki  2n and ki  mi for all 1  i  n. Therefore, We can enumerate all883

possibilities of valid (k1......kn), and for each valid (k1......kn) sequence, we judge whether there884

are at least ki such nodes a for every 1  i  n.885

Formally, 'i(x) := 9
[i]y'(x,y) can judge whether a node a has exactly i partners b such that886

'(a,b) = 1, where 9
[i]y'(x,y) denotes "there are exactly i such nodes y" which is the abbreviation887

of formula (9�iy'(x,y))^(¬9�i+1y'(x,y)). The FOC2 formula equivalent to our desired sentence888

22

c is as follows:889

_
Pn

i=1 niki2n

✓n�1̂

i=1

9
�kix

⇣
9
[i]y'(x,y)

⌘◆
^

✓
9
�knx

⇣
9
�ny'(x,y)

⌘◆
(33)

This FOC2 formula is equivalent to our desired classifier c.890

With the Lemma 26, we now start to prove Theorem 9.891

Proof. By Theorem 4, it follows that R2-GNNs �F ✓ FOC2 � F . Therefore it suffices to show892

FOC2 � F ✓ FOC2.893

By Lemma 20, it suffices to show RSFOC2 �F ✓ FOC2. Since ^,_ ,¬ are common rules. We only894

need to show for any RSFOC2 formula of form '(x) := 9
�ny('S(x,y)^'0(y)) under transformed895

predicate set P 0 = P [{aux1,aux2,primal}, there exists an FOC2 formula '1 such that for any896

graph G under P and its node v, (G,v) |= '1
, (F (G),v) |= '.897

In order to show this, we consider a stronger result:898

For any such formula ', including the existence of valid '1, we claim there also exists an FOC2899

formula '2 with two free variables such that the following holds: for any graph G under P and900

its added node eab on F (G), (G,a,b) |= '2
, (F (G),eab) |= '. Call '1,'2 as first/second901

discriminant of '.902

Now we need to prove the existence of '1 and '2.903

We prove by induction over quantifier depth m of ', Since we only add a single unary predicate primal904

in P 0, any '(x) with quantifier depth 0 can be rewritten as (primal(x) ^ '1(x)) _ (¬primal(x) ^905

'2(x)), where '1(x),'2(x) are two formulas that only contain predicates in P . Therefore, '1,'2 can906

also be seen as first/second discriminat of ', so our theorem trivially holds for m = 0. Now assume907

it holds for m  k, we can assume quantifier depth of ' = 9
�ny('S(x,y) ^ '0(y)) is m = k + 1.908

Consider the construction rules of transformation F , for any two primal nodes in F (G), there is no909

relation between them, for a primal node a and an added node eab, there is exactly a single relation of910

type aux1 between them. For a pair of added nodes eab,eba, there are a bunch of relations from the911

original graph G and an additional aux2 relation between them. Therefore, it suffices to only consider912

three possible kinds of S ✓ P2 [{aux1,aux2} according to three cases mentiond above. Then, we913

will construct first/second determinants for each of these three cases. Since '0(y) has quantifier depth914

no more than k, by induction let b'1,b'2 be first/second discriminants of '0 by induction.915

1. S = {aux1}:916

for primal node a, '(a) means the following: there exists at least n nodes b, such that there is917

some relation between a,b on G and the added node eab on F (G) satisfies '0. Therefore, the first918

determinant of ' can be defined as following:919

'1(x) := 9
�ny,

⇣ _

r2P2

r(x,y)
⌘
^b'2(x,y) (34)

for added nodes eab on F (G), '(eab) means a satisfies '0, so the second determinant of ' is the920

following:921

n = 1 : '2(x,y) := b'1(x), n > 1 : '2(x,y) := ? (35)
2.S = {aux2} [T,T ✓ P2,T 6= ;922

primal nodes don’t have aux2 neighbors, so first determinant is trivially false.923

'1(x) := ? (36)

For added node eab, eab satisfies ' iff there are exactly relations between a,b of types in T , and924

eba satisfies '0. Therefore the second determinant is as follows, where 'T (x,y) is the relation-925

specification formula under P introduced in Definition 19926

n = 1 : '2(x,y) := 'T (x,y) ^ b'2(y,x), n > 1 : '2(x,y) := ? (37)

3. S = ;927

23

For a subset S ✓ P2 [{aux1,aux2}, let 'S(x,y) denote the relation-specification formula under928

