A Proofs of tempered overfitting

A.1 Proof of Theorem 3.1

Throughout the proof, given a sample S = (z;,y;)i%; ~ D™ we denote S, = (x;)]2,, Sy =
(yi)™,, and assume without loss of generality that 1 < x5 < -+ < @,.

Lemma A.1. Denote by E,, the event in which the samples (x;)", ~ DI satisfy

log(8(m+1)/6) )

* (maximal gap isn’t too large) dmax = MaX;cpm_1](Tir1 — 75) < ]

* (most gaps aren’t too small) |{i € [m — 1] : x41 — x; 10(m+1)}| < mi
* (no collisions) Vi # j € [m] : x; # ;.

Then there exists absolute mo € N such that Vm > mg : Prs, pm [E;] >1—

ST

Proof. Deferred to Appendix D. O

Following the lemma above, we continue by conditioning on the probable event E,,, after which we
will conclude the proof by the union bound. We now state a lemma due to Safran et al. [2022] which
is crucial for our analysis.

Lemma A.2 (Lemma E.6. Safran et al., 2022). Suppose that i < j are such that y;, Yit1,...,Y; =
—1. Then in the interval [x;, ;] there are at most two points at which Ny, increases.

We derive the following corollary:

Corollary A.3. Suppose that y;,Yit+1, - - .,Yi+a = —1. Then there exists i < ¢ < i+ 3 for which
Ng‘[sz“l] < 0.

Proof. Assume towards contradiction that y;, . .., y;,44 = —1, yet for any ¢ < ¢ < i + 3 there exists
z¢ € (¢, x¢41) such that Ng(z¢) > 0. Recall that Ng(x;), ..., Ng(x;13) < —1 by Eq. (3). Thus for
each ¢ < ¢ < i+ 2, looking at the segment (zy, zp41) D ;vg+1 we see that Ng(z¢) > 0, Ng(z441) <
—1, Ng(z¢) > 0. In particular, by the mean value theorem, any such segment must contain a point at
which N, increases. Obtaining three such points which are distinct contradicts Lemma A.2. O

We assume without loss of generality that m is divisible by 5 and split the index set [m] into groups
consecutive five indices: we let I; = {1,...,5},1Io = {6,...,10} and so on up to I,,, /5. Denoting
by u the (one dimensional) Lebesgue measure we get that under the event £, it holds that

Es,~pm Ifzg [No(z) < O]} = Eg,~pm [1(z : No(z) < 0)]

> Es,~prp Z (@it — @) - L{N|(z, 2;,,] <0}
1€[m—1]

= Z ]ESyNDL” [(Ii‘f‘l —zi)- 1 {N‘[l’z‘,wiﬂ] < 0}]
1€[m—1]

= Z Z ESyNDL” [(zl'*‘l —ay)- 1 {N|[Ilvwz+1] < O}]
i€[m/5] l€[I;]

[Corollary A.3] > Z Z Eg,~pr [ﬁmn(mﬂ —xp) - L{Vlel;:y = -1}

i€lm/5] 1€[I;]

= Z Z Hlln (Ter1 — o) - Pr[yi, yiv1, -, Yiva = —1]
i€[m/5)] le(I;] i

>ep’,
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where the last inequality follows from our conditioning on E,. To see why, note that the sum
D iclmys5) 2ote(r;) Mineer, (Te1 — a¢) is lower bounded by the sum of the m/5 smallest gaps, yet
under F,, this sum contains at least 2(m) summands larger than Q(1/m) — hence it is at least some
constant. We conclude that as long as E, occurs we have Es, ~pm [Przop, [Neo(z) < 0]] > cp’.
Moreover, we see by the analysis above that if a single label y, for some [ € I; C [m] is changed,
this can affect Ng(x) only in the segment [Z i, 1, & Tmaxy, ¢] which is of length at most 7d,ax =

0] (W) . Thus we can apply McDiarmid’s inequality to obtain that under E,, with probability

atleast 1 — §/4 :
Pr [Ng(x)<0}2c<p5— 1og(m/5)> .

xz~D m

Overall, by union bounding over E, the inequality above holds with probability at least 1 — /2,
which proves the desired lower bound.

We now turn to prove the upper bound. Let N*(-) be a 2-layer ReLU network of minimal width
n* € N that classifies the data correctly, namely y; N*(z;) > 0 for all ¢ € [m]. Note that n* is
uniquely defined by the sample while N* is not. Furthermore, n* is upper bounded by the number of
neighboring samples with different labels.® Hence,

Es,~pp [n"] < Es,npp [[{i € [m = 1] i # yira }] (©)
=(m-1)- ESyNDm[]l {y1 # y2}]
=(m-1)- P [y1 # v2]

=2(m—1)p (17 p) =O0(pm) .

We conclude that the expected width of N* (as a function of the sample) is at most n* = ( m).
By Safran et al. [2022, Theorem 4.2], this implies [Ng belongs to a class of VC dimension O( =
O(pm). Thus by denoting the 0-1 loss L' (Ng) = Pr(, y)p[sign(Ne(x)) # y] and invoking a
standard VC generalization bound we get

Es,~py [L"7(Np) [n*] < %Zﬂ {sign(Ne(z:)) # yi} + O <\/Z> =0 ( :;) .

i=1

=0

By Jensen’s inequality E[v/n*] < \/E[n*] < \/pm = E[\/n*/m| < \/p, so by the law of total

expectation

n*

Es,~op (L7 (No)] = En- [Es, <oy [L~ (No) |n']] < En- m] SO

~

In order to relate the bound above to the clean test error, note that
L'"'(Ng) = Pr _[sign(No(z)) # y]

($7y)ND

=(1—p)- Pr [Ng(x)<Oly=1+p- Pr [Ng(x)>0ly=-1
(L=p)- DPr [No(@)<Oly=1+p- Pr I[Noe(z)>0ly=-1]

> (1—p)- Pr [Ne(z) <0
N —r ~D,
€(3.1]
1

> = <

hence
01 Eq. (7)
Es,~pp | Pr [No(z) <0]| <Es,~pp 2L°7'(Ne)] < Vp-

SThis can be seen by considering a network representing the linear spline of the data, for which it suffices to
set a neuron for adjacent samples with alternating signs.
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As in our argument for the lower bound, we now note by Eq. (6) that flipping a single label y; for
some [ € [m] changes n* by at most 1, hence changing the test error by at most O(1/m). Therefore
we can apply McDiarmid’s inequality and see that under the event E,, with probability at least
1—-06/4:

Pr [Ny(x) <0] < C <ﬁ+

x~D,

log(1 /5)) .

Overall, by union bounding over E, the inequality above holds with probability at least 1 — /2,
which proves the upper bound and finishes the proof.

