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Abstract

Synthesizing images with user-specified subjects has received growing attention
due to its practical applications. Despite the recent success in single subject
customization, existing algorithms suffer from high training cost and low success
rate along with increased number of subjects. Towards controllable image synthesis
with multiple subjects as the constraints, this work studies how to efficiently
represent a particular subject as well as how to appropriately compose different
subjects. We find that the text embedding regarding the subject token already serves
as a simple yet effective representation that supports arbitrary combinations without
any model tuning. Through learning a residual on top of the base embedding, we
manage to robustly shift the raw subject to the customized subject given various
text conditions. We then propose to employ layout, a very abstract and easy-
to-obtain prior, as the spatial guidance for subject arrangement. By rectifying
the activations in the cross-attention map, the layout appoints and separates the
location of different subjects in the image, significantly alleviating the interference
across them. Both qualitative and quantitative experimental results demonstrate
our superiority over state-of-the-art alternatives under a variety of settings for
multi-subject customization. Project page can be found here.

1 Introduction

The remarkable achievements of text-to-image generation models [1–14], have garnered widespread
attention due to their ability to generate high-quality and diverse images. To allow synthesizing
images with user-specified subjects, customized generation techniques [15–17] propose to fine-tune
the pre-trained models on a few subject-specific images. Despite the notable success in single subject
customization [15–20], multi-subject customization remains seldom explored but better aligns with
the practical demands in real life.

Recent studies [16, 17] have investigated multi-subject customization through joint training, which
tunes the model with all subjects of interest simultaneously. Such a strategy has two drawbacks.
First, they require learning separate models for each subject combination, which may suffer from
exponential growth when the number of subjects increase. For example, the customization of objects
{A, B, C} fails to inherit the knowledge obtained from the customization of objects {A, B}. Second,
different subjects may interfere with each other, causing the issues that some subjects fail to show up
in the final synthesis or the subject attribute gets confused among subjects (e.g., a cat with the features
of another dog). This phenomenon is particularly evident when the semantic similarity between
subjects is high (see Fig. 4).
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Figure 1: Customizable image generation with the subjects listed on the left. Cones 2 is highlighted
from three aspects. (1) Using a simple yet effective representation to register a subject, we can
compose various subjects arbitrarily without any model tuning. (2) Employing spatial layout, which is
very easy to obtain in practice, as a guidance, we can control the specific location of each subject and
meanwhile alleviate the interference across subjects. (3) Our method achieves appealing performance
even under some challenging settings, such as customizing the synthesis with six or more subjects
and exchanging the sunglasses on the two dogs.

In this work, we present Cones 2, a novel approach for multi-subject customization using a pre-trained
text-to-image diffusion model. Our method utilizes a simple yet effective representation to register
a subject and enables the arbitrary composition of various subjects without requiring any model
retraining. To that end, we decompose the challenging task of multi-subject customization into two
components: how to efficiently represent a subject and how to effectively combine different subjects.
Given a set of subjects and their photos (3-5 for each), our goal is first to bind the characteristic of each
specific subject to a “plugin” that can be used flexibly. Driven by this, we fine-tune the text encoder
part of a pre-trained text-to-image diffusion model with images of a specific subject, making the tuned
model can customize this specific subject. Moreover, we propose a text-embedding-preservation loss,
which limits the output of the tuned text encoder to only differ from the original text encoder in token
embedding regarding the specific subject. Then we calculate the mean difference between the tuned
text encoder with the original text encoder to derive the residual token embedding which can robustly
shift the raw category to the customized subject (e.g., dog→ customized dog).

To effectively combine different subjects, we propose a layout guidance method to control the
generation process. More formally, we employ pre-defined layout, a very abstract and easy-to-obtain
prior, to guide different subjects to show up in different positions by rectifying the activation in the
cross-attention maps. We encourage all subjects to show up in the final synthesis by strengthening
the activations of the target subject. Simultaneously, to prevent the subject attribute gets confused,
we weaken the activations of the irrelevant subjects. In addition, to make this easy to implement
in practice, we define the layout as a set of subject bounding boxes with subject annotation, which
describes the spatial composition of the customized subjects and is easy for users to specify in
advance. Through our method, users can compose various subjects arbitrarily with a pre-defined
layout (see Fig. 1).

Our method is evaluated under a variety of settings for multi-subject customization involving
extensive subject categories such as pets, scenes, decorations, etc. Qualitative and quantitative results
demonstrate that, compared to existing baselines, our method exhibits competitive performance in
terms of both text alignment to input prompt and visual similarity to the target images. It is noteworthy
that our method even facilitates the customization of a larger number of subjects (e.g., six subjects in
Fig. 1), which is a far more challenging setting in practice.