P2 [{aux1,aux2} defined in Definition 19.929

Since we consider on bounded graph class Gb, node number is bounded by a natural number N . For930

any node a on F (G), let m denote the number of nodes b on F (G) such that '0(b) = 1, let m0 denote931

the number of nodes b on F (G) such that '0(b) = 1 and there is a single relation aux1, between (a,b)932

on F (G), (That is equivalent to '{aux1}(a,b) = 1). For any T ✓ P2, let mT denote the number of933

nodes b on F (G) such that '0(b) = 1 and a,b has exactly relations of types in T [{aux2} on F (G),934

(That is equivalent to 'T[{aux2}(a,b) = 1).935

Note that the number of nodes b on F (G) such that a,b don’t have any relation, (That is equivalent936

to ';(a,b) = 1) and '0(b) = 1 equals to m �m0 �
P

T✓P2
mT . Therefore, for any transformed937

graph F (G) and its node v, (F (G),v) |= ' , m � m0 �
P

T✓P2
mT � n. Since |V (G)|  N938

for all G in bounded graph class Gb, transformed graph F (G) has node number no more than N2.939

Therefore, we can enumerate all possibilities of m,m0,mT  N2,T ⇢ P2 such that the above940

inequality holds, and for each possibility, we judge whehter there exists exactly such number of nodes941

for each corresponding parameter. Formally speaking, ' can be rewritten as the following form:942

'̃m,m0(x) :=
�
9
[m]y'0(y)

�
^(9[m0]y('{aux1}(x,y) ^ '

0(y)))
�

(38)
943

'(x) ⌘
_

m�m0�
P

T✓P2
�n,0m,m0,mTN2

✓
'̃m,m0(x)^

� ^

T✓P2

9
[mT]y,('T[{aux2}(x,y)^'

0(y))
�◆

(39)
where 9

[m]y denotes there are exactly m nodes y.944

Since first/second determinant can be constructed trivially under combination of ^, _ ,¬, and945

we’ve shown how to construct determinants for formulas of form 9
�ny('S(x,y) ^ '0(y)) when946

S = {aux1} and S = {aux2} [T,T ✓ P2 in the previous two cases. Therefore, in Equation (38)947

and Equation (39), the only left part is the formula of form 9
[m]y'0(y). The only remaining work is948

to show how to construct first/second determinants for formula in form '(x) := 9
�ny'0(y).949

Let m1 denote the number of primal nodes y that satisfies '0(y) and let m2 denote the number950

of non-primal nodes y that satisfies '0(y). It’s not hard to see that for any node v on F (G),951

(F (G),v) |= ' , m1 + m2 � n. Therefore, '(x) = 9
�ny'0(y) that evaluates on F (G) is952

equivalent to the following sentence that evaluates on G: “There exists two natural numbers m1,m2953

such that the following conditions hold: 1. m1 +m2 = n. 2. There are at least m1 nodes b on G954

that satisfies b'1, (equivalent to (F (G),b) |= '0). 3. There are at least m2 ordered node pairs a,b on955

G such that a,b has some relation and (G,a,b) |= b'2, (equivalent to (F (G),eab) |= '0)."956

Formally speaking, rewrite the sentence above as formula under P , we get the following construction957

for first/second determinants of '.958

'1(x) = '2(x,y) =
_

m1+m2=n

⇣
(9�m1y,b'1(y)) ^ '

m2

⌘
(40)

where '
m2

is the FOC2 formula that expresses “There exists at least m2 ordered node pairs959

(a,b) such that (G,a,b) |= b'2(x,y) ^ (
W

r2P2
r(x,y))". We’ve shown the existence of 'm2 in960

Lemma 26961

A.8 Proof of Theorem 13962

Theorem 13. time-and-graph $ R2-TGNN �FT = time-then-graph.963

For a graph G with n nodes, let HV
2 R

n⇥dv denote node feature matrix, and H
E

2 R
n⇥n⇥de964

denote edge feature matrix, where H
E

ij
denote the edge feature vector from i to j.965

First we need to define the GNN used in their frameworks. Note that for the comparison fairness, we966

add the the global readout to the node feature update as we do in R2-GNNs. It recursively calculates967

the feature vector HV,(l)
i

of the node i at each layer 1  l  L as follows:968

H
V,(l)
i

= u(l)
⇣
g(l)({{(HV,(l�1)

i
,HV,(l�1)

j
,HE

ij
) | j 2 N (i)}}), r(l)({{HV,(l�1)

j
|j 2 V }})

⌘
(41)

24

where N (i) denotes the set of all nodes that adjacent to i, and u(l),g(l),r(l) are learnable functions.969

Note that here the GNN framework is a little different from the general definition defined in Equa-970

tion (2). However, this framework is hard to fully implement and many previous works implementing971

time-and-graph or time-then-graph Gao and Ribeiro [2022] (Li et al. [2019], Seo et al. [2016],972

