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Abstract

The rapid scaling of language models is motivating research using low-bitwidth
quantization. In this work, we propose a novel binarization technique for Trans-
formers applied to machine translation (BMT), the first of its kind. We identify and
address the problem of inflated dot-product variance when using one-bit weights
and activations. Specifically, BMT leverages additional LayerNorms and residual
connections to improve binarization quality. Experiments on the WMT dataset
show that a one-bit weight-only Transformer can achieve the same quality as a float
one, while being 16× smaller in size. One-bit activations incur varying degrees of
quality drop, but mitigated by the proposed architectural changes. We further con-
duct a scaling law study using production-scale translation datasets, which shows
that one-bit weight Transformers scale and generalize well in both in-domain and
out-of-domain settings3.

1 Introduction

Neural language models are scaling, with the parameter count of recent models, such as the GPT
family, roughly increased by 10× per year [29]. A scaling law study by Kaplan et al. [21] suggests that
the continuous increase in model parameters is strongly correlated with performance improvement.
This trend has been validated by recent successes in large-scale models, such as the 540-billion
parameter Pathways Language Model (PaLM), which achieves breakthrough performance on language
understanding and generation [11]. The 540-billion parameter Minerva [25] also exceeded the national
average on the National Math Exam in Poland in 2021, where language models were previously far
from human-level. Similarly, in the field of neural machine translation (MT), the scaling law holds, as
reported by Ghorbani et al. [16], with the translation quality improving as the model size increases.

The aggressive scaling trend resulted in unprecedented challenges in model serving. In particular:

The inference cost grows exponentially. The size and computational complexity of language models
are increasing rapidly, with roughly a 10× increase in model size and a 100× increase in operation
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count per year [18]. However, the energy efficiency of hardware used to run these models is not
keeping pace. Specifically, the energy required for FP32 operations has improved by only 2.5× over
the past 11 years (2007-2018), from 45nm to 7nm process nodes. Over the same period, DRAM
access energy has only improved by 6.3× [20]. The ever-growing gap between model size inflation
and inefficiency in hardware energy utility is causing inference energy to grow exponentially, which
is becoming a major cost of running language models in datacenters.

The inter-chip communication overhead becomes non-negligible. Data parallelism alone is no
longer sufficient for models at such a large scale since one matrix multiplication cannot fit on a single
accelerator chip. Each weight tensor in PaLM [11], for example, is partitioned across 3072 TPUv4
chips in a pod. This leads to a huge overhead on transferring the weights and intermediate activations
across the datacenter networks.

Latency-critical applications can now hardly benefit from parameter caching. Loading model
parameters from DRAM to on-chip accelerator memory often takes a lot of time during inference.
In the past, parameter caching was an effective optimization for latency because it reused model
weights and avoided off-chip memory transfers. However, evaluations on edge TPUs reported that
this method works best for models with fewer than 30 million parameters [36]. For larger models,
parameter caching even becomes harmful. Benefits from compiler optimizations are diminishing,
and the serving latency becomes almost proportional to the model parameter count. In our case, the
smallest translation model has about 50 million parameters. Improving latency thus boils down to
increasing memory bandwidth alone.

Quantization can significantly reduce inference cost. Binarization is an extreme case where both the
weights and activations of a matrix multiplication (matmul) are quantized to a single bit. Compared
to the Brain floating-point format (bfloat16) [1] 4, binarization reduces the weight size by 16×, thus
significantly lowering the memory and communication overhead. Moreover, a binarized matmul can
be carried out by XNOR operations followed by a population count, which is estimated to be 256×
more energy-efficient than the bfloat16 counterpart [39].

Prior work shows that BERT can be binarized for pretraining [5, 33, 28]; however, it is important to
note that the BERT and MT models, which both use Transformer as their core [37], are very different.
One key difference is the architecture: while an MT model has both an encoder and a decoder, BERT
only has an encoder. This difference can impact the quality of encoder quantization because every
cross attention layer in the decoder requires outputs from the encoder. Another difference is that
MT model inference produces a sequence of text, while BERT performs a single text classification.
This is critical because each word in the output translation sequence affects the generation of the
next word. The sampling distribution of a word is therefore crucial and should be preserved after
binarization, but for BERT, only the peak of the logits needs to be preserved. Due to these differences,
directly applying BERT binarization techniques to MT can easily result in a lower quality model.

