
Mitigating the Effect of Incidental Correlations on
Part-based Learning

Gaurav Bhatt∗13, Deepayan Das2, Leonid Sigal13, Vineeth N Balasubramanian 2

1The University of British Columbia, 2Indian Institute of Technology Hyderabad
3 The Vector Institute, Canada

Abstract

Intelligent systems possess a crucial characteristic of breaking complicated prob-
lems into smaller reusable components or parts and adjusting to new tasks using
these part representations. However, current part-learners encounter difficulties
in dealing with incidental correlations resulting from the limited observations of
objects that may appear only in specific arrangements or with specific backgrounds.
These incidental correlations may have a detrimental impact on the generalization
and interpretability of learned part representations. This study asserts that part-
based representations could be more interpretable and generalize better with limited
data, employing two innovative regularization methods. The first regularization
separates foreground and background information’s generative process via a unique
mixture-of-parts formulation. Structural constraints are imposed on the parts using
a weakly-supervised loss, guaranteeing that the mixture-of-parts for foreground
and background entails soft, object-agnostic masks. The second regularization
assumes the form of a distillation loss, ensuring the invariance of the learned parts
to the incidental background correlations. Furthermore, we incorporate sparse and
orthogonal constraints to facilitate learning high-quality part representations. By
reducing the impact of incidental background correlations on the learned parts, we
exhibit state-of-the-art (SoTA) performance on few-shot learning tasks on bench-
mark datasets, including MiniImagenet, TieredImageNet, and FC100. We also
demonstrate that the part-based representations acquired through our approach gen-
eralize better than existing techniques, even under domain shifts of the background
and common data corruption on the ImageNet-9 dataset. The implementation is
available on GitHub: https://github.com/GauravBh1010tt/DPViT.git

1 Introduction
Many datasets demonstrate a structural similarity by exhibiting "parts" or factors that reflect the
underlying properties of the data [15, 18, 21, 28, 31, 43, 54]. Humans are efficient learners who
represent objects based on their various traits or parts, such as a bird’s morphology, color, and
habitat characteristics. Part-based methods learn these explicit features from the data in addition to
convolution and attention-based approaches (which only learn the internal representations), making
them more expressive [7, 21, 41, 52, 54]. Most existing part-based methods focus on the unsupervised
discovery of parts by modeling spatial configurations [14, 21, 52, 54, 61], while others use part
localization supervision in terms of attribute vectors [25, 41, 50, 56] or bounding boxes [7]. Part-
based methods come with a learnable part dictionary that provides a direct means of data abstraction
and is effective in limited data scenarios, such as few-shot learning. Furthermore, the parts can
be combined into hierarchical representations to form more significant components of the object

∗First author; Email: gauravbhatt.cs.iitr@gmail.com

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/GauravBh1010tt/DPViT.git


(a) Input image (b) ViT with parts (c) Proposed - DPViT
Figure 1:Impact of incidental correlations on the interpretability of part learners. We visualize the attention
maps projected by the learned part dictionaries. Figure 1(b) illustrates the ViT-S backbone featuring a learnable
part dictionary. However, it encounters dif�culties in correctly identifying signi�cant elements like the laptop,
giving more attention to the background instead. In contrast, the proposed DPViT method successfully detects
the most crucial parts of the image even in the presence of incidental correlations.

description [50, 55]. Part-based learning methods offer advantages in terms of interpretability and
generalization, particularly in safety-critical domains like healthcare, aviation and aerospace industry,
transportation systems (e.g., railways, highways), emergency response, and disaster management.
These �elds often face challenges in collecting large training samples, making part-based learning
methods valuable. Furthermore, the ability to explain decisions becomes crucial in these contexts.