Chen et al. [2018], Manessi et al. [2020], Sankar et al. [2018],Rossi et al. [2020b]) don’t reach the973

expressiveness of Equation (41). This definition is more for the theoretical analysis. In contrast, our974

definition for GNN in Equation (1) and Equation (2) is more practical since it is fully captured by a975

bunch of commonly used models such as Schlichtkrull et al. [2018]. For notation simplicity, for a976

GNN A, let HV,(L) = A(HV ,HE) denote the node feature outputted by A using H
V ,HE as initial977

features.978

Proposition 27. (Gao and Ribeiro [2022]):time-and-graph $ time-then-grahp979

The above proposition is from Theorem 1 of Gao and Ribeiro [2022]. Therefore, in order to complete980

the proof of Theorem 13, we only need to prove R2-TGNN �FT = time-then-graph.981

Let G = {G1, . . . , GT } denote a temporal knowledge graph, and A
t

2 R
n⇥|P1|,Et

2982

R
n⇥n⇥|P2|, 1  t  T denonte one-hot encoding feature of unary facts and binary facts on timestamp983

t, where P1,P2 are unary and binary predicate sets.984

The updating rule of a time-then-graph model can be generalized as follows:985

8i 2 V, HV

i
= RNN([A1

i
......AT

i
]) (42)

986

8i,j 2 V, HE

i,j
= RNN([E1

i,j
......ET

i,j
]) (43)

987

X := A(HV ,HE) (44)

where A is a GNN defined above, RNN is an arbitrary Recurrent Neural Network. X 2 R
n⇥d is the988

final node feature output of time-then-graph.989

First we need to prove time-then-graph ✓ R2-TGNN�FT . That is, for any time-then-graph model,990

we want to construct an equivalent R2-TGNN A
0 to capture it on transformed graph. We can use991

nodes added after transformation to store the edge feature HE , and use primal nodes to store the node992

feature H
V . By simulating RNN through choosing specific functions in R2-TGNN, we can easily993

construct a R2-TGNN A
0 such that for any node i, and any node pair i,j with at least one edge in994

history, xi = H
V

i
and xeij = H

E

i,j
hold, where xi and xeij are features of corresponding primal node995

i and added node eij outputted by A
0.996

Note that A0 is a R2-TGNN, it can be represented as A
0
1......A

0
T

, where each A
0
t
, 1  t  T is a997

R2-GNN. A0 has simulated work of RNN, so the remaining work is to simulate A(HV ,HE). We do998

the simulation over induction on layer number L of A.999

When L = 0, output of A is exactly H
V , which has been simulated by A

0 above.1000

Suppose L = k + 1, let Ã denote R2-GNN extracted from A but without the last layer k + 1. By1001

induction, we can construct a R2-TGNN Ã
0 that simulates Ã(HV ,HE). Then we need to append1002

three layers to Ã
0 to simulate the last layer of A.1003

Let u(L),g(L),r(L) denote parameters of the last layer of A. Using notations in Equation (2), let1004

{C(l),(A(l)
j
)|P2|
j=1,A

(l)
aux1,A

(l)
aux2,R

(l)
}
3
l=1 denote parameters of the three layers appended to Ã

0
T

. They1005

are defined as follows:1006

First, we can choose specific function in the first two added layers, such that the following holds:1007

1. For any added node eij , feature outputted by the new model is x
(2)
eij = [HE

ij
,x0

i
,x0

j
], where x

(2)1008

denotes the feature outputted by the second added layer, and x
0
i
,x0

j
are node features of i,j outputted1009

by Ã
0. For a feature x of added node of this form, we define x0,x1,x2 as corresponding feature slices1010

where H
E

ij
,x0

i
,x0

j
have been stored.1011

2. For any primal node, its feature x only stores x
0
i

in x1, and x0,x2 are all slices of dummy bits.1012

Let X be a multiset of features that represents function input. For the last added layer, we can choose1013

specific functions as follows:1014

25

R(3)(X) := r(L)({{x1|x 2 X,primal(x)}}) (45)
1015

A(3)
aux1(X) := g(L)({{(x1,x2,x0)|x 2 X}}) (46)

1016

C(3)(xaux1,xg) := u(L)(xaux1,xg) (47)

where xaux1,xg are outputs of R(3) and A(3)
aux1, and all useless inputs of C(3) are omitted. Comparing1017

this construction with Equation (41). It’s east to see that after the last layer appended, we can construct1018

an equivalent R2-TGNN A
0 that captures A on transformed graph. By inductive argument, we prove1019

time-then-graph ✓ R 2-TGNN �FT .1020

Then we need to show R2-TGNN �FT
✓ time-then-graph.1021

In Theorem 14, we will prove R2-TGNN �FT = R2-GNN �F �H . Its proof doesn’t dependent on1022