A.2 Proof of Theorem 3.2

Figure 3: Illustration of the proof of Theorem 3.2 in case there is a single non-linearity along
[, ©;y1]. If the network is not linear along [x;, x;41], one of the cases illustrated in the top row (in
blue) must occur. In each case, the dashed green perturbation classifies correctly by altering exactly
two neurons while reducing the parameter norm. Moreover, if the network is linear along [x;, z; 1],
yet Ng(x;) < —1 or Ng(z;41) > 1, one of the cases illustrated in the bottom row must occur. In
either case, the dashed green perturbation classifies correctly by altering exactly two neurons while
reducing the parameter norm.

Throughout the proof, given a sample S = (z;,%;)i%; ~ D™ we denote S, = (x;)]2,, Sy =
(yi)™,, and assume without loss of generality that 1 < x5 < -+ < x,,. Denote by E, the event in
which the samples (x;)7, ~ DI satisfy

log(8(m +1)/9)
dmax = i — &Ly <
ierﬁr?icl](x 1= ) m+1

)

and recall that by Lemma A.1 we have Prg, ~Dm [E.]>1- g for m larger than an absolute constant.
Therefore from here on throughout the proof we condition on F,, after which we can conclude using
the union bound.

For any point 2 € (0,1), denote by 4, the maximal index ¢ € [m] such that z; < x. Let A4,
denote the event in which y;_,_; = 1, y;, = —1 and y;,+1 = 1. Note that for any =z we have
Prs,~pm[A.] = p(1 —p)* > p, so we get
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Es,~pp | Pr [No(z) < 0]} = Es,~py o~p, [1{No(z) < 0}]

Sy~DI D,

>

=3

Yy

-Eg,~pr Lf% [No(z) < 0]A;]| - 8)

We aim to show that Pr,.p, [Ne(z) < 0] Az] = Q(1). In order to do so, note that conditioning the
uniform measure D,, = Unif(]0, 1]) on the event A, results in a uniform measure over the (union of)
segments between —1 labeled samples to 41 labeled samples that also satisfy the additional property
that the neighboring sample on their left is labeled +1. We will show that if 8 is a local minimum of
Problem (1), then along any such segment Ng(x) is linear from —1 to +1:

Proposition A4. Leti € [m — 1] be such that x;—1 < x; < Tjpq withy,—1 = 1, y; = —1 and
Yit1 = L. If 0 is a local minimum of Problem (1), it holds that Ng(z;) = —1, Ng(z;11) = 1 and
No(-) is linear over (x;,x;41).

In particular, the proposition above shows that

1
Pr [No(x) < 0|4, =3,

z~D,

which plugged into Eq. (8) gives

Es,~p | Pr [No(@) <0]| > £.

Moreover, noting that any local minimum is in particular a KKT point, we saw in the proof of
Theorem 3.1 that under the event E,,, changing a single label y;, [ € [m] can change the test error
by at most O(dmax) = O(log(m/§)/m). By McDiarmid’s inequality this finishes the proof of the
desired lower bound.

As for the upper bound, for « € (0,1) we denote by B,, the event in whichy;, =1=1y; +1 =1—
namely, x is between two positively labeled samples. Note that for any = we have Prg, ~pm [B:] =

(1-p)*>1-2p = Prs,~pn[Bs] < 2p. We will show that if 6 is a local minimum of the
margin maximization problem, then B, implies that Ng(x) > 0.

Proposition A.5. Let i € [m — 1] be such that y; = y;41 = 1, and let x € [x;, x;11]. If 0 is a local
minimum of Problem (1), it holds that Ng(x) > 0.

In particular, the proposition above shows that
Es,~py a~p, [1{No(z) <0} |B.] =0,

So we get

]ESyNDL” IB% [Ng(l‘) < O] = ESyN'DL",INDm []]. {N@(IE) < O}}

= ES?}’VDL’L@’VDm []]' {NQ(IIJ) < 0} ‘B$] ! SyNDlg")’I;mNDz [B$]
+ Es,~ppa~p, [1{No(x) <0} |Bg]- ~ Pr _[Bf]

Sy NDL"’,],'N'Dm
<0+4+1-2p=2p.
As in the lower bound proof, recalling that any local minimum is in particular a KKT point, we saw in
the proof of Theorem 3.1 that under the event E,, changing a single label y;, [ € [m] can change the

test error by at most O(dax) = O(log(m/§)/m). Hence applying McDiarmid’s inequality proves
the upper bound thus finishing the proof.

Proof of Proposition A.4. Throughout the proof we fix ¢ € [m] for which the conditions described
in the proposition hold, and we assume without loss of generality that the neurons are ordered
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without loss of generality that wq,...,w, > 0. Indeed note that Eq (1) is invariant under the
transformation v; <— —v;, w; < —w], b < —b; which does not affect neither the parameter norm
nor the parameterized network in function space. Hence, any local minimum of Eq. (1) corresponds
to a local minimum with wy, ..., w, > 0. Lastly, we will make frequent use of the following simple
observation. For differentiable x we have

with respect to their activation point: _5711 < —b—z < ... < —2». Moreover, we may assume

Ny(z Z vj - w;il{wjz +b; >0}, )
J=1 >0
soif Ng(z1) < Nj(z2) for some z; < zg, then there must exist j € [n] withv; > Oand z; < —b—’ <

9. Similarly, Nj(z1) > Ng(z2) implies that there exists j € [n] withv; < 0, z; < —Z)—Z < za.

We split the proof of Proposition A.4 into two lemmas.

Lemma A.6. Ng(-) is linear over (x;,T;y1).

Proof. Recall that Ng(z;) < —1 and Ng(z;41) > 1, so Ng increases along the segment (z;, Z;41).
Thus, Ng(+) is not linear over (z;, x;41) only if (at least) one of the following occur: (1) There exist
21,22 € (@i, xi41) such that z; < 2o and 0 < Ng(z1) < Ng(22); (2) there exist 21, 22 € (24, Ti41)
such that 21 < 22, Ng(z1) > 0and Ng(z1) > Ny(z2); or (3) there exists a single z € (z;, x;41) at
which Np is non-differentiable, such that Ng|(,, -y < 0and Ng|(. ...,y > 0. We will show either of
these contradict the assumption that 0 is a local optimum of the margin maximization problem.

