Proofs

proof of Theorem (2.1). By (2.4), $\operatorname{Mat}_S(X)$ is a spiked matrix with aspect ratio $N(S)^2/N_1$ and signal strength λ (as $\otimes_{j \in S} v_j$ is unit norm). There are four cases to consider:

- Let $N(S)^2/N_1 \to 0$; by the first point of (1.6), the recovery threshold lies at $(N_1/N(S) \cdot N(S))^{1/4} = N_1^{1/4}$.
- Let $N(S)^2/N_1 \to \gamma \in (0, 1]$; by the first point of (1.5), partial recovery occurs for $\liminf \lambda/\sqrt{N_1/N(S)} > \gamma^{1/4}$. Equivalently, $\liminf \lambda/N_1^{1/4} > 1$. Under $\lambda = \tau(1 + o(1))N_1^{1/4}$, $\lim \lambda/\sqrt{N_1/N(S)} = \tau \gamma^{1/4}$, implying $|\langle \otimes_{j \in S} v_j, w \rangle|^2 \xrightarrow{a.s.} c^2(\tau \gamma^{1/4}, \gamma)$.
- Let $N(S)^2/N_1 \to \gamma \in (1,\infty]$; by the second point of (1.5), partial recovery occurs for $\liminf \lambda/\sqrt{N(S)} > \gamma^{-1/4}$. Equivalently, $\liminf \lambda/N_1^{1/4} > 1$. Under $\lambda = \tau(1+o(1))N_1^{1/4}$, $\lim \lambda/\sqrt{N(S)} = \tau\gamma^{-1/4}$, implying $|\langle \otimes_{j \in S} v_j, w \rangle|^2 \xrightarrow{a.s.} c^2(\tau\gamma^{-1/4} \cdot \gamma^{1/2}, \gamma) = c^2(\tau\gamma^{1/4}, \gamma)$.
- Let $N(S)^2/N_1 \to \infty$; by the second point of (1.7), the recovery threshold lies at $\sqrt{N(S)}$

Proof of Theorem 3.1. We provide proof for k = 3; the proof for higher orders is similar and omitted. For notational simplicity, we suppress the subscripts of n_1 and v_1 .

Let $w_i = \operatorname{tr}(Z_i), i \in [n], \text{ and } w = (w_1, \dots, w_n)^{\top}$. Expanding the partial trace matrix,

$$\operatorname{Tr}_{k}(X) = \sum_{i=1}^{n} (\lambda v_{i} + w_{i}) X_{i} = \sum_{i=1}^{n} \left[(\lambda^{2} v_{i}^{2} + \lambda v_{i} w_{i}) v v^{\top} + (\lambda v_{i} + w_{i}) Z_{i} \right]$$

$$= \sum_{i=1}^{n} \left[(\lambda^{2} v_{i}^{2} + \lambda v_{i} w_{i}) v v^{\top} + (\lambda v_{i} + w_{i}) (Z_{i} - \operatorname{diag}(Z_{i} - \widetilde{Z}_{i})) + (\lambda v_{i} + w_{i}) \operatorname{diag}(Z_{i} - \widetilde{Z}_{i}) \right],$$

$$(4.4)$$

where \widetilde{Z} is an independent copy of Z.

Let $M = \|\lambda v + w\|_2^{-1} \sum_{i=1}^n (\lambda v_i + w_i) (Z_i - \operatorname{diag}(Z_i - \widetilde{Z}_i))$. As w_i and $Z_i - \operatorname{diag}(Z_i - \widetilde{Z}_i)$ are independent and the Gaussian distribution is rotationally invariant, $M \stackrel{d}{=} Z_1$. Hence, we have

$$\|\lambda v + w\|_{2}^{-1} \operatorname{Tr}_{k}(X) = \alpha v v^{\top} + M + \|\lambda v + w\|_{2}^{-1} \sum_{i=1}^{n} (\lambda v_{i} + w_{i}) \operatorname{diag}(Z_{i} - \widetilde{Z}_{i}),$$
(4.5)

where $\alpha = \|\lambda v + w\|_2^{-1}(\lambda^2 + \lambda \langle v, w \rangle)$. The partial trace matrix is thus proportional to a perturbation of a spiked matrix with aspect ratio $\gamma = 1$.