Theorem 13, so let’s assume it’s true for now. Then, instead of proving R2-TGNN �FT , it’s sufficient1023

to show R2-GNN �F �H ✓ time-then-graph.1024

Let PT

1 , PT

2 denote the set of temporalized unary and binary predicate sets defined in Definition 10.1025

Based on most expressive ability of Recurrent Neural Networks shown in Siegelmann and Sontag1026

[1992], we can get a most expressive representation for unary and binary fact sequences through1027

RNN. A most expressive RNN representation function is always injective, thus there exists a decoder1028

function translating most-expressive representations back to raw sequences. Therefore, we are able1029

to find an appropriate RNN such that its output features H
V ,HE in Equation (42), Equation (43)1030

contain all information needed to reconstruct all temporalized unary and binary facts related to the1031

corresponding nodes.1032

For any R2-GNN A on transformed collpsed temporal knowledge graph, we want to construct an1033

equivalent time-then-graph model {RNN,A0
} to capture A. In order to show the existence of the1034

time-then-graph model, we will do an inductive construction over layer number L of A. Here in1035

order to build inductive argument, we will consider a following stronger result and aim to prove1036

it: In additional to the existence of A0, we claim there also exists a function fA with the following1037

property: For any two nodes a,b with at least one edge, fA(x0
a
,x0

b
,HE

ab
) = xeab , where x

0
a
,x0

b
,HE

ab
are1038

features of a, b and edge information between a,b outputted by A
0, and xeab is the feature of added1039

node eab outputted by A � F �H . It suffices to show that there exists such function fA as well as a1040

time-then-graph model {RNN,A0
} such that the following conditions hold:1041

For any graph G and its node a,b 2 V (G),1042

1. HV,(l)
a = [xa,Enc({{xeaj |j 2 N (a)}})].1043

2.If there is at least one edge between a,b in history, fA(H
V,(l)
a ,HV,(l)

b
,HE

ab
) = xeab . Otherwise,1044

fA(H
V,(l)
a ,HV,(l)

b
,HE

ab
) = 01045

where H
V,(l)
a ,HV,(l)

b
are node features outputted by A

0, while xa,xeab are node features outputted by1046

A on transformed collpased graph. Enc(X) is some injective encoding that stores all information1047

of multiset X. For a node feature H
V,(l)
a of above form, let HV,(l)

a,0 := xa,H
V,(l)
a,1 = Enc({{xeaj |j 21048

N (a)}}) denote two slices that store independent information in different positions.1049

For the base case L = 0. the node feature only depends on temporalized unary facts related to the1050

corresponding node. Since by RNN we can use most expressiveness representation to capture all1051

unary facts. A specific RNN already captures A when L = 0. Moreover, there is no added node eab1052

that relates to any unary fact, so a constant function already satisfies the condition of fA when L = 0.1053

Therefore, our result holds for L = 01054

Assume L = k+1, let bA denote the model generated by the first k layers of A. By induction, there is1055

time-then-graph model bA0 and function f bA0 that captures output of bA0 on transformed collapsed graph.1056

We can append a layer to bA0 to build A
0 that simulates A. Let {C(L),(A(L)

j
)T |P2|
j=1 ,A(L)

aux1,A
(L)
aux2,R

(L)
}1057

denote the building blocks of layer L of A, and let u⇤,g⇤,r⇤ denote functions used in the layer that1058

will be appended to bA0. They are defined below:1059

g⇤({{(HV,(l�1)
i

,HV,(l�1)
j

,HE

ij
|j 2 N (i))}}) := A(L)

aux1({{f bA0(H
V,(l�1)
i

,HV,(l�1)
j

,HE

ij
)|j 2 N (i)}})

(48)

26

1060

r⇤({{HV,(l�1)
j

|j 2 V (G)}}) = R(L)
⇣
{{H

V,(l�1)
j,0 |j 2 V (G)}} [(

[

j2V (G)

Dec(HV,(l�1)
j,1))

⌘
(49)

1061

u⇤(xg,xr) = C(L)(xg,xr) (50)
where xg,xr are outputs of g⇤ and r⇤. Dec(X) is a decoder function that do inverse mapping of1062