In this work, we investigate binarized Transformer for neural machine translation, which, to our
knowledge, is the first study on this topic. Each Transformer block contains an attention layer and
a feed-forward network (FFN). We binarize the weights and activations separately so we can study
how each one affects the quality of the model. We found that binarizing weights did not significantly
affect accuracy, but that traditional methods for binarizing activations led to poor performance due to
activation magnitude explosion. Then, we propose a new method for activation binarization that uses
a simple scaling factor and additional residual connections.

To understand the scaling behavior of the proposed 1-bit Transformer in practice, we further evaluate
it on our in-house production-scale translation dataset that contains three billion sentence pairs. We
for the first time demonstrate that the 1-bit weight Transformer scales and generalizes similarly well
as the float one, even on the out-of-domain data. We also analyze sentences sampled from both
models’ outputs and find that the 1-bit Transformer generates a similar translation quality as its float
counterpart. Binarization can therefore be a potential candidate for future MT model serving.

2 Related Work

The success of Transformer has spurred an active body of work to quantize it to lower precision. In
this section, we review a subset of these efforts that inspired our approach.

4In the remaining paper, “float” refers to bfloat16.

2



Transformer quantization. Much of the prior effort focused on 8-bit Transformer. Bhandare et al.
[8] reported a less than 0.5 BLEU drop on the WMT14 En-De translation task with 8 bits. Prato et al.
[32] showed an 8-bit Transformer preserved the translation quality. For non-generative tasks, Zafrir
et al. [38] quantized BERT to 8-bit with marginal quality loss. When pushed down to 4 bits, though
Prato et al. [32] reported an 8 BLEU degradation for MT, Aji and Heafield [2] reported almost no
BLEU loss by using a logarithmic quantization scheme.

The exploration on 1-bit Transformers centered around BERT. Usually binarization is directly applied
and the focus is on improving the training recipe. Bai et al. [5] initiated the attempt by splitting a
ternary BERT into a binary one, then fine-tuning. It achieved 41% average accuracy on the GLUE
benchmarks. Qin et al. [33] proposed to distill each intermediate layer outputs from a floating-point
model. Recently, Liu et al. [28] proposed to incrementally quantize the model, e.g., from 32-bit to
4-bit to 2-bit, finally to 1-bit, and it improved the GLUE accuracy to 73.5%.

Binarized vision models. Courbariaux et al. [12] pioneered the investigation on binarized deep
neural nets. Recently, PokeBNN [39] established a pareto SOTA on the ImageNet recognition task.
We inherit the binarization functions and training recipes from PokeBNN.

Generalizability. Hooker et al. [19] show that compressed models do not generalize well on out-
of-domain (OOD) data. We are particularly interested in evaluating BMT under OOD settings and
analyze its generalizability.

3 Algorithm and Model Architecture

In this section, we introduce the methodology of binarizing a Transformer-based MT model. We first
define the binarization equations, then show that directly applying the equations to Transformer will
produce an inferior model quality because of the dot-product variance inflation. A scaling factor is
then proposed as a solution to this problem, and we discuss using LayerNorm [4] to replace fixed
scaling factors. Finally, we combine and present the architectural changes that are necessary to
improve the binarized model quality.

3.1 Binarization Equations

We follow the approach defined in PokeBNN [39] and AQT [24], which includes an important
hyperparameter “B”. The function of casting floating-point values into binary values is

clip (x; xmin; xmax) := min (xmax;max (xmin; x))

xb :=
�

oor
�

clip
� x
B
;−1 + �; 1 − �

��
+ 0:5

�
×B

where x is the input tensor, � is a small floating-point number that prevents overflow when taking the
floor, and B is the binarization bound. In the backward propagation, the floor function is ignored, i.e.,
@ oor(x)

@x := 1, known as the straight-through estimator [12]. The gradient of the entire binarization
function is then @xb

x = 1x∈[−B;B], otherwise zero. The bound B therefore serves as a hyperparameter
that controls the range of the input values that will have non-zero gradients. Note that B also serves
as a scaling factor for the outputs since the binarization function maps x→

�
−B

2 ;+
B
2

	
. The bound

B can also generalize to a vector, depending on the granularity of binarization. The finest granularity,
however, is one bound value for each dot product, i.e., per contraction dimension, so that the binarized
matrix multiplication can be accelerated.