2 Related work

Large-scale text-conditioned image synthesis. Synthesizing images from the language description
has received growing attention due to its ability to generate high-quality and diverse images. Earlier
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works [21] explored the utilization of language description into GAN as a condition on specific
domains under the closed-world assumption. With the development of diffusion models [22, 23]
and large-scale multi-modality models [24], text-conditioned image synthesis has shown remarkable
improvement in an open-vocabulary text description. Specifically, GLIDE [3], DALLE2 [4],
StableDiffusion [5] and Imagen [6] are representative diffusion models that can produce photorealistic
outputs. Autoregressive models such as DALLE [1], Make-A-Scene [2], CogView [25] and Parti [26]
have also shown exciting results. Although these models demonstrate an unparalleled ability to
synthesize images, they require time-consuming iterative processes to achieve high-quality image
sampling. Recent large text-to-image GAN models such as StyleGAN-T [7], GALIP [27], and
GigaGAN [8] also demonstrated unprecedented semantic generation, which is orders of magnitude
faster when sampling.

Customized image generation. Thanks to the significant progress of large-scale text-to-image
models, users can adopt these well-trained models to generate customized images with user-specified
subjects. There are two earliest attempts to solve the customized generation through few-shot
images of one specific subject, i.e. Text Inversion [18] and DreamBooth [15]. Concretely, Text
Inversion [18] represents a new subject by learning an extra identifier word and adding this word to the
dictionary of the text encoder. DreamBooth [15] binds rare new words with specific subjects through
few-shot fine-tuning the whole Imagen [6] model. To compose multiple new concepts together,
Custom [16] chooses to only optimize the parameters of the cross-attention in the StableDiffusion [5]
model to represent new concepts and then joint trains for the combination of multiple concepts.
In addition, Cones [17] associates customized subjects with activating a small cluster of neurons
in the diffusion model. Although both Custom [16] and Cones [17] have explored combination
multi-subject customization, they suffer from high training costs and low success rates along with the
increased number of subjects. In this work, we study how to efficiently represent a particular subject
as well as how to appropriately compose different subjects. Specifically, learning a residual on top of
the base embedding can represent a new concept, and the introduction of layout into the attention
map can help the model generate more accurate user-specified subjects. We find these design choices
lead to better results in directly composing different subjects than joint training.

Spatial guidance in diffusion models. To further enhance the controllability of synthesizing images,
some works [28–32] have tried to explore how to guide the generation process by more spatial
information. Composer [28] directly adds spatial information as a condition input during the training
phase. ControlNet [29] and T2I-Adapters [30] add spatial information to the pre-trained model by
training a new adapter. Prompt-to-prompt [31] presents a training-free edit method by editing the
cross-attention. In addition, a diffusion-based image translation [32] keeps the generated spatial
structure by limiting the cross-attention map. Inspired by these works, we also adopt the layout as the
spatial guidance for subject arrangement that can well appoint and separate the location of different
subjects in the image, significantly alleviating the interference across them.

3 Method

Given a set of subjects and their photos (3-5 for each) from different views, we aim to generate new
images of any combination containing those subjects vividly and precisely. We accomplish this by
combining subject-specific residual token embeddings with a pre-trained diffusion model and guiding
the generation process with a layout. The overall framework is presented in Fig. 2. Specifically, we
represent each subject as a residual token embedding shifted from its base category. Adding the
residual token embedding to the base category embedding can yield the corresponding subject in the
generated images. We present how to get this residual token embedding in Sec. 3.2. At inference
time, subjects failing to show up and the subject attribute getting confused among subjects are two
key problems in multi-subject customized generation. To address these issues, we present a method
of composing subjects by leveraging layout guidance in Sec. 3.3.

3.1 Text-conditioned diffusion model

Diffusion models learn a data distribution by the gradual denoising of a variable sampled from a
Gaussian distribution. This corresponds to learning the reverse process of a fixed-length Markov
chain. In text-to-image tasks, the training objective of a conditional diffusion model �θ can be
simplified as a reconstruction loss,

Lrec = Ex,c,�∼N (0,1),t[∥�θ(xt, E(c), t)− �∥22], (1)
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Figure 2:Illustration of the proposed approach. (a) We �rst learn a residual token embedding (e.g.,
� custom

dog ) on top of the base embedding to register a user-speci�ed subject, which allows composing
various subjects arbitrarily without further model tuning. (b) Given a layout as the spatial guidance,
we then arrange the subjects by rectifying the activations in cross-attention maps, which enables the
control of the location of each subject and reduces the interference between them.

wheret � U ([0; 1]) is the time variable,E is a pre-trained text encoder andx t = � t x + � t � is a noised
image from the ground-truth imagex. The parameters� t and� t are coef�cients formulating the
forward diffusion process. The model� � is conditioned on the text embeddingE(c) andt. The text
embeddingE(c) is injected into the model� � through the cross-attention mechanism. At inference
time, the network� � is sampled by iteratively denoisingxT � N (0; I ) using either deterministic
samplers [33–35] or stochastic sampler [23].