Enc(X) mentioned above, so Dec(HV,(l�1)
j,1) is actually {{xeaj |j 2 N (a)}}. Note that primal nodes1063

in transformed graph only has type aux1- neighbors, so two inputs xg,xr, one for aux1 aggregation1064

output and one for global readout are already enough for computing the value. Comparing the three1065

rules above with Equation (2), we can see that our new model A0 perfectly captures A.1066

We’ve captured A, and the remaining work is to construct fA defined above to complete inductive1067

assumption. We can just choose a function that simulates message passing between pairs of added1068

nodes eab and eba as well as message passing between eab and a, and that function satisfies the1069

condition for fA. Formally speaking, fA can be defined below:1070

fA(H
V,(l)
i

,HV,(l)
j

,HE

ij
) := SimAL(H

V,(l�1)
i

,H(l�1)
g

,gij ,gji,H
E

ij
) (51)

1071

gij := f bA0(H
V,(l�1)
i

,HV,(l�1)
j

,HE

ij
),H(l�1)

g
:= {{H

V,(l�1)
i

|i 2 V (G)}} (52)

Let’s explain this equation, SimAL(a,g,s,b,e) is a local simulation function which simulates single-1072

iteration message passing in the following scenario:1073

Suppose there is a graph H with three constants V (H) = {a,eab,eba}. There is an aux1 edge between1074

a and eab, an aux2 edge between eab and eba, and additional edges of different types between eab1075

and eba. The description of additional edges can be founded in e. Initial node features of a,eab,eba1076

are set to a,s,b respectively. and the global readout output is g. Finally, run L-th layer of A on H ,1077

and SimAL is node feature of eab outputted by AL.1078

Note that if we use appropriate injective encoding or just use concatenation technic,1079

H
(l�1)
g ,HV,(l�1)

i
,HV,(l�1)

j
can be accessed from H

V,(l)
i

,HV,(l)
i

. Therefore the above definition for fA1080

is well-defined. Moreover, in the above explanation we can see that fA(H
V,(l�1)
i

,HV,(l�1)
j

,HE

ij
) is1081

exactly node feature of eij outputted by A on the transformed collapsed graph, so our proof finishes.1082

A.9 Proof of Theorem 141083

Theorem 14. R2-TGNN �FT = R2-TGNN �F �H on any universal graph class Gu.1084

First, we recall the definition for R2-TGNN as in Equation (53):1085

x
t

v
= At

✓
Gt,v,y

t

◆
where y

t

v
= [IGt(v) : x

t�1
v

], 8v 2 V (Gt) (53)

We say a R2-TGNN is homogeneous if A1, . . . ,AT share the same parameters. In particular, we first1086

prove Lemma 28, namely, homogeneous R2-TGNN and R2-TGNN (where paramters in A1, . . . ,AT1087

may differ) have the same expressiveness.1088

Lemma 28. homogenous R2-TGNN = R2-TGNN1089

Proof. The forward direction homogeneous R2-TGNN✓ R2-TGNN trivially holds. It suffices to1090

prove the backward direction.1091

Let A : {At}
T

t=1 denote a R2-TGNN. Without loss of generality, we can assume all models in each1092

timestamps have the same layer number L. Then for each 1  t  T , we can assume all At can be1093

represented by {C(l)
t

,(A(l)
t,j
)|P2|
j=1,R

(l)
t
}
L

l=1. Futhormore, without loss of generality, we can assume all1094

output dimensions for A(l)
t,j
,R(l)

t
and C(l)

t
are d. As for input dimension, all of these functions also1095

have input dimension d for 2  l  L. Specially, by updating rules of R2-TGNN Equation (53), in1096

the initialization stage of each timestamp we have to concat a feature with length |P1| to output of the1097

former timestamp, so the input dimension for A(1)
t,j

,R(1)
t

,C(1)
t

is d+ |P1|.1098

27

We can construct an equivalent homogeneous R2-TGNN with L layers represented by1099

{C⇤,(l),(A⇤,(l)
j

)|P2|
j=1,R

⇤,(l)
}
L

l=1. For 2  l  L, C⇤,(l)A⇤,(l)
j

,R⇤,(l) use output and input feature1100

dimension d0 = Td. Similar to the discussion about feature dimension above, since we need to1101

concat the unary predicates information before each timestamp, for layer l = 1, C⇤,(1),A⇤,(1)
j