For a dense layer in Transformer of the form A ·W , where AN×dmodel is the input activations and
W dmodel×dk is the model weights, we instead compute a binarized matmul Ab ·Wb. Throughout the
experiments we apply binarization bound BW and BA for weights and activations, respectively.

BW = max(abs(W ); axis = dmodel); BA = max(abs(A); axis = dmodel)

where axis is the dimension along which max is taken. Using one axis means the bound is per
channel and per example [24]. Both BN×1

A and B1×dk

W are vectors that contain maximum absolute
values along the contraction dimension. Note that the weight binarization bound BW is static in
inference though it is updated in every training iteration. The activation bound BA is dynamic.
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3.2 Variance In�ation in Binarization

We start by applying the binarization function to feed-forward networks (FFNs), leaving other
modules as �oat. We observe that directly binarizing the weights preserves the model quality,
but binarizing the input activations causes the training tonot converge in the context of machine
translation. To understand the reason of this behavior, we analyze the variance of the dot product
magnitude with and without binarization. Our analysis reveals that binarizing both weights and
activations will statistically in�ate the magnitude, leading to abnormal signal propagation within the
neural network [10]. We present the details of this analysis as follows.

Let each weight of a dense layer be randomly initialized and sampled from a zero-mean normal
distribution,w � N (0; � 2

w ). Assume each input activation is independent of the weights and
identically distributed asa � N (0; � 2

a). After applying the binarization function, bothwb andab

are still centered at zero and have an equal probability of being either� B
2 or + B

2 , namely, they

follow the probability mass function de�ned asPr (xb) =
�

1
2 xb = � B

2
1
2 xb = + B

2
. Hence the variance of a

binarized multiplication is

Var ( ab � wb) = E
�
a2

b

�
� E

�
w2

b

�
� E2 [ab] � E2 [wb] =

X

ab

a2
b � Pr (ab) �

X

wb

w2
b � Pr (wb) � 0 =

B 4

16

The variance of a binarized dot product is thenVar ( Ab � Wb) =
P D � 1

n =0 Varn (ab � wb) = B 4

16 � D ,
whereD is the dimensionality of the dot product, i.e., the hidden projection dimension in an FFN,
andn is the index of each entry in the vector.

Following the same analysis, the variance of a �oating-point dot-product isVar ( A � W ) = � 2
a � � 2

w �D .
Note that the commonly used Xavier initializer [17] equalizes the variance of the activations across
layers.� 2

w will therefore be initialized as1D , soVar ( A � W ) = � 2
a , which is usually at the scale of 1.

Meanwhile, the common binarization bound isB 2 [1; 3] [12, 39, 7]. Our Transformer FFN employs
a hidden projection dimensionD = 4096 throughout the experiments. Therefore,Var ( Ab � Wb) �
Var ( A � W ). Binarization heavily in�ates the dot product variance by at least256� , which will be
re�ected in the magnitude of the dense layer outputs. Also note thatVar ( Ab � Wb) / D , indicating
that Transformer with a larger width will potentially suffer more from the convergence issue.

3.3 A Scaling Factor as the Solution

Figure 1: BMT Multi-Head Atten-
tion — Differences from the origi-
nal Transformer are highlighted (in
yellow). All linear projections and
einsums can be binarized.

Inspired by the scaling factor
p

dk in the scaled dot-product

attentionAttention ( Q; K; V ) = softmax
�

QK T
p

dk

�
V in the

original Transformer [37], we propose a scaling factor for each
binarized dense layer, i.e.,

Dense (Ab) =
Ab � Wb

s

The scaling factors is a hyperparameter that suppresses dot-
product variance in�ation, while in the attention layer

p
dk

prevents the dot products from entering small-gradient regions
of the softmax function. According to the analysis in Sec-
tion 3.2, its value is estimated to bes /

p
D in order to cancel

the multiplicative effect fromD on the variance.