Case (1). The assumption on z1, zo implies that there exists j; € [n] such that —

(Zl ) 22)
and v;, > 0. Let j» > j; be the minimal index j € {j; + 1,...,n} for which v; < 0.” For some
small § > 0, consider the perturbed network

No, () := Z vjo (w; - T + bj) (10)
Jen\{j1.d2}

1) b
+ (1= 0)vj,0 (wjl x+ <bj1 15 (w]w”2 - bj1)>>
J2

146 i bi,) -
( + ’U] wh)vjzo-(w]z T+ Jz)

It is clear that ||@ — ;]| 229 0, and we will show that for small enough ¢ the network above still
satisfies the margin condition, yet has smaller parameter norm. To see why the margin condition is

not violated for small enough 4, notice that Ny, () = Ng(z) for all x ¢ (z;, fb’—'?) s0 in particular

’UJ
No, (z1) = Ng(x;) for all [ € [i], as well as for all z; > —Z— Furthermore, by minimality of jo
J2
we note that there cannot exist y, = —1 for k such that zj, € (_#, —wj—z) A direct computation
J1 J2

gives that Ng, > N along this segment, so overall the margin condition is indeed satisfied for the

"We can assume that such j» exists, by otherwise discarding j2 in the rest of the proof which would work
verbatim. Notably, the only case in which there does not exist such j> is when x; is the last sample to be labeled
—1.
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entire sample. As to the parameter norm, we have

) w;, b 2
165]* = Z (vj2 + w]2 + b?) +(1— 5)21)?1 + w?-l + (bj1 -1 (M — bjl)>
J€M\{j1,52}

2
Vj, Wy 2 2 2
+ (1 + 511) vj, +wj, + 05,

Vg Wiy

20 b,
- Z (7 +w? +b3) + (1= 26)07, +w? + b7 — 5 <wﬁ I2 bj1>
ISONGES!

Uj, Wy 2 2 2 2
+ (1 +25M) v, +wj, + b5, + 0(5%)

Uja Wiy

=Y (@ +w?+b) -2 <v]21 + 16115 (“’ﬁbﬂ'? - bj1> - ”il“?l) +0(8%).

h w;
J€[n] 2

Thus,

W v, b b
161~ sl =25 (12, - “tntie - B (4, - 20t )] 4 o)

ij 1-96 o

s U b wi b
— |l@ 2 _ 9 2 25 2 _Ujlelv.h _ J1 b, — J17J2 062 . 11
161 = ool + 28 (12, — 2t — 2 (i, ) @), an
Ytz (), Moreover, — -2 > () and w;, > 0
SO —A > 0 for § < 1. Lastly, recall that jo > j; = —22 > — b — bj1 _ wibia 5

Wiy Wiy Wiy

By construction, v;;, > 0 and v;, < 0 hence —
J2

Overall pluggmg these into Eq. (11) shows that |0]|? > ||65]|* for small enough 4, contradicting the
assumption the @ is a local minimum.

Case (2). Since Ng(x;—1) > 1 and Ng(x;) < —1, Np must be negative somewhere along the
C b;

segment (z;_1,2;). Yet, Ng(z1) > 0 so there must exist j; € [n] such that — > € (z;_1,21)
J1

and v;, > 0. Moreover, the assumption on z1, zo implies that there exists jo € [n] such that

——22 € (21, 22) and v;, < 0. For some small § > 0, consider the perturbed network
J2

No, (z) := Z vjo (wj -z + bj) (12)
JEM\{j1,52}

+ (1= 0)vy,0 (wy, -z +bj,) +vj,0 ((wh + 5”3‘1“’3‘1) _ (bh L Svinby, )) .

Ujs Ujs

It is clear that ||@ — 05| 229 0, and we will show that for small enough ¢ the network above still

satisfies the margin condition, yet has smaller parameter norm. To see why the margin condition is
not violated for small enough d, notice that Ng, (x) = Ng(x) forall z ¢ (2,1, x;+1) so in particular
No, (21) = Ng(x;) for all [ # i. Furthermore, a direct computation yields Ny, (z;) < Ng(z;) < 1.
As to the parameter norm, by a similar computation to that leading up to Eq. (11) we get that

nm2=n%2+26@a— >+ow%. %)

Vj1 Wi Wi, Yjy bj, bj,

Usia Ujia
. Vj Wi Wy b;

By construction, v;, wj, > 0 and vjzwjz < 0 hence —-"—2—2 > (. Moreover, — "~ > 0 and
Vijo J1

— Y2 5 050 we also have — 212tz L b2 > 0. Hence, Eq. (13) shows that ||@]|?> > ||65]|? for small

Wijo
enough 4, contradicting the assumptlon the @ is a local minimum.
Case (3). The assumption implies that there exists j; € [n] such that — “ =z € (@i, Tiy1), vj, >
J1

0 and — “:1 > xit1. Let jo > j1 be the minimal index j € {j1 + 1,...,n} such that v; < 0 (see
Wiy -

Footnote 7). Consider the perturbed netowrk as in Eq. (10) and continue the proof as in Case (1)
verbatim.

O
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Lemma A.7. Ng(z;) = —1 and Ng(x;11) = 1.

Proof of Lemma A.7. Recall that Ng(z;) < —1, so assume towards contradiction that Ng(z;) < —1.
Note that since Ng(z;—1) > 1, Ng(+) must decrease along (x;_1, x;), so there must exist j € [n] with

v; < 0 and f% < ;. Denote by j; € [n] the maximal such index. Similarly, since Ng(z;41) > 1

there must exist jo € [n] with vj, > 0and ;1 < — b’Z < x;+1. Consider the perturbed network

'U)

No, (z) = Z vjo (w; -« + b;) (14)
J€MN\ {712}

v, w; Sv;,b;
+ (1 —(5)1)]'10'(10]'1 '1'+bjl) +’Uj20' ((wj2 + Uzjlwh) - X+ (bj2 + 71);1 ]1))

J2 J2

for some small § > 0. It is clear that ||@ — 0;|| 229 0, and we will show that for small enough §
the network above still satisfies the margin condition, yet has smaller parameter norm. To see why
the margin condition is not violated for small enough J, first notice that Ny, (z) = Ng(z) for all
x ¢ (zi—1,2;11). Furthermore, Ny, (z;) is continuous with respect to § so Ng(x;) < —1 implies
that Ng, (x;) < —1 for small enough ¢. As to the parameter norm, by a similar computation to that
leading up to Eq. (11) we get that

U, W), Wy, V5, bj, b,

16]1> = [|05]1* + 26 (vfl - 2) +0(6%). (15)

Vja Uja

. . ] . b
By construction, v;, < 0 and vj, > 0 hence —“12%%2 > (. Moreover, — -~ and — ” >0
J2

v“b b;
2

o %2 > (). Hence, Eq. (15) shows that [|0]> > |65 for small enough 0,
contradicting the assumptlon the @ is a local minimum.

so we also have —

Having proved that Ng(x;) = —1, we turn to prove that Ng(x;41) = 1. Knowing that Ng(x;11) > 1,
we assume towards contradiction that Ng(x;11) > 1. Recalling that Ng(z;—1) > 1, Ng(x;) < 1

and that Ng(-) is linear along (z;, x;11) due to Lemma A.6, we conclude that there must exist
j1 € [n] such that v, >0and 2,1 < —bj—l < z;. Denote by jo > j; the minimal index such
J1

that v;, < 0. Consider once again the perturbed network in Eq. (14) (only now j1, 72 are different,
as we just described). The same argument as in the previous part of the proof shows that for small
enough § the network above still satisfies the margin condition, while Eq. (15) once again implies
that ||@]|? > ||@s||? for small enough & — contradicting the assumption the € is a local minimum.