,R⇤,(1)1102

have input dimension d0 + |P1| and output dimension d0. For dimension alignment, x
0
v

used in1103

Equation (53) is defined as zero-vector with length d0.1104

Next let’s define some symbols for notation simplicity. For a feature vector x, let x[i,j] denotes the1105

slice of x in dimension [i,j]. By the discussion above, in the following construction process we1106

will only need feature x with dimension d0 or d0 + |P1|. When x has dimension d0, x
(i) denotes1107

x[(i� 1)d+ 1,id], otherwise it denotes x[|P1|+ (i� 1)d+ 1,|P1|+ id] . Let [x1......xT] or [xt]Tt=11108

denotes the concatenation of a sequence of feature x1......xT , and [x]n denote concatenation of n1109

copies of x, 0
n denotes zero vectors of length n. Furthermore. Let X denotes a multiset of x. Follows1110

the updating rules defined in Equation (2), for all 1  j  |P2|,1  l  L,A⇤,(l)
j

,R⇤,(l) should get1111

input of form X, and the combination function C⇤,(l) should get input of form (x0,(xj)
|P2|
j=1,xg), where1112

x0 is from the node itself, (xj)
|P2|
j=1 are from aggregation functions (A⇤,(l)

j
)|P2|
j=1 and xg is from the1113

global readout R⇤,(l). The dimension of x or X should match the input dimension of corresponding1114

function. For all 1  l  L, parameters in layer l for the new model are defined below1115

l = 1 : C⇤,(l)(x0,(xj)
|P2|
j=1,xg) := [C(l)

t
([x0[1,|P1|],x

(t�1)
0],(x(t)

j
)|P2|
j=1,x

(t)
g
)]T
t=1 (54)

1116

2  l  L : C⇤,(l)(x0,(xj)
|P2|
j=1,xg) := [C(l)

t
(x(t)

0 ,(x(t)
j
)|P2|
j=1,x

(t)
g
)]T
t=1 (55)

1117

8j 2 [K],l = 1 : A⇤,(l)
j

(X) = [A(l)
t,j
({{[x[1,|P1|],x

(t�1)]|x 2 X}})]T
t=1 (56)

1118

l = 1 : R⇤,(l)(X) = [R(l)
t
({{[x[1,|P1|],x

(t�1)]|x 2 X}})]T
t=1 (57)

1119

8j 2 [K],2  l  L : A⇤,(l)
j

(X) = [A(l)
t,j
({{x

(t)
|x 2 X}})]T

t=1 (58)
1120

2  l  L : R⇤,(l)(X) = [R(l)
t
({{x

(t)
|x 2 X}})]T

t=1 (59)
The core trick is to use T disjoint slices x

(1)......x(T) to simulate T different models A1......AT at the1121

same time, Since these slices are isolated from each other, a proper construction above can be found.1122

The only speciality is that in layer l = 1, we have to incorporate the unary predicate information1123

x[1,|P1|] into each slice. By the construction above, we can see that for any node v, x
(T)
v is exactly1124

the its feature outputted by A. Therefore, we finally construct an homogeneous R2-TGNN equivalent1125

with A.1126

Now, we start to prove Theorem 14.1127

Theorem 14. R2-TGNNs �FT = R2-GNNs �F �H on any universal graph class Gu.1128

Proof. Since R2-TGNN �FT only uses a part of predicates of P 0 = F (H(P)) in each timestamp,1129

the forward direction R2-TGNN �FT
✓ R2-GNN �F �H trivially holds.1130

For any R2-GNN A under P 0, we want to construct an R2-TGNN A
0 under FT (P) such that for any1131

temporal knowledge graph G, A0 outputs the same feature vectors as A on FT (G). We can assume1132

A is represented as (C(l),(A(l)
j
)K
j=1,A

(l)
aux1,A

(l)
aux2,R

(l))L
l=1, where K = T |P2|.1133

First, by setting feature dimension to be d0 = T |P |+ 3. We can construct an R2-TGNN A
0 whose1134

output feature stores all facts in F (H(G)) for any graph G. Formally speaking, A0 should satisfy the1135

following condition:1136

For any primal node a, its feature outputted by A
0
� FT should store all unary facts of form1137

Ai(a),Ai 2 T |P1| or primal(a) on F (H(G)). For any non-primal node eab, its feature outputted1138

by A
0
� FT should store all binary facts of form ri(a,b),ri 2 T |P2| or raux1(a,b),raux2(a,b) where1139

b is another node on F (H(G)).1140

The A
0 is easy to construct since we have enough dimension size to store different predicates1141

independently, and these facts are completely encoded into the initial features of corresponding1142

timestamp. Let (A0
1......A

0
T
) denote A

0.1143

28

R2-TGNN

time-and-graph

R2-TGNN�H
R2-GNN�F �H

R2-TGNN �FT

time-then-graph

(

(

(

Figure 6: Hierarchic expressiveness.