3.2 Representing subjects with residual token embedding

Representing subjects with residual text embedding.Our goal is �rst to represent each subject
with a residual text embedding among the output domain of the text encoder. An ideal residual
text embedding� customthat can robustly shift the raw category to a speci�c subject. For example,
the model� � with embedding input(E (“a photo of dog”) + � custom

dog ) can truly generate a photo of
speci�c “dog”. One way to get this objective is to calculate an embedding direction vector [32] from
a source (original) text encoder to the target (�ne-tuned) text encoderE custom. The �ne-tuned text
encoderE customneeds to be able to customize subjects combined with the original diffusion model
� � . Similarly as DreamBooth [15],E customcan be trained with the subject-preservation loss, as

L sub(E custom) = E(x ;c) � D s ;� �N (0 ;1) ;t [k� � (x t ; E custom(c); t) � � k2
2]; (2)

whereD s = f (x s
j ; “a photo ofs” )jx s

j 2 X sg is the reference few-shot data of subjects.

Regularization with a text-embedding-preservation loss.The residual text embedding obtained
according to the previous section can only perform single-subject customized generation. Since
those residual text embeddings are applied to the entire text, any two of them can admit signi�cant
con�icts so that they cannot be combined together directly while carrying out inference. Therefore,
we propose a text-embedding-preservation loss to make the residual text embedding mainly act on
the text embedding regarding the subject token. The core idea is to minimize the difference between
E customandE for tokens apart from the subject tokens. Take the “dog” case above as an example,
we sample 1,000 sentencesCdog = f ci g1000

i =1 containing the word “dog” using ChatGPT [36], like “a
dog on the beach”, and then minimize the difference betweenE customandE for all the token besides
“dog”. In detail, given any caption (e.g.c = “a dog on the beach”), we split its text embedding into a
sequence (E(c) = ( E(c)a; E (c)dog; � � � ; E (c)beach)). Then we wishkE(c)p � E custom(c)

p k2
2 = 0 for

anyp that is not equal to “dog”. Namely, the text-embedding-preservation loss is a regularization, as

L reg(E custom) = Ec� Cdog[
X

p2 c;p6= s

kE custom(c)p � E (c)pk2
2]; (3)

4



Algorithm 1 N-Subject Customization with Layout Guidance

Require: Promptc, customized setS = f si gN
i =1 � c, pre-trained residual token embeddings

f � custom
si

gN
i =1 , guidance layoutM = f M s : s 2 Sg.

1: Edit the text embedding:E �nal (c) = E(c) � f � custom
si

gN
i =1 ;

2: De�ne guidance layout for eachs 2 S from M :

M s(i; j ) =

8
<

:

 + (i; j ) 2 Rshow
s

 � (i; j ) 2 Rirrelevant
s

0 Otherwise

3: SamplexT � N (0; I );
4: for t = T; T � 1; : : : ; 1 do
5: CA  � � (x t ; E �nal (c); t);
6: CA edited  EditedCA( CA ; M ; c);
7: x t � 1  � � (x t ; E �nal (c); t)f CA editedg.
8: end for

wherep traverses all tokens inside sentencec except the subject tokens. Our complete training
objective then comes as

L = L sub+ �L reg; (4)
where� controls for the relative weight of the text-embedding-preservation term. As shown in Fig. 2a,
after the customized text encoder is obtained, we derive theresidual token embeddingof “dog” via
computing the average shift ofE custom(c)dog over these 1,000 sentences fromE(c)dog, as

� custom
dog =

1
jCdogj

�
X

c2 Cdog

(E custom(c)dog � E (c)dog): (5)

Inference with residual token embedding.The residual token embedding we get aforementioned
can be used directly in any subject combinations involving them without further tuning. As shown in
Fig. 2b, when we do customized generation withN speci�c subjectss1; s2; � � � ; sN , all we need is
to fetch the pre-computed� custom

s1
; � custom

s2
; � � � ; � custom

sN
and add them to the token embedding, as

E �nal (c)si = E(c)si + � custom
si

; i = 1 � � � ; N: (6)

In fact, the operation in Eq. (6) is all in the token dimension. This characteristic endows our method
with signi�cant convenience and high ef�ciency for large-scale applications. On the one hand, any
pre-trained residual token embedding� custom

i can be used repeatedly and combined with another
� custom

j . On the other hand, for each subject, we merely need to store a �oat32 vector, getting rid of
storing large parameters as in previous methods [15–17].