Various studies have indicated that correlations between image background and labels can introduce
biases during machine learning model training [29, 32–34, 45, 46, 53, 59]. These correlations exist
because speci�c background con�gurations create shortcuts for the model during training [32, 53].
While background information is crucial for decision-making, imbalanced background con�gurations
can create unintended correlations, leading to undesirable outcomes. These correlations negatively
impact the interpretability and generalization of part-based learners. For instance, let's consider
a scenario where a laptop, a charger, and an iPod are on a table. In one case, let's examine the
situation without any context or background information. Without background information, the
model may struggle to understand the purpose and signi�cance of components or parts such as the
laptop, charger, and iPod on a table. It could fail to differentiate between these objects or grasp
their functionalities, resulting in a lack of recognition and understanding. Conversely, suppose the
model is predominantly trained with examples of these items on tables. In that case, it may overly
focus on the background elements, such as the table itself, disregarding the individual entities. Thus
it becomes essential to handle incidental correlations of image background to achieve a balanced
understanding. Existing part-based approaches fail to handle incidental correlations that arise due
to speci�c background signals dominating the training data (analogous to Figure 1(b)), thereby
hampering their interpretability and generalization to limited data scenarios.

Having high-quality part representations is essential for achieving pro�ciency in part-based learning.
In this context, quality pertains to the sparsity and diversity of the learned parts. Sparsity ensures
that only a few parts are responsible for a given image, as images comprise a small subset of
parts. Conversely, diversity in part representations prevents the parts from converging into a single
representation and facilitates each part's learning of a unique data representation. Although incidental
correlations can negatively affect learned parts' quality, the quality of part-based methods is a
signi�cant challenge that all part learners face. While previous studies have addressed the issue
of part quality [50, 52], their solutions do not assure the sparsity and diversity of the learned parts,
thereby failing to guarantee high-quality parts.

To solve the aforementioned challenges, we introduce the Disentangled Part-based Vision Transformer
(DPViT), which is trained to be resilient to the incidental correlations of image backgrounds and
ensures high-quality part representations. We propose a disentangled pre-training phase, which
separates the generative process of the foreground and background information through a unique
mixture-of-parts formulation. We impose structural constraints on the parts to ensure that the mixture-
of-parts for foreground and background includes soft, object-agnostic masks without requiring direct
supervision of part localization. The parts are learned to be invariant to incidental correlations using
a self-supervised distillation �ne-tune phase. To address the issue of the quality of learned parts,
we impose sparse and spectral penalties on the part matrix to guarantee the high quality of learned
part representations. We include an assessment of the sparse and spectral norms of the part matrix
as a quantitative indicator of the learned parts' quality. Finally, we evaluate the effectiveness of
our method on benchmark few-shot datasets, including MiniImagenet [35], TieredImageNet [40],
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and FC100 [6]. To demonstrate the robustness of our proposed method to incidental correlations of
backgrounds and common data corruptions, we use the benchmark ImageNet-9 dataset [53].

Our key contributions can be summarized as follows:
• We propose regularization techniques to disentangle the generative process of foreground and

background information through a mixture-of-parts formulation. Additionally, we employ a self-
supervised distillation regularization to ensure that the learned parts remain invariant to incidental
correlations of the image background.

• We ensure the high quality of learned parts by employing both sparsity and spectral orthogonal
constraints over the part matrix. These constraints prevent the parts from degenerating and
encourage a diverse range of part representations.

• Apart from our evaluation of standard few-shot benchmark datasets, we also analyze the impact
of incidental correlations of background and typical data distortions by utilizing the benchmark
ImageNet-9 dataset [53].

2 Related Work
Part-based learning. The advantages of learning part-based representations have been extensively
researched in image recognition tasks [15, 18, 31, 38, 43, 49, 52, 55, 56]. Earlier methods attempted
to learn parts by de�ning a stochastic generative process [19, 43]. Part-based methods have been
broadly classi�ed into unsupervised and supervised categories. Unsupervised methods concentrate
on learning the spatial relationship between parts by using part dictionaries without the supervision
of part localization [14, 15, 20, 21, 28, 49, 52, 54, 61]. In contrast, supervised part-based methods
rely on the supervision of part localization through attribute vectors [16, 27, 41, 50] or part bounding
box information [7]. In the literature, parts are also referred to as concepts when supervision about
part localization is involved [7, 41].

Discovering parts in an unsupervised way is a more challenging scenario that is applicable to most
practical problems. Part dictionaries help data abstraction and are responsible for learning implicit
and explicit data representations. For example, [28] clustered DCNN features using part-based
dictionaries, while [26] introduced a generative dictionary-based model to learn parts from data.
Similarly, [20] uses part-based dictionaries and an attention network to understand part representations.
The ConstellationNet [54] and CORL [21] are some of the current methods from the constellation
family [14, 61], and use dictionary-based part-prototypes for unsupervised discovery of parts from
the data. Our approach also belongs to this category, as we only assume the part structure without
requiring any supervision of part localization.