Next, in order to simulate A, we need to append some layers to A
0
T

. Let L denote the layer number1144

of A, we need to append L layers represented as (C⇤,(l),(A⇤,(l)
j

)|P2|
j=1,A

⇤,(l)
aux1,A

⇤,(l)
aux2,R

⇤,(l))L
l=11145

Since we have enough information encoded in features, we can start to simulate A. Since neighbor1146

distribution of primal nodes don’t change between FT (G)T and F (H(G)), it’s easy to simulate all1147

messages passed to primal nodes as destinations by A⇤,(l)
aux1. For messages passed to non-primal node1148

eab as destination, it can be divided into messages from a and messages from eba. The first class of1149

messages is easy to simulate since the aux1 edge between eab and a is the same on FT (G)T and1150

F (H(G)).1151

For the second class of messages, since edges of type ri,1  i  T |P2| may be lost in FT (G)T , we1152

have to simulate these messages only by the unchanged edge of type aux2. It can be realized by1153

following construction:1154

1  l  L,A⇤,(l)
aux2(X) = [[A0,(l)

j
(X))]K

j=1,A
(l)
aux2(X)] (60)

where K = T |P2|, A
0,(l)
j

(X) := A(l)
j
(X) if and only if eba has neighbor rj on F (H(G)) , otherwise1155

A0(l)
j

(X) := 0. Note that X is exactly the feature of eba, and we can access the information about its1156

rj neighbors from feature since A
0 has stored information about these facts.1157

In conclusion, we’ve simulated all messages between neighbors. Furthermore, since node sets on1158

FT (G)T and F (H(G)) are the same, global readout R(l) is also easy to simulate by R⇤,(l). Finally,1159

using the original combination function C(l), we can construct an R2-TGNN on FT equivalent to A1160

on F (H(G)) for any temporal knowledge graph G.1161

1162

A.10 An expressiveness hierarchy1163

In the main body of this paper, we give expressiveness comparison among R2-TGNN �FT1164

time-and-graph and time-then-graph. However, we don’t calibrate expressiveness of some weaker1165

frameworks such as R2-TGNN, R2-TGNN �H . On the other hand, in experiment part ?? we introduce1166

a logical classifier '3 but don’t explain why it can’t be captured by R2-TGNN. So it’s necessary to1167

calibrate expressiveness of these weaker framework and build a hierarchy here.1168

Theorem 29. If time range T > 1 R2-TGNN $ R2-GNN �H .1169

Proof. Since in each timestamp t, R2-TGNN only uses a part of predicates in temporalized predicate1170

set P 0 = H(P), R2-TGNN ✓ R2-GNN �H trivially holds. To show R2-TGNN is strictly weaker1171

than R2-GNN �H . Consider the following classifier:1172

Let time range T = 2, and let r be a binary predicate in P2. Note that there are two different1173

predicates r1,r2 in P 0 = H(P). Consider the following temporal graph G with 5 nodes {1,2,3,4,5}.1174

its two snapshots G1,G2 are as follows:1175

G1 = {r(1,2),r(4,5)}1176

G2 = {r(2,3)}.1177

It follows that after transformation H , the static version of G is:1178

H(G) = {r1(1,2),r1(4,5),r2(2,3)}.1179

29

datasets '1 '2 '3 '4

Avg # Nodes 477 477 477 477
Time_range 2 2 2 10

Unary predicate 2 2 2 3
Binary predicate(non-temporalized) 1 1 1 3
Avg # Degree (in single timestamp) 3 3 3 5

Avg # positive percentage 50.7 52 25.3 73.3
Table 4: statistical information for synthetic datasets.

datasets AIFB MUTAG Brain-10
Nodes 8285 23644 5000

Time_Range \ \ 12
Relation types 45 23 20

Edges 29043 74227 1761414
Classes 4 2 10

Train Nodes 140 272 4500
Test Nodes 36 68 500

Table 5: statistical information for Real datasets.

Consider the logical classifier 9y
⇣
r1(x,y) ^ (9xr2(x,y))

⌘
under P 0.It can be captured by some1180

R2-GNN under P 0. Therefore, R2-GNN �H can distinguish nodes 1,4.1181

However, any R2-TGNN based on updating rules in Equation (53) can’t distinguish these two nodes,1182

so R2-TGNN is strictly weaker than R2-GNN �H .1183

Based on Theorem 29, we can consider logical classifier '3 defined in ??: '3 := 9
�2y(p11(x,y) ^1184

p21(x,y)). Note that this classifier is just renaming version of Figure 1. Therefore '3 can’t be captured1185

by R2-GNN �H , not to say weaker framework R2-GNN by Theorem 29.1186

Finally, we give a strict expressiveness hierearchy as follows:1187

Corollary 29.1. If time range T > 1 R2-GNN $ R2-GNN �H $ R2-TGNN �F �H= R2-TGNN �FT1188