To verify how the magnitude of the scaling factor affects the
training loss, we sweeps in Section 5. In practice,s � 64can
make the training converge.

3.4 Replacement of Scaling Factor with LayerNorm

While the scaling factors enables the binarization of FFNs, it
requires hyperparameter tuning, which can be challenging for
billion-parameter translation models. To address this de�ciency, we propose using layer normalization
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(LayerNorm) [4] as a drop-in replacement for the scaling factor, which has the form ofLN ( x) =
x � E[x ]p
Var( x )+ �

�  + � , where and� are learnable parameters. Besides the fact that can incorporate

the scaling factors, LayerNorm also has the following advantages.

The scaling factor is now dynamic and adaptive during training.The binarization function employs
a dynamic boundB , soVar ( Ab � Wb) varies. The learnable parameter in LayerNorm can better
capture the changes in the dot product variance and hence properly normalize it.

LayerNorm also redistributes the input activations.It enables the binarization of a tensor with all
positive values. A directly binarized FFN isFFN ( A) = max (0 ; AbW1b + b1)b W2b + b2, where
W1, b1 andW2, b2 are the weights and biases for the �rst and second dense layer, respectively. One
may note that the activationsmax (0; AbW1b + b1) are all positive. The binarization function will
then map the entire tensor to a constant+ B

2 , which undermines the model training. With the help
LayerNorm, however, the activations are redistributed and more balanced in terms of the number
of positive and negative values. This enables the normalf� 1; +1g (bipolar) binarization of the
second dense layer. Qin et al.[33], Liu et al.[28] usedf 0; 1g binarization instead in binarized BERT
to overcome the issue of constant positive values. It yields a ternary matrix multiplication since
A 2 f 0; 1gN � D andW 2 f� 1; +1gD � K , which incurs nontrivial additional overhead if computed
on binary hardware accelerator. The complete proposed 1-bit FFN has the structure of

FFN ( A) = LN (LN (max (0 ; AbW1b + b1))b � W2b + b2)

When proceeding to the attention binarization, we add a LayerNorm to the output of each linear
projection layer for the same reasons. We veri�ed in Section 5 that a dynamic and adaptive scaling
factor in LayerNorm indeed outperformed a �xed one.

3.5 Residual Connection in Attention Layers

In attention layers, we also add a shortcut connection to the output linear projection layer. Combined
with the additional LayerNorm, the output projection then becomesOut ( A) = LN ( A � W ) + A. In
BNNs, gradients of a binarized layer are approximated due to the straight-through estimator. This
will eventually lead the optimization into a different direction as we stack more binarized layers. Liu
et al.[26] proposed adding additional residual connections in BNNs, which became a useful method
for partially addressing this issue. We therefore adopt it in our model. Note that this modi�cation is
unnecessary for QKV (query, key, value) linear projections. The shortcut around the entire attention
layer in the original Transform serves the same purpose. We will also demonstrate the effectiveness
of the shortcut connection in the ablation study in Section 5.

The complete modi�ed attention architecture is shown in Figure 1, where we highlight the differences
from the original one. The extra layer normalization and shortcut connection are both elementwise.
Their overhead is small, especially comparing to the bene�ts of binarization.

4 Experiments

In this section, we empirically evaluate our proposed binarized Transformer on MT tasks at difference
scales. To investigate the impact of binarizing different layers, we �rst train a standard 6-layer
encoder-decoder (6L6L) Transformer on the WMT2017 De-En translation dataset [9] and evaluate
it on the WMT2014 De-En dataset. We then choose the 1-bit weight model variant and study its
practical scaling law on in-house translation datasets. We also compare the translation qualities of
both 1-bit and �oat models. Throughout the experiments, the embedding table and the prediction
head layer are not binarized.