O
Overall, combining Lemma A.6 and Lemma A.7 finishes the proof of Proposition A.4. O

Proof of Proposition A.5. The proof is essentially the same as Case (1) in the proof of Proposi-
tion A.4.

Throughout the proof we fix ¢ € [m — 1] for which the conditions described in the proposition
hold, and we assume without loss of generality that the neurons are ordered with respect to their

activation point: — % < —%2 < ... < % Agin the proof of Proposition A.4, we may assume
w1 w2 Wn

without loss of generality that wy, ..., w, > 0. Moreover, as explained there as a consequence of
Eq. (9), we observe that Nj(z1) < Nj(z2) for some z; < z; implies the existence of j; € [n] with

v, > 0and z; < —b— < zo. Similarly, Ng(z1) > Ng(z2) implies that there exists j2 € [n] with

v, <0, 21 < —b— < zo. With this choice of j1, jo, the proof continues as in Case (1) in the proof
2
of Proposition A. 4 verbatim.

O
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B Proofs of benign overfitting

B.1 Proof of Theorem 4.1

We sample a dataset X1, . . ., X, ~ Unif(S%~1), and labels y1, . .., ym ~ Dy, for p < ¢; for some
universal constant ¢;. We first prove that the following properties holds with probability > 1 — §:

2log ( 37;12 )

1. Forevery i,j € [m], |(xi,x;)| < ]

2. | XX 7| < C where C is some universal constant, and X is a matrix whose rows are equal
to x;.

3pm
3. |1| < 22

Lemma B.1. Let § > 0, assume that we sample X1, . .. Xy, ~ Unif(S41Y), and y1, ..., ym ~ Dy

1
forp < cq, and that m > (:2w
> 1 — ¢ properties 1, 2, 3 holds.

, for some universal constant c1,co > 0. Then, with probability

2log( 2 1
% < §'. Take &' = 37‘;2, and use union

Proof. By Lemma D.1 we have that Pr {|xiij >
bound over all 4, j € [m] with ¢ # j. This shows that for every i # j we have:

2log (¥52)

]
Pr ||x;x;| > §§.

This proves Property 1. Next, set X to be the matrix whose rows are equal to x;. By Lemma D.2
there is a constant ¢’ > 0 such that:

/ d+log (2) +d+log(%)

5
Pr||XXT —1|> % <3 (16)

m m

We can also bound | XX T|| < ||[I|| + | XX T —I|| <1+ || XXT — I||. Combining both bounds
and using the assumption that m > log (2) we get that there is a universal constant C' > 0 such that
Pr|XXT|>C] < %. This proves Property 2.

Finally, using Bernstein’s inequality over the choice of the labels y; have that:

2,2 4
Pr {II_I > 3pm} < exp < pm’/ ) <exp (Jﬂ) ;
2 mp(1 —p) +mp/6 5

. log( % .
where we used that p < 1. Hence, if m > 02%‘5) for some universal constant ¢c; > 0, then

[I_| < ?’me. Applying union over those three arguments proves the lemma. O

From now on we condition on the event that properties 1, 2, 3 hold, and our bounds will depend on
the probability of this event.

In the following lemma we show that if @ converges to a solution of the max margin problem and the
bias terms are relatively small, then the norm of 6 is relatively large:

Lemma B.2. Assume that m > cylog (2) and that 0 = (w;,v;, bj)}j—, is a solution to the max

margin problem of Eq. (1) with )7, vja(b;) < 5. Then, 3°7_, ||w;|* +vF +b5 > C/[L;| where
C' is some universal constant.
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Proof. Take i € [m], then we have that Ng(x;) > 1. By our assumption, this implies that:
- Z v;o(b;)
j=1

vjo(w;rxi +b;) — Zvjo(bj)
j=1

DO =
[N

I
M=

<.
Il
—_

M=

vj| - |o(w] i + b;) — o (b))

j=1

n

< ol Iw) il

j=1
n n

< [ 2o 2w ),
j=1 j=1

where in the last inequality we used Cauchy-Schwartz Denote by S := 37, [|w; 12 + v + b3

Combining the above and that , /> =1 j < /S we get:

ZIIW;II2 ¢<S§-C

where in the second to last to last inequality we used the Property 2 for some constant C' > 0,
and in the last inequality we used that Z;’:l [w;||*> < S. Rearranging the above terms yields:

14|

We now prove a lemma which constructs a specific solution that achieves a norm bound that depends
on ||

Lemma B.3. Assume d > 50m? log (%) andp < i. There exists weights 0 = (w;, v;, bj)?zl
that attain a margin of at least 1 on every sample and have 37, ||w||* +v7 4 b7 < 9/[1_].

Proof. Assume without loss of generality that n is even (otherwise fix the last neuron to be 0). We
consider the following weight assignment: For every j < 7, consider w; = — ﬁ/ﬁ dier Xis

\I 4 n 1
=2 and b; For ever , consider w; = —> X,
V S yi>3 J ny/|T_| “i€l- T

vj:—zx/v" and b; = 0.
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We first show that this solution attains a margin of at least 1. For every ¢ € I we have:

Ne(x;) ZZUJ' (W) x; + b))

A o ¢¢T ¢¢T

I B ae

ji>n/2 —lrel_

_|I,| 2log(M) 4 |7_| 2log(3mz)

4 5
22 ol NG -2 50 NG

Jj<n/2 j>n/2
Snod oty oy
2 n 10 2 n 10 ~

where we Property 1, that p < 1 7 hence by Property 3 [/_| < % and our assumption on m and d. For
1 € I_ we have:

z": WTXZ' +b;)

- 9 L;HU |] Z

n

ji>n/2 rel_
= é0 (— x'x; | — Z éa 1+ Z x| x;
n T n o
j<n/2 rel_\{i} j>n/2 rel_\{i}
4 [ (I =1)y/210g (332) s 4, [ (J1-| = 1)y/210g (322)
< —o | — — —0 —
jgn/2n \/a j>n/2n \/&

where again we used properties 1 and 3, that p < 1 7 hence |I_| < % and our assumption on m and d.
This shows that this is indeed a feasible solution. We turn to calculate the norm of this solution. First
we bound the following:

2
Sxl =Ykl Y X

iel_ iel_ i, i,jET_
3m?2

g( s ) 11

< ||+ <-4

NG 10
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where we used Property 1 and the assumption on m and d. We now use the above calculation to
bound the norm of our solution:

2
. 4 2ny/II_] n 4
Z||wj||2+vz+b2:n~ in + | |+*'

j=1 S nV-|Er " 2 ny/|1-]

44+ /11— 2
< VL] 5 T+ —2— < oyIT
10 «/|I,|

We are now ready to prove the main theorem of this subsection:

Proof of Theorem 4.1. Denote by K := 37, ||w;||> + v} + b7, and assume that K < %HB*HQ,
where a will be chosen later and 8* is a solution to the max margin solution from Eq. (1). Assume on
the way of contradiction that >~7'_, v;o (b;) < 3, then by Lemma B.2 we know that: K > C'/|1;| >

Cy/(1- 3717) m. On the other hand, by Lemma B.3 we know that ||6*| < 9/|I_| < 9 %pm.
Combining this with the assumption we have on K we get that:

/ 1_3£ 9a /3pm

Picking a to be some constant with a < 1 3 f V2 contradicts the above inequality. Thus, there exists a
constant ¢4 := § such that if K’ < .S then 37 | v;o(b;) > 5.