Let \mathcal{E} denote the third term on the right-hand side of (4.5); we shall prove $n^{-1/2} \|\mathcal{E}\|_2 \xrightarrow{a.s.} 0$. Denoting $u = (\lambda v + w)/\|\lambda v + w\|_2$, the diagonal entries of $\sum_{i=1}^n u_i \operatorname{diag}(\widetilde{Z}_i)$ are i.i.d. Gaussians with variance one, implying $\|\sum_{i=1}^n u_i \operatorname{diag}(\widetilde{Z}_i)\| \lesssim \sqrt{\log n}$, almost surely. Similarly, since $w \sim \mathcal{N}(0, nI_n)$ and $\|\lambda v + w\|_2 = \Theta_{a.s.}(\lambda + n)$,

$$\lambda \|\lambda v + w\|_2^{-1} \left\| \sum_{i=1}^n v_i \operatorname{diag}(Z_i) \right\|_2 \lesssim \sqrt{\log n} \left(1 + \frac{\lambda}{n} \right). \tag{4.6}$$

To bound the remaining term of \mathcal{E} , let $\mathcal{Z} \in \mathbb{R}^{n \times n}$ denote the matrix with entries $\mathcal{Z}_{ij} = Z_{ijj}$, $i, j \in [n]$, in which case we may write

$$\left\| \sum_{i=1}^{n} w_i \operatorname{diag}(Z_i) \right\|_2 = \sup_{1 \le j \le n} \left| \sum_{i=1}^{n} w_i Z_{ijj} \right| = \sup_{1 \le j \le n} \left| e_j^{\top} \mathcal{Z}^{\top} \mathcal{Z} \mathbf{1}_n \right|, \tag{4.7}$$

where $\mathbf{1}_n$ is the length-n vector of ones. As $e_j^{\top} \mathcal{Z}^{\top} \mathcal{Z} e_j \sim \chi_n^2$ and

$$e_i^{\top} \mathcal{Z}^{\top} \mathcal{Z} (\mathbf{1}_n - e_i) \stackrel{d}{=} \sqrt{n-1} e_i^{\top} \mathcal{Z}^{\top} \widetilde{Z} e_i \sim \sqrt{n-1} \cdot \mathcal{N}(0,1) \cdot \sqrt{\chi_n^2},$$

standard bounds such as (2.19) in [24] yield

$$\mathbf{P}\left(\sup_{1 \le j \le n} \left| e_j^{\top} \mathcal{Z}^{\top} \mathcal{Z} \mathbf{1}_n - n \right| > c \cdot n \right) \lesssim n e^{-Cn}, \tag{4.8}$$

where c, C > 0 are constants. As the right-hand side is summable, the Borel-Cantelli lemma implies

$$\sup_{1 \le j \le n} |e_j^{\top} \mathcal{Z}^{\top} \mathcal{Z} \mathbf{1}_n| \lesssim n, \tag{4.9}$$

almost surely. Collecting the above bounds, we have that $n^{-1/2} \|\mathcal{E}\|_2 \xrightarrow{a.s.} 0$.

By Weyl's inequality, the limiting spectral distribution of $n^{-1/2}(M+\mathcal{E})$ equals that of $n^{-1/2}M$, the quarter circle law. The limits (1.5) from Lemma 1.1 therefore apply to $\alpha vv^{\top} + M + \mathcal{E}$ as well (see [7]). Basic calculations yield (1) $\lim \inf \alpha/\sqrt{n} > 1$ if and only if $\lim \inf \lambda/n^{3/4} > 1$, and (2) under $\lambda = \tau(1+o(1))n^{3/4}$, $\alpha = \tau^2(1+o_{a.s.}(1))\sqrt{n}$. Therefore, \hat{v} partially recovers v if and only if $\lim \inf \lambda/n^{3/4} > 1$, and under $\lambda = \tau(1+o(1))n^{3/4}$,

$$|\langle v, \hat{v} \rangle|^2 \xrightarrow{a.s.} c^2(\tau^2, 1) = \overline{c}^2(\tau), \qquad (4.10)$$

completing the proof.