4.1 WMT Results

We binarize �ve different matmuls in a Transformer. In an attention layer there are (1) QKV linear
projections; (2) activation-activation matmul between queries and keys (QK Einsum); (3) activation-
activation matmul between attention scores and values (Score-V Einsum); (4) output linear projection.
In an FFN there are two dense layers of the same type. To study their individual impact, we binarize
their weights and activations separately. In our experiments we use the following training details.
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Model. We use a 6L6L Transformer as the base model. Embedding dimension is 1024. Each
multi-head attention layer has 16 heads, with a dimension of 1024 for QKV if combining all the
heads. The hidden projection dimension in FFNs is 4096. Dropout layers has a dropout rate of 0.1.

Scheduler. We adopt a three-stage training scheme, where the learning rate (LR) of each stage
decreases from base to zero following a cosine decay. A quantization event starts at the beginning of
each stage. We �rst train the model in �oat. In the second stage, all weights will be binarized. In the
last stage, both weights and activations will be binarized.

Table 1: BMT results on the WMT dataset. Training uses WMT2017 De-En and evaluation uses
WMT2014 De-En. Binarized activations or weights are labeled by checkmarks. Unlabeled tensors
remains b�oat16. 1-bit weights models have 25MB of weight storage size while the �oat one has
399MB, � 16� compression. As a comparison, the baseline model (last row) directly applies
XNOR-Net style [34] binarization used in previous works [33, 28], sign function followed by a
normalization. BLEU evaluation employs a beam size of 4.

ATTENTION 1-BIT FFN 1-BIT METRICS

A QKV WQKV A OUT WOUT QK SCORE-V A FFN WFFN VAL LOSS BLEU
FLOAT 1.39 26.35
BMT-1 X X X 1.38 25.93
BMT-2 X X 1.40 25.44
BMT-3 X X X X 1.51 24.11
BMT-4 X X X X X 1.72 21.55
BMT-5 X X X X X 1.60 21.06
BMT-6 X X X X X X 1.89 17.87
BMT-7 X X X X 1.76 18.27
BMT-8 X X X X X 2.81 9.42

BASE [33, 28] X X 8.07 0.21

Training. We apply knowledge distillation (KD) during training. KD replaces the ground truth label
in the cross-entropy loss function with the softmaxed logits from the teacher model, so it is optional
for users. Adam optimizer [22] is used with� 1 = 0 :9 and� 2 = 0 :98. No weight decay is applied.
Batch size is 1024. Base learning rate is0:001. The �rst LR cycle has50000steps, others have88339
steps. We train the model with a 4� 8 TPU topology.

Observations.The evaluation results on WMT2014 De-En translation dataset is shown in Table 1.
We mainly rely on the validation loss for comparing the model quality since BLEU score has a higher
variation [16]. From the table we have the following key observations.

Weight-only binarization preserves the model loss.The �oat 6L6L Transformer baseline has a
1:39 validation loss. In contrast, binarizing all dense layer weights (in both attention layers and
FFNs) produces an even lower loss (1:38, BMT-1), though the BLEU score slightly drops by about
0:4. Both metrics indicate that the 1-bit weight model has a similar translation quality to the �oat
baseline. Binarization has the potential to compress the model storage size by 16� while preserving
the quality.

FFN binarization produces promising results.Binarizing the entire FFN, i.e., both activations and
weights, while leaving other layers �oat, again yields a similar validation loss (1:4, BMT-2) compared
with the �oat baseline. With our proposed BMT, it is the �rst time on machine translation tasks that
binarizing FFN activations can preserve the loss. This intriguing 1-bit FFN variant can be potentially
useful for large language models. Combing with 1-bit all dense layer weights further downgrades
the loss to1:51 (BMT-3) and a2:2 lower BLEU score in contrast to the �oat model. Overall, FFN
binarization demonstrates a promising potential.

Attention activations are the key bottleneck to high binary model quality.On top of the 1-bit
weights and 1-bit FFN activation model variant, further binarizing input activations in all dense
layers in the attention layer (BMT-6; this includes keys, queries, values and input activations to the
output projection dense layer) leads to a1:89 loss. This is by far the largest drop in model quality.
Binarizing each individual activation tensor therein leads to at least0:3 degradation in loss (BMT-4
and 5). In addition, binarizing the two activation-activation matmuls (query-key einsum operation and
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