3.3 Composing subjects with layout guidance

The text-to-image diffusion models [4–6] commonly inject the text embeddingE(c) to its diffusion
model� � via the cross-attention mechanism. The attention map among a cross-attention layer is
CA = ( W Q � ' (x t )) � (W K � E (c)) , where' (x t ) denotes the transformed image feature and
W Q ; W K denotes the parameters for computing query and key. The cross-attention map directly
affects the spatial layout of the �nal generation [31]. Below we will discuss how to improve the
quality of customized generation by rectifying the activations in the cross-attention map.

Strengthening the signal of target subject.One issue in multi-subject customization is that some
subjects may fail to show up. We argue that this is caused by insuf�cient activations in the cross-
attention map of these subjects. To avoid this, we choose to strengthen the signal of the target subject
in the region where we want it to show up.

Weakening the signal of irrelevant subject.Another issue in multi-subject customization is that the
subject attribute gets confused among subjects,i.e. the subjects in generated images may contain
characteristics from the other subjects. We argue that this is due to the overlapping activation regions
of different subjects in the cross-attention map. To avoid this, we choose to weaken the signal of each
subject appearing in the region of the other subjects.
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Layout-guided iterative generation process.Combining the above two ideas, we present a method
to guide the generation process according to a pre-de�ned layoutM . In practice, we de�ne the layout
M as a set of subject bounding boxes and then get the guidance layoutM s for each subjects. In
detail, as shown in Fig. 2b we divideM s into different regions: we set the value ofM s to a positive
value + 2 R+ in the region where we want the subjects to show up (denote asRshow

s ) and set the
value ofM s to a negative value � 2 R� in the region that is irrelevant to the subjects (denote as
Rirrelevant

s ). At the inference time, we replace all the output of cross-attention with edited results at
every generation step, as

EditedCA( CA ; M ; c) = Softmax( CA � f � (t) � M si ji = 1 ; � � � ; N g) � (W V � E (c)) ; (7)

where� denotes the operation that adds the corresponding dimension ofCA andM , which is also
visualized in Fig. 2b and� (t) is a concave function controlling the edit intensity at different timet.
The implementation details refer to Algorithm 1.

4 Experiments

4.1 Experimental setups

Datasets.For fair and unbiased evaluation, we select subjects from previous papers [15, 18, 16, 17]
spanning various categories for a total of 15 customized subjects. It consists of two scenes, �ve pets
and eight objects. We perform extensive experiments on various combinations of subjects, explaining
the superiority of our approach.

Evaluation metrics. We evaluate our approach with two following metrics for customized generation
proposed in Textual Inversion [18]. (1) Image similarity, which measures the visual similarity between
the generated images and the target subjects. For multi-subject generation, we calculate the image
similarity of the generated images and each target subject separately and �nally calculate the mean
value. (2) Textual similarity, which evaluates the average CLIP [24] similarity between all generated
images and their textual prompts. To this end, we use a variety of prompts with different settings to
generate images, including modifying the scenes, attributes, and relation between subjects.

Baselines.To evaluate our generation quality, we compare our approach with three state-of-art
competitors,i.e., DreamBooth[15] that �ne-tunes all parameters in diffusion model;Custom
diffusion[16] that optimizes the newly added word embedding in text encoder and a few parameters in
diffusion model, namely the key and value mapping from text to latent features in the cross-attention;
andCones[17] that �nds a small cluster of neurons in diffusion model corresponding each customized
subject. As Custom diffusion and Cones demonstrated, we omit Textual Inversion [18] as it performs
much less competitively. And the implementation details of our approach and those of baselines are
also reported in the Appendix A.

4.2 Main results

In this section, to demonstrate the superiority of our approach, we conduct experiments on authentic
images from diverse categories, including objects, pets, backgrounds,etc.. We not only present
the qualitative results between our approach and other baselines but also showcase quantitative
comparison. This further substantiates the effectiveness of our approach.

Qualitative comparison. As depicted in Fig. 3, we present a collection of generated images featuring
two to four subjects. For single-subject generation, as shown in Appendix B.1, our approach achieves
comparable results to competing methods while requiring signi�cantly less storage space. However,
as the number of subjects increases, the other three methods fail to include certain subjects and
exhibit attribute confusion, resulting in generated images that deviate from the reference images. In
contrast, our approach consistently produces highly visually accurate images for all subjects. It is
important to note that our approach utilizes learned single-subject residual token embeddings for
seamless combinations without retraining, thereby avoiding exponential training costs associated
with the other methods. The next section will discuss this in detail.

Quantitative comparison. In the context of generating customized subjects with varying numbers,
we have carefully selected four evaluation metrics: textual similarity, visual similarity, required
storage space, and computational complexity. As shown in Tab. 1, for single-subject generation,
our approach exhibits slightly lower visual and textual similarity compared to DreamBooth while
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