Suppose we sample x ~ A (0, é[ ), then we have:

X) = Zvja(w;rx +b;)
j=1

=Y wiolby) = | D_violb) = > vjo(w]x+bs)
j=1 =1 =1
1 n

25— ;’UJ Z’UJ wx+b)

vV
|

- i
=
E
i

>

— Zy ZW»X)Q. (17

We will now bound the terms of the above equation. Note that Z?zl v]z < K < 9y/m. For the

N | =

second term, we denote by w; := H ” , and write:
n n
Yo wi)? = wil*(w/x)?
j=1 j=1

< max wa Z w2 .
max(w, w1

Again, we have that }7_, [|w; |? < K < 9y/m. By using the stationarity KKT condition from
Eq. (2), we get that w; € span{xi,. .., X, }, thus we can write w; = > | ; ;x; = Xv; where
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X is a matrix with rows equal to x;, and (a;); = a; ;. We will bound a := arg max; |, ;|
2

1= w;|* = i, Xi

= ||onjH2 = aTXTXaj
=0 Iaj—i—a (XTX I)aJ
IIOtjll2 — [l P XTX 1|
= [lo|]* = le [P XX T = 11|,

v

where the last equality is true by using the SVD decomposition of X. Namely, write X = USV T,
then [ XTX —I|| = ||VS?2VT —I||=||S?—1|| = |[UTS?U —I| = | XX — I|. Note that in
Lemma B.1, Eq. (16) we have shown that || XX " — I|| < ¢’ for some constant ¢’. Note that we can
choose m large enough such that ¢’ < 1. In total, this shows that [|c; || < ¢’ for some constant ¢”’.

We now use Lemma D.1 and the union bound to get that with probability > 1 — e we have for every
i€ 1 that [x"x;| < %
get:

. We condition on this event from now on. Applying both bounds we

max(w, x <max «;
(s (_z

J€[n]
210g( )
< THéEﬁHO‘JH
2log (™
oy 2o (2)
- d
Plugging in the bounds above to Eq. (17) we get:
1 n n
Mol 2 L 302 [ 3wy w2
j=1 j=1
1 2log (&
= —oy/m - 9y/m - ¢ %

81mc’\/2log (=)
_ 7 )

By choosing a constant c3 > 0 large enough such that if d > c3m?,/log (%) then , then

>

N | =

81mc' (/2 log( n )

NG < 1 we get that Ng(x) > 0. O

B.2 Proof of Theorem 4.3

We sample a dataset X1, ..., X, ~ Unif(Sdfl), and labels y1, ..., Ym ~ Dy, for p < ¢; for some
universal constant c¢;. We first prove that the following properties holds with probability > 1 — §:

2log ( 2m2
1. Foreveryi,j € [m], [(x;,x;)] < y
2. 1| < 9

Lemma B 4. Let § > 0, assume that we sample X1, . .. X, ~ Unif(S¥~1), and y1,. .., Ym ~ D,

Sforp < %, and that m > ¢’ log ( ) for some universal constant ¢, ¢’ > 0. Then, with probability
>1-— 5pr0pertles 1 and 2 holds.
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The proof is the same as in Lemma B.1 so we will not repeat it for conciseness. The only different is
that here we only need |I_| to be smaller than <.3* which is independent of p. Hence, for p < -5

we get this concentration where m depends only on the probability. From now on we condition on
the event that properties 1 and 2 hold, and our bounds will depend on the probability that this event
happens.

In this section we consider a networks of the form:

n/2 n
No(x) =Y o(w/x+b)— >  o(w/x+b))
Jj=1 j=n/2+1

That is, the output weights are all fixed to be £1, equally divided between the neurons. We will use
the stationarity condition (Eq. (2)) freely throughout the proof. For our network it means that we can
write for every j € [n]:

Wi = g Ai0; YiXi

1€[m]

bj = Uy Z /\io';7jyi y

1€[m]

where o] ; = 1(w, x;+b; >),v; = 1forj € {1,...,n/2} andv; = —1forj € {n/2+1,...,n}.

The next lemma shows that all the biases are positive. Note that this lemma relies only on that the
dimension is large enough, and that Property 1 of the data holds:

Lemma B.5. Assume that d > 8m*log (%) Then for every j € [n| we have b; > 0.

Proof. Assume on the way of contradiction that b; < 0 for some j € [n]. We assume without loss of
generality that j € {1,...,n/2}, the proof for j € {n/2+1,...,n} is done similarly. Denote by
I' ={iel,:=0;;=1}and I’ = {i € I_ :=0;; = 1}. We can write:

= Z )\Z‘Ug,jyi = Z )\z — Z )\z .
i€[m] i€l i€l

Note that A; > 0 for every ¢, hence I’ is non empty, otherwise b; > 0. Take A\, = argmax;cr A,
we have:

0< ijXT +b;=0b;+ Z Niyix, X,
i€l uI’
< _>\r + Z )‘iyixjxr )
i€l Ul \{r}
where we used that b; < 0 and ||x,.|| = 1. Rearranging the terms and using Property 1:

Ar < Z Nilyix x|
il Ul \{r}

210g(w)
S\ 2

i€, uI \{r}

27712

< 2log Z A

i€l uI’

210g(%)
d 9
since [I'. U I” | < m. In particular, s € I’ , otherwise, A\, = A, which means that A\, < 0 since

Denote A, := arg max;¢ rur \;, then from the above we have shown that A\, < A\gsm
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[ 2log (222 L . )
m % < 1 which is a contradiction. We can now write:

b= Ai— > A

iel!, i€l
> A=A
el iel’
> N\, — )\SmQ M
d
2m?2
o [ 12y 2los(BE0)

) _

By our assumption on d, we have that m?2 v %, hence b; > )‘7 But, by our assumption,

b; < 0 which is a contradiction since A; > 0. ]

The following lemma is a general property of the KKT conditions:

Lemma B.6. Leti € I (resp. i € I_) with \; > 0. Then, there is a neuron k with positive output
weight (resp. negative output weight) s.t 0;7 = L

Proof. We prove it fors € I, the other case is similar Assume otherwise, that is for every neurons

with positive output j we have o} . = 0, that is W x; + b; < 0 by the definition of ¢} .. This
means that Ng(x;) < 0, since all the positive neurons are inactive on x;, which is a contradrctron to
Ng (Xi) Z 1. O

The next lemma shows that if the bias terms are smaller than 7, then the \;’s for ¢ € I cannot be
too small.