Proof. It’s a conclusion based on Theorem 29, Figure 3 and Theorem 14.1189

Combining Corollary 29.1 and Theorem 13, our final expressiveness hierarchy is as Figure 3.1190

B Experiment supplementary1191

B.1 Synthetic dataset generation1192

For each synthetic datasets, we generate 7000 graphs as tranining set and 500 graphs as test set. Each1193

graph has 50 � 1000 nodes. In graph generation, we fix the expected edge density �. In order to1194

generate a graph with n nodes, we pick �n pairs of distinct nodes uniformly randomly. For each1195

selected node pair a,b, each timestamp t and each binary relation type r, we add rt(a,b) and rt(a,b)1196

into the graph with independent probability 1
2 .1197

B.2 statistical information for datasets1198

We list the information for synthetic dataset in Table 4 and real-world dataset in Table 5. Note1199

that synthetic datasets contains many graphs, but real-world datasets only contains a single graph.1200

Therefore, for real-world dataset, we have two disjoint node set as train split and test split for training1201

and testing respectively. In training, the model can see the subgraph induced by train split and1202

unlabelled nodes, in testing, the model can see the whole graph but only evaluate the performance on1203

test split.1204

30

hyper-parameter range
learning rate 0.01
combination mean/max/add

aggregation/readout mean/max/add
layer 1,2,3

hidden dimension 10,64,100
Table 6: Hyper-parameters.

FOC2 classifier '1 '2 '3 '4

Aggregation sum max mean sum max mean sum max mean sum max mean
Temporal Graphs Setting

R-TGNN 100 60.7 65.4 61.0 51.3 52.4 93.7 82.3 84.4 83.5 60.0 61.3
R2-TGNN 100 63.5 66.8 93.1 57.7 60.2 94.5 83.3 85.9 85.0 62.3 66.2
R2-GNNs �FT

100 67.2 68.1 99.0 57.6 62.2 100 88.8 89.2 98.1 73.4 77.5
Aggregated Static Graphs Setting

R-GNNs �H 100 61.2 69.9 62.3 51.3 55.5 94.7 80.5 83.2 80.2 60.1 60.4
R2-GNNs �H 100 62.7 66.8 92.4 56.3 58.5 95.5 84.2 85.2 81.0 58.3 64.5
R2-GNNs �F �H 100 70.2 70.8 98.8 60.6 60.2 100 85.6 86.5 7 95.5 70.3 79.7

Table 7: Test set node classification accuracies (%) on synthetic temporal multi-relational graphs
datasets and their aggregated static multi-relational graphs datasets. The best results are highlighted
for two different settings.

B.3 hyper-parameters1205

For all experiments, we did grid search according to Table 6.1206

Realworld dataset AIFB MUTAG Brain-10
Aggregation sum max mean sum max mean sum max mean

Temporal Graphs Setting
R-TGNN \ \ \ \ \ \ 85.0 82.3 82.8
R2-TGNN \ \ \ \ \ \ 94.8 82.3 91.0
R2-GNNs �FT

\ \ \ \ \ \ 94.0 83.5 92.5
Aggregated Static Graphs Setting

R-GNNs 91.7 73.8 82.5 76.5 63.3 73.2 \ \ \

R2-GNNs 91.7 73.8 82.5 85.3 62.1 79.5 \ \ \

R2-GNNs �F 97.2 75.0 89.2 88.2 65.5 82.1 \ \ \

Table 8: Test set node classification accuracies (%) on realworld temporal multi-relational graphs
datasets and multi-edge datasets. The best results are highlighted for two different settings.

31

	Introduction
	Preliminaries
	Multi-relational Graphs
	Graph Neural Networks
	Logic FOC2 Formulas

	Logic expressiveness of R2-GNNs in multi-relational graphs
	R2-GNNs capture FOC2 over transformed multi-relational graphs
	Temporal Graphs
	Experiment
	Synthetic Datasets
	Real-world Datasets

	Conclusion
	Appendix
	Preliminaries for Proofs
	Proof of inclusion
	Proof of single-edge
	Proof of ACR-GNN
	proof of theoremacracrf
	proof of theoremfocacrf
	proof of theoremacrffoc
	Proof of tgnnrelation
	Proof of ttransformation
	An expressiveness hierarchy

	Experiment supplementary
	Synthetic dataset generation
	statistical information for datasets
	hyper-parameters