Incidental correlations of image background. Image backgrounds have been shown to affect
a machine learning model's predictions, and at times the models learn by utilizing the incidental
correlations between an image background and the class labels [4, 32, 42, 45, 46, 53, 58, 59]. To
mitigate this issue, background researchers have used augmentation methods by altering background
signals and using these samples during the training [32, 53, 58]. [53] performed an empirical study
on the effect of image background on in-domain classi�cation. They introduce several variants of
background augmentations to reduce a model's reliance on the background. Similarly, [58] uses
saliency maps of the image foreground to generate augmented samples to reduce the effect of the
image background. Recently, [32] showed the effectiveness of background augmentation techniques
for minimizing the effect of incidental correlations on few-shot learning.

Unlike these methods, our approach does not depend on background augmentations but instead learns
the process of generating foreground and background parts that are disentangled. Furthermore, our
proposed approach is not sensitive to the quality of foreground extraction and can operate with limited
supervision of weak foreground masks.

Few-shot learning and Vision Transformers. In recent years, few-shot learning (FSL) has become
the standard approach to evaluate machine learning models' generalization ability on limited data [1,
2, 5, 13, 24, 36, 44, 47, 54]. Vision transformers (ViT) [11] have demonstrated superior performance
on FSL tasks [10, 22, 23, 30, 48, 51], and self-supervised distillation has emerged as a popular
training strategy for these models [8, 17, 22, 30, 51]. A recent trend involves a two-stage procedure
where models are pretrained via self-supervision before �ne-tuning via supervised learning [8, 17,
22, 30, 60]. For example, [17] leverages self-supervised training with iBOT [60] as a pretext task,
followed by inner loop token importance reweighting for supervised �ne-tuning. HCTransformer
[22] uses attribute surrogates learning and spectral tokens pooling for pre-training vision transformers
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and performs �ne-tuning using cascaded student-teacher distillation to improve data ef�ciency
hierarchically. SMKD [30] uses iBOT pre-training and masked image modeling during �ne-tuning to
distill knowledge from the masked image regions.

Our approach employs a two-stage self-supervised training strategy of vision transformers akin to
[22, 30, 60]. However, unlike existing methods that focus on generalization in few-shot learning, our
primary objective is to learn part representations that are invariant to incidental correlations of the
image background. Our training procedure is designed to facilitate learning disentangled and invariant
part representations, which is impossible through existing two-stage self-supervised pipelines alone.

3 Problem Formulation and Preliminaries
In few-shot classi�cation, the aim is to take a model trained on a dataset of samples from seen classes
Dseen with abundant annotated data, and transfer/adopt this model to classify a set of samples from a
disjoint set of unseen/novel classesDnovel with limited labeled data. Formally, letDseen = f (x; y)g,
wherex 2 X corresponds to an image andy 2 Yseen corresponds to the label among the set of
seen classes. We also assume that during training, we have limited supervision of class-agnostic
foreground-background mask (M f ,M b) for regularization during training, which can be easily
obtained by any weak foreground extractor as a preprocessing step (following [53]). Please note that
no mask information is required forDnovel at inference.

We follow the work of [9, 60] on self-supervised training of ViTs to design our pretrain phase.
During training, we apply random data augmentations to generate multiple views of the a given
imagexv 2 D seen . These views are then fed into both the teacher and student networks. Our
student network, with parameters� s, includes a ViT backbone encoder and a projection head� s that
outputs a probability distribution over K classes. The ViT backbone generates a[cls] token, which
is then passed through the projection head. The teacher network, with parameters� t , is updated
using Exponentially Moving Average (EMA) and serves to distill its knowledge to the student by
minimizing the cross-entropy loss over the categorical distributions produced by their respective
projection heads.