Lemma B.7. Assume that d > 32m*n? log (%) and that Z?ﬁ Z;L /241 b; < %. Then,
for everyi € I, we have \; > %

Proof. Take r € I, we have:

n/2 n
1 <No(x,) = ZU(W;—XT +0b;) — Z U(W;FXT +bj)
j=1 j=n/24+1
n/2
—ZO' A a” + Z )\lylauxl X, + b;
e\ {r}
n
— Z ol —XNoy,; — Z /\iyla”xl X, + bj
j=n/2+1 i€I\{r}
n/2 n
<ZO‘ Ar + Z Xiol IxT x|+ by | — Z ol -\ — Z Xiol i |x; %, + b,
eI\ {r} j=n/241 eI\ {r}

(13)

‘We will bound the two terms above. For the first term, note that all the terms inside the ReLLU are
positive, since by Lemma B.5 we have b; > 0, and A; > 0 by Eq. (4) hence we can remove the ReLU
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function. Using Property 1 we can bound:

n/2 n 210g n/2 n/2
doo At D Nl xe by | < SA+ Z > Aa”+2b
j=1 ieI\{r} j=liel\{r}
n/2
n n 210g 2m2
<Sghtg Z i+ Db, (19)
i€I\{r} j=1

where we used that o . < 1. For the second term in Eq. (18) we use the fact that the ReLU function
is 1-Lipschitz to get that

n

= > oA D0 Noj xS x|+,

j=n/2+1 ieI\{r}
=— Z ol =X\ — Z Aia£7j|xjxr| +b | + Z o(b;) — Z o(b;)
j=n/2+1 ieI\{r} j=n/2+1 j=n/2+1
Z bj + Z >\r + Z Ai0£7j|xjxr|
j=n/2+1 j=n/2+1 ieI\{r}
n n n 21og 2m2
> b+ 5t g Z Ai s (20)
j=n/2+1 ieI\{r}

where we again used Lemma B.5 to get that b; > 0, and Property 1. Combining Eq. (19) and Eq. (20)
with Eq. (18) we get that:

n/2

" 21o
1<3 70— 3 b+nd4n g Y
j=1 j=n/2+1 ieI\{r}

Rearranging the terms above, and using our assumption on the biases we get that:

3 210g 2m2

1 <nA+n Z A .

i€I\{r}
1 X 2log(2% 1

If A\, > 7, then we are done. Assume otherwise, then n\/ —7—=>> ,cp\ (3 Ai = 7 and

A < Denote \s := arg max;¢m| i, then we have that >

above inequality means that A; > — V4 We split into cases:
2mn, /2 log ( 2m?2 )

Case L. Assume s € [,. By Lemma B.6 there is k € {1,...,n/2} with o, = 1. For the k-th
neuron we have:

} Ai < mAg, which by the

4n i€[m]\{r

o(Wixs+bp)=0 Z YiXio] kX X + bi
1€[m]

>o (A= D Nix x|+ b
i€\ {s}

2m?2
>0 | A —m, 2log (%5 )+bk

> — g ; 21
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and note that since A\; > 0, m\/ ——;—= < 1 and b; > 0 this neuron is active. For every other
neuron j with a positive output weight we have:

/ 210g(%)

o(wixs+b) —ab) =o | > yidiol x/xs+b; | —o(b))

i€[m]

>o [ D0 Ailx x|+ b | —aby)

i1€[m]
21 2m?2
> o | —ma 7%; ) b, ) = ot
21 2m?2
> —mg| 2 o) C(l ) , 22)

where we used that o is 1-Lipschitz and that )\, is the largest among the \;’s. For a neuron with a
negative output weight, we can write:

(W Xs + b;) ZyMU”XZXs-Fb
i€[m]
2log (222
> Nl x|+ | < b+ mA, %
ieI\{s}
In total, combining the above bound with Eq. (21) and Eq. (22) we have that:
n/2 n
1=No(xs)=» o(w/x,+bj)— > o(w x,+b))
j=1 j=n/2+1
n/2 n n/2 n/2
= o(w/x+b)— Y oW x. b))+ olb) =Y alb;)
j=1 j=n/2+1 j=1 7j=1
2log (222 n/2
> —\mn g( )+/\+Zb— Z b;
j=n/2+1
. 2log(222) .
By our assumption on d we have that mn\/ ——;—= < ;5. Hence, rearranging the terms above, we
get that:

n/2

be Z b<1f—

j=n/2+1
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But then, looking at the output of the network on A, (recall that by our assumption A, < ﬁ) we get:

n/2 n
1 < No(x,) = O’(W;FXT +b;) — Z a(w;rxr +b;)
j=1 j=n/2+1
n/2 n
= Za Z yidio] ;x] x, +b; | — Z ol - Z yidiol ;x] % +b; | +
j=1 i€[m] j=n/2+1 1€[m]
+ Y o) - Y alby)
j=n/2+1 j=n/241
n/2 n
SZU Ar + Z Nilx) x|+ | = Z ol - Z Nilx] x| +b; | +
j=1 i€\ {r} j=n/2+1 ieI\{r}
+ Y o) - Y alby)
j=n/2+1 j=n/2+1
’ﬂ/2 n
n)\T 210g (2m,2)
ST-i-/\smn Té_'_zbj__z b;
j=1 j=n/2+1
1 g (%) As
< —4As 1——
Sg A d 2
2log (2’”2) 1
<Z 4N 0o L _ 2 23
S d 5 )
. 210g(#) 1 . 1
By our assumption mn\/ ——;—= < 7, hence rearranging the terms above we get that \s < 5
which is a contradiction to \g > vd > 1.

2mn,/210g(%>
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Case IL. Assume s € I_. By Lemma B.6 there is k € {n/2 + 1,...,n} with o ; = 1. Note that

since \; # 0 we have that Ng(xs) = —1 (i.e this sample is on the margin). We have that:
n/2 n
—1 = Ng(xs) = Za(w}rxs +b;) — Z U(W;—XS +b;)
j=1 j=n/24+1

n/2 n
=D o | o weixx b | = Y o | = D midiel xx b |+
j=1 i€[m] j=n/2+1 1€[m]

LY o)- Y oy
j=n/2+1 j=n/2+1
n/2 n

SZO’ Z Nilx] x|+ | — Z ol s — Z Nilx x| 405 | +
j=1 iel\{s} j=n/2+1 iel\{s}

+ Y o) - Y alby)
j=n/2+1 j=n/2+1
n/2

2log ( )

< — — As

Zb Z bj + Asmn|[ == = A
j=n/2+1

1 2log (2m2

<A [ mn %4 , (24)

210g(%) 1 .
where we used that mn — <3 and b; > 0 by Lemma B.5, hence in the second to last

inequality the term inside the ReL.U is positive. In addition, we used that the ReL.U function is

. . . . 2log
1-Lipschitz, and that A is the largest amont the \;’s. Since mn % < é, rearranging the

terms above give us that A\; < %, which is a contradiction to that A, > V4 > 3.
2mmn4 /2 log( 2m? )

To conclude, both cases are not possible, hence A, > which is true for every r € 1.

il 4n’

O
), and that 27421 ZJ /241 b < %. Then,

Lemma B.8. Assume that d > 16m*n* log (2’?2
foreveryi € I_ we have \; < lzo.

Proof. Take \g := arg max;c(m,) Ai- We split into two cases:

Case L. Assume s € I_. Note that A; > 0, otherwise \; = 0 for every 4, which means that Ng(x) is
the zero function. Hence, x; lies on the margin, and also by Lemma B.6 there is a neuron j with a
negative output weight such that ag’ ; = 1. By the same calculation as in Eq. (24) we have::

n/2 n
—1 = Npg(xs) = a(w}rxs +b;) — Z a(ijxs +b;)
j=1 j=n/2+1
1 21 2m?2
< i + X [ mn % -1

21
Using our assumption that mn % < % and rearranging the above terms we get: Ay < %

which finishes the proof.



Case II. Assume s € I,. Denote by A, := S argmax;c;_ A;. By Lemma B.6 there is at least one
neuron k with a positive output weight such that ¢/, , = 1, for this neuron we can bound:

b= Y yidioly > A —m, .
i€[m]
Every neuron j with a negative output weight can be bounded similarly by:
- Z YiXiop j < mA, .
i€[m]
Combining the above bounds, and using that b; > 0 by Lemma B.5 we can bound:
n/2

sz— Z b;

j=n/2+1

> =

>Ao—mA = Y mA
j=n/2+1
> g —mnA, .
Rearranging the terms we get that: Ay < mnA, + i. If A\, < 1 we are finished, otherwise

As < 2mnA, and also x,. lies on the margin since A, > 0, hence. By doing a similar calculation to
Case I we can write:

n/2 n
—1= Ng(x,) = a(w;rxr +b;) — Z U(W;XT +b;)
j=1 j=n/2+1
n/2 n
:Za Zy,)\auxtxr—kb‘ - Z o —Zyon’”xLxr—Fb +
j=1 i€[m] j=n/2+1 1€[m]
+ Y o) - Y. alby)
j=n/2+1 j=n/24+1
n/2 n
N DR L7 D ST P SR SR
j=1 iel\{r} j=n/2+1 iel\{r}
+ Y o) - Y alby)
j=n/2+1 j=n/2+1
n/2 2m?
2lo
<A +Zb— Z bj + Asmn 2o (%)
j=n/2+1
210g
< = + +2)\
210g 252 1
By the assumption on d we have 2m?n < 5. Thus, rearranging the terms above and

using these bounds we get that A, < %.

O
Lemma B.9. Assume that p < % m > conlog (%) and d > 32m*n*log (2:’;2) Then, Z;Lfl bj—
D jmny24105 > i
Proof. Assume on the way of contradiction that Z”/ 2 Z? /241 b; < % By Lemma B.7 we

have that \; > 41n for every ¢ € I, and by Lemma B.8 we have that \; < TO forevery i € I_. By

32



Lemma B.6, for every i € I there is some j € {1,...,n/2} with o} ; = 1. This means that:

n/2 n/2
Zb =2 2 kil
j=1lie[m]
1] (= L] 10m|1-|
2 T LN
j=1liel_

In a similar manner, we can bound:

Z bj = Z Zyz)\cr”

j= n/2+1 j=n/2+1i€[m]
10n|1_
BEDIPISEELEEY
j=n/2+1i€l_

Combining the two bounds above we get that:

n/2

1| 10n|I_|
Zb— Z e

j=n/2+1

But, by our assumptions we have that m > 2n (for a large enough constant), and by Lemma B.4
we have |I_| < €% and |1, | > (1 — -5) m for some universal constant ¢ > 0 which we will later
choose. Plugglng these bounds to the displayed equation above, we get that:

n/2
10c _ 1 1lc
b; — b>f (17—)f—>777
Z Z n2 2 — 92 2 7
j=n/2+1
where in the last inequality we used that n > 1. Taking c to be a small enough constant (i.e. ¢ < i),
we get that Z”/ bj — i 241 bj > 3, which is a contradiction. O

We are now ready to prove the main theorem of this section:

ProofofTheorem 4.3. By Lemma B.9 we have that ZH/Q =D ieny2r1 b > 1. Denote by
As 1= arg mMax;em| \;, we would first like to show that /\ < 3mn. We split into two cases:
Case I. Assume s € ;. Note that x, lies on the margin, otherwise A\; = 0 for every ¢ € I, which

means that Ny is the zero predictor, this contradicts the assumption that Ng classifies the data
correctly. Using a similar analysis to Case I in Lemma B.7 we have:

n/2 n
1 = No(xs) = z:a(ijxS +b;) — Z U(ijXS +b;)
j=1 j=n/2+1

n/2

n/2 n n/2
:Z Zy,)\ouxlxs—&—b) Z U(—Zyz)\U”XZXs-i-b Z Z
=1 i€[m] j=n/2+1 i€[m] =1 j=1
n/2
=20l

n/2 n/2
>N Y o= D> ik x| +b)) - Z () Nilx x| +b)) +Z
J=1 iel\{s} j=n/24+1 i€l\{s} =
n/2 n 2m?2
> b= > b+ A= Aamn %
Jj=1 j=n/2+1
1 2log (2?2)
> 1 +As | 1—mn J ,
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where we used Lemma B.6 to show that there is at least one k € {1,...,n/2} with o , = 1. Using

2log .
that mn % < % for a large enough constant c3 and rearranging the terms above we have
that Ay < 8 < 3mn since m,n > 1.

Case II. Assume s € I_. Take A, := arg max;er, A;. By Lemma B.5 there is at least one neuron
ke{n/2+1,...,n} with a;7k = 1. We have that:

Z b

j=n/2+1

Z zyia';,j - Z Z )‘zyz 05,4 <mnh,. — g
i€[r

j=n/2+1i€[m)]

IN

i Mi EM\

] =

Rearranging the terms we get A; < mnA, — i < mnA,. Note that x,. lies on the margin, otherwise
As = 0, which similarly to Case I is a contradiction. Again, using a similar analysis to Case I we get:

n/2 n
1= Ng(x,) = U(W]-Txr +b;) — Z O'(W]-TXT +b;)
j=1 j=n/2+1

n/2

n/2 n n/2
:Z Zy,)\ouzxg+b) Z 0(72y1)\0”x7x +b;) Z Z
Jj=1 i€[m] j=n/2+1 1€[m] = j=1
n/2
)= 2 0

n/2 n n/2
>A+ Y o= Y0 Mk x4b) = Y0 o Y M= +b)+ D ol
j=1 ieI\{s} j=n/2+1 i€l\{s} j=1
n/2 2m?
>Zb - Z bj + A %
j=n/2+1
1 , |2log (222)
2t — Aemn a4

2.2
By our assumption, %gd(d)z\/i < % for a large enough constant c3. Hence, rearranging the terms
we get A, < g. This means that Ay, < 2mn\, < 3mn.