L cls = E(x ;y ) �D seen L ce(F t
� (F t

� (x1 )) ; F s
� (F s

� (x2 ))) : (1)

For inference, we use the standardM -way,N -shot classi�cation by formingtasks(T ), each compris-
ing of support set(S) andquery set(Q), constructed fromDnovel . Speci�cally, a support set consists
of M � N images;N random images from each ofM classes randomly chosen fromYnovel . The
query set consists of a disjoint set of images, to be classi�ed, from the sameM classes. Following
the setup of [47], we form the class prototypes (cm ) using samples fromS. The class prototypes and
learned feature extractor (F � ) are used to infer the class labelŷ for an unseen samplexq 2 Q using a
distance metricd.

ŷ = arg max
m

d(F � (xq); cm ); cm =
1
N

X

(x ;y m )2S

F � (x): (2)

4 Proposed Methodology

Given an input samplex 2 RH � W � C , and a patch sizef , we extract �attened 2D patchesx f 2
RN � (F 2 �C ) , whereN is the number of patches generated and(F; F ) is the resolution of each image
patch. Similar to a standard ViT architecture [11], we prepend a learnable[class] token and positional
embeddings to retain the positional information. The �attened patches are passed to multi-head self
attention layers and MLP blocks to generate a feature vectorzp = MSA (x f ).

Next, we de�ne the parts as part-based dictionariesP = f pk 2 RF 2 �C gK
k=1 , wherepk denotes the

part-vector for the part indexed ask. Thepart-matrix(P) is initialized randomly and is considered a
trainable parameter of the architecture. Note that the dimension of each part-vector is equal to the
dimension of �attened 2D patches, which isF 2 � C. For each partpk , we compute a distance map
D k 2 RN where each element in the distance map is computed by taking dot-product between the
partpk and all theN patches:D k = x f � pk .

Using the distance mapsD 2 RN � K , we introduce a multi-head cross-attention mechanism and
compute the feature vector:zd = MCA (F (D)) , whereF is an MLP layer which upsamples
D : K ! F 2 � C. The cross-attention layer shares a similar design to self-attention layers; the only
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Figure 2:Overview of proposed architecture - DPViT.We employ a learnable part dictionary to generate a
formulation incorporating foreground and background information. The spatial distance maps, computed by
the part dictionary, are utilized to determine the mixture of latent codes for foreground and background. Our
transformer encoder comprises multi-head self-attention (MSA) and multi-head cross-attention (MCA) layers.
The MSA layer takes embedded patches as input, while the MCA layers utilize the distance maps as input.

difference is the dimensions of input distance maps. The cross-attention helps contextualize informa-
tion across part-dictionary and the spatial image regions and provides complementary properties to
MSA layers. (Please refer to Appendix for experiments on complementary properties ofMSA and
MCA ).

Finally, we add the output feature vectors ofMSA andMCA to form the feature extractorF �
de�ned in Eqn 1:

F � = [ zp � zd] (3)

Disentanglement of foreground-background space using mixture-of-parts. We start by dividing
the parts-matrixP 2 RK � F 2 �C into two disjoint sets: foreground setP F 2 Rn f � C and background
setP B 2 Rn b � C , such thatK = nf + nb.

Next, we construct latent variables to aggregate the foreground and background information using a
mixture-of-parts formulation over the computed distance mapsD :

L F =
X

k2 n f

� k D k + � f ; L B =
X

k2 n b

� k D k + � b (4)

where,� k and� k are the learnable weights given to thekth part-vector in the corresponding mixture,
whereas� f and� b are Gaussian noises sampled fromN (0; 1). The Gaussian noise is added to the
latent codes to ensure that mixture-of-parts are robust to common data distortions. Please note that the
purpose of Gaussian noise is not to induce variability in the latent codes, as foreground information
for a given image is deterministic.

Finally, our disentanglement regularization takes the form of an alignment loss between the latent
codes and the class-agnostic foreground-background masks:

L mix = jjI (L F ) � M f jj2 + jjI (L B ) � M bjj2 (5)

where,I (L ) is the bilinear interpolation of a given latent codeL to the same size asM .

During the architectural design phase, we employ distinct components (P) for each encoder block.
Consequently,zp andzd are calculated in an iterative manner and subsequently transmitted to the
subsequent encoder block. Regarding the computation ofL mix , we utilize the distance mapsD
from the concluding encoder block. While it's feasible to calculateL mix iteratively for each block
and then aggregate them for a �nalL mix computation, our observations indicate that this approach
ampli�es computational expenses and results in performance deterioration. As a result, we opt to
computeL mix using the ultimate encoder block.