We now turn to calculate the output of Ng on the sample x. Suppose we sample x ~ Unif(S4_1),

. - lo
by Lemma D.1 we have with probability > 1 — ¢ that |x; x| < # for every i € [m]. We
condition on this event for the rest of the proof. Note that for every positive neuron j we have that:

a(w}x—%— bj)—o(bj) =0 Z Yihio] ;X Tx+b; | —a(by)

2log (2
>0 | —Asm % +0b; | —o(b))
2log ( )
> )\
=z m d
Similarly, for every negative neuron j we have:
2log (m)

o(bj) — O'(W;I—X +b) > —Asm
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In both bounds above we used that A, is the largest among the );’s. Combining both bounds, we have
that:

n/2 n
No(x) = a(w;rxr +b;) — Z O'(W;FXT +bj)
j=1 j=n/241
n/2 n
= (ijxr +b;) — Z a(ijxT +b;)+
j=1 j=n/2+1
n/2 n/2 n n
)=o)+ D el = 3 alby)
Jj=1 J=1 j=n/2+1 j=n/2+1
n/2 n
2log ( )
> b; — s €
> i Z b; — Asmn 7
Jj=1 j=n/2+1
1 2log ( )
> — — 3m?
=3 " d
We use that 3m?n® log(d)v2 < 1fora large enough constant c3, hence Ng(x) > % — % > 0, this
finishes the proof. O

C Proofs from Section 4.2

C.1 Proof of Proposition 4.4.
We first note that there exists j € {1,2} with v; < 0, since otherwise the network wouldn’t be able
to classify samples with a negative label (which exist by assumption). Assuming without loss of

generality that vo < 0, for any w; we also have that Pry ypif(sa-1) [wix <0] = % If this even
occurs, then Ng(x) < vao(woTx) < 0.

C.2 Proof of Proposition 4.5

Suppose [n] = J; U J_ are such that

No(x) = Y vjo(w]x)+ Y vo(w/x),

JjeEJ 4 JjeJ-

where v; > 0 for j € J, and v; < 0 for j € J_. Then, for any choice of (w;);c, :

1 1
<0] > j T > > —
wanlinfgdfl)[Ne(X) o O] - xr\aI:S)LIi.*l[v‘7 < JJF’ Wi X < 0] = 217+ AL
C.3 Proof of Proposition 4.6
Assume without loss of generality that I_ = [k]. Consider the weights w; = x;, v; = —1 for

every i € I, and Wiy = > ;c; Wi, U1 = 1. For this network we have yilNg(x;) = 1, thus
all points lie on the margin. In addition, it is not difficult to see that this network satisfies the other
KKT conditions with A\; = 1 for everyi € [m]. Note that Pryypifsi-1)[wy,x < 0] = £ and
Pry unif(si-1) [Viel_, W x < 0] = 2k , since all the x; are orthogonal. Thus, we get that

1 1
[No(x) < 0] > Pr Wy 1% < 0]— Pr Viel ,w/x<0]>-——.

Pr > > -
x~Unif (S4-1) x~Unif(S4—1) x~Unif (S4-1) 2 2
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D Additional probabilistic lemmas

D.1 Proof of Lemma A.1

Clearly, the third (no collisions) condition holds almost surely, so it suffices to analyze the gaps
between samples. The distribution of distances between uniformly random points on a segment is
well studied [Pyke, 1965, Holst, 1980] and the lemma can be derived by known results. Nonetheless
we provide a proof for completeness.

Denote by Ay < Ag < --+ < Ay, 41 the ordered spacings 1, (o —x1), ..., (Tm— xm 1), (1—xy,).
With this notation, note that F, occurs if A, 11 < M and A m/8 = 1o+ We will show
that each of these conditions holds with probability at least 1 1, under Wthh we would conclude

by the union bound. Let Z1, . . ., Zmﬂ o Exp(1) be unit mean exponential random variables, and
denote their ordering by Z(1) < - -+ < Z(;,4.1)- The main well known observation which we use is
d

ﬁ (see Holst, 1980). Hence for any ¢t > O :
1=1
Pr{(m+1)A; —log(m + 1) <{]

that forany j € [m+1]: A;

Zerl Z
=Pr |2~ loglm+1) < ¢+ (¢ +log(m + 1)) [ =201 ) |
m+1 . m+1 . m+1 7 m— 00
Note that > =2 ] 5 0 as ]E[ s Zz} = 1 and Var{ m+1Z7} = (r:lnj_llp ~ ).

Furthermore,
Pr(Zy —log(m+1) <t] =Pr[Z;) <t+log(m+1)] =Pr[Zy),...,Z;) < t+log(m+1)]
t

- (1 —e—f—1°g<m+1>)j (oY
m+1

t+log(m+1)
m—+1

ef(m+1)r+log(m+l) J
1—
< m+1 )
It remains to plug in our parameters of interest. For j = m + 1 we get
e—(m+1)r+log(m+1) m+1
1—
( m+1 )

By introducing the change of variables r = we conclude that

lim Pr[A; <r]=

m—r oo

lim Pr[A,,+1 <7] = lim

m—r o0 m—ro0

= lim exp (—

m—r o0

e—(m+1)r+10g(m+1)) ]
Noting that for 7 = %W it holds that e~ (m+1r+log(m+1) _, () 50 we can use the Taylor
approximation exp(z) & 1 + z and conclude that

lim Pr[Ap,4q <7]=1—e (mtDrtlostm+l) — 1 _ —
m—00 8

where the last equality holds for r = W. Overall for m larger than some numerical
constant, the left hand side is larger than 1 — §/4 as required.

log(m/8log(8/9))

The second condition follows a similar computation for j = S(mT1)

the fact Pr [Am/g > m} —1-Pr [Am/g

mil = , while using

1
< 10(m+1) |°
D.2 Concentration bounds for vectors on the unit sphere

Here we present some standard concentration bounds for uniformly sampled points on the unit sphere
in high dimension.

Lemma D.1 (Lemma 2.2 from Ball, 1997). Pruvvanif(qu)[|uTv| > 1] <2exp (#)

Lemma D.2 (Exercise 4.7.3 from Vershynin, 2018). Let X, ..., X,, ~ Unif(S¢'), and denote by
X the matrix whose i’th row is x;. Then, there is a universal constant ¢ > 0 such that:

PrlHXXT_IHZ;'<‘/M+M>
m m
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