Learning high-quality part representations. A problem with minimizing the mixture objective
de�ned in Eqn 5 is that it may cause the degeneration of parts, thereby making the part representations
less diverse. One solution is to enforce orthogonality on the matrixP m � n by minimizingjjP T P � I jj ,
similar to [50]. However, the solution will result in a biased estimate asm < n ; that is, the number of
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parts (K ) is always less than the dimensionality of parts (F 2 � C). In our experiments, we observed
that increasingK beyond a certain threshold degrades the performance as computational complexity
increases, and is consistent with the �ndings in [54]. (Please refer to our Appendix section for
experiments on the different values ofK ). To minimize the degeneration of parts, we design our
quality assurance regularization by minimizing the spectral norm ofP T P � I , and by addingL 1
sparse penalty on the part-matrixP. The spectral norm ofP T P � I has been shown to work with
over-complete (m < n ) and under-complete matrices (m � n) [3].

L Q (� s; � o) = � s jjP jj1 + � o

h
�

�
P F � P F

T � I
�

+ �
�
P B � P B

T � I
� i

(6)

whereI is the identity matrix,� s and� o are the regularization coef�cients for sparsity and orthogo-
nality constraints.� (P) is the spectral norm of the matrixP which is computed using the scalable
power iterative method described in [3].

Disentangled Pretraining Objective. We pretrain DPViT using the following loss function:

L P T = � cls L cls + � mix L mix + L Q (� s; � o) (7)

where� cls ; � mix , � s, and� o are the weights given to each loss term and are tuned on the validation set.

Figure 3: Invariant �ne-tuning of DPViT
via distillation framework.

4.1 Invariant �ne-tuning
In the pretrain phase, our approach learns part representations
that are disentangled and diverse, but it does not achieve in-
variance to the incidental correlations of image background.
During the �ne-tuning stage, we utilize the learned foreground
latent code to extract the relevant foreground information from
a given imagex: x f = x � I (L F ), where� denotes the

Hadamard product. The teacher network receives the original image, while the student network
receives the foreground-only image. By distilling knowledge between the[class] tokens and fore-
ground latent codesL F of the student and teacher networks, we achieve invariance to the incidental
correlations of image background.

L inv
cls = L ce(F t

� (F t
� (x)) ; F s

� (F s
� (x f ))); L inv

p = L ce(L t
F (x); L s

F (x f )) (8)

The two proposed invariant regularizations serve distinct purposes:L inv
cls encourages the model to

classify images independently of the background, whileL inv
p ensures that the latent foreground code

captures relevant foreground information even when the background is absent, making the learned
parts invariant to the incidental correlations.

Invariant Fine-tuning Objective . Finally, our �ne-tuning objective is given as :

L F T = � cls L cls + � inv
cls L inv

cls + � inv
p L inv

p (9)

where� cls ; � inv
cls , and� inv

p are the weights given to each loss term and are tuned on the validation set
after pretraining.

5 Experiments
We evaluate the proposed approach on four datasets: MiniImageNet [35], TieredImageNet [40],
FC100 [37], and ImageNet-9 [53]. The MiniImageNet, TieredImageNet, and FC100 are generally
used as benchmark datasets for few-shot learning. For MiniImageNet, we use the data split proposed
in [39], where the data samples are split into 64, 16, and 20 for training, validation, and testing,
respectively. The TieredImageNet [40] contains 608 classes divided into 351, 97, and 160 for meta-
training, meta-validation, and meta-testing. On the other hand, FC100 [37] is a smaller resolution
dataset (32� 32) that contains 100 classes with class split as 60, 20, and 20.

To investigate the impact of background signals and data corruption on classi�er performance,
researchers introduced ImageNet-9 (IN-9L) [53]. IN-9L is a subset of ImageNet comprising nine
coarse-grained classes: dog, bird, vehicle, reptile, carnivore, insect, instrument, primate, and �sh.
Within these super-classes, there are 370 �ne-grained classes, with a training set of 183,006 samples.
The authors of [53] created different test splits by modifying background signals, resulting in 4050
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