Proof of Theorem 4.1. By the linearity of the operators $\times_1, \ldots, \times_k$,

$$w_{j} = \lambda \prod_{\ell \in [k] \setminus \{j\}} \langle v_{\ell}, \hat{v}_{\ell} \rangle \cdot v_{j} + Z \times_{1} \hat{v}_{1} \cdots \times_{j-1} \hat{v}_{j-1} \times_{j+1} \hat{v}_{j+1} \cdots \times_{k} \hat{v}_{k}, \qquad (4.11)$$

$$\langle v_j, w_j \rangle = \lambda \prod_{\ell \in [k] \setminus \{j\}} \langle v_\ell, \hat{v}_\ell \rangle + \langle Z, \hat{v}_1 \otimes \cdots \otimes \hat{v}_{j-1} \otimes v_j \otimes \hat{v}_{j+1} \cdots \otimes \hat{v}_k \rangle. \tag{4.12}$$

Assume that (4.1) holds for $\ell \in [j-1]$. For $\ell \in \{j+1,\ldots,k\}$, Corollary 2.1.1 implies $|\langle v_{\ell},\hat{v}_{\ell}\rangle|$ is bounded away from zero. The first term on the right-hand side of (4.12) is therefore $\Theta_{a.s.}(\lambda)$. The second term is bounded by the spectral norm of Z: using Theorem 1 of [23],

$$\langle Z, \hat{v}_1 \otimes \cdots \otimes \hat{v}_{j-1} \otimes v_j \otimes \hat{v}_{j+1} \otimes \cdots \otimes \hat{v}_k \rangle \leq \sup_{u_j \in \mathbb{S}^{j-1}, j \in [k]} \langle Z, u_1 \otimes \cdots \otimes u_k \rangle \lesssim \sqrt{n_k}, \qquad (4.13)$$

almost surely. Thus, as $(\sqrt{n_k}/\lambda)^4 \lesssim n_k^2/N_1 \to 0$,

$$|\langle v_j, \hat{v}_j \rangle| = 1 + O_{a.s.} \left(\frac{\sqrt{n_k}}{\lambda}\right) \xrightarrow{a.s.} 1,$$
 (4.14)

from which (4.1) follows inductively.

Equation (4.2) follows from (4.1) and (4.13), which imply $||v_1 \otimes \cdots \otimes v_k - \hat{v}_1 \otimes \cdots \otimes \hat{v}_k||_F \xrightarrow{a.s.} 0$ and

$$\lambda^{-1}|\hat{\lambda}| = \left| \prod_{j=1}^{k} \langle v_j, \hat{v}_j \rangle + \lambda^{-1} \langle Z, \hat{v}_1 \otimes \cdots \hat{v}_k \rangle \right| \xrightarrow{a.s.} 1.$$
 (4.15)

Proof of Theorem 4.2. We shall prove v_2, \ldots, v_k are recovered exactly; proofs for the first and last axes are similar and omitted. By the linearity of the unfolding operator,

$$\operatorname{Mat}_{j-1}(X \times_1 \hat{v}_1) = \lambda \langle v_1, \hat{v}_1 \rangle (\otimes_{\ell \in [k] \setminus \{1, j\}} v_\ell) v_j^\top + \operatorname{Mat}_{j-1}(Z \times_1 \hat{v}_1). \tag{4.16}$$

Observe that $Z \times_1 \hat{v}_1$ is a reshaping of the vector $\text{Mat}_1(Z)\hat{v}_1$. As \hat{v}_1 and Z are dependent, the second term on the right-hand side is not a matrix of i.i.d. entries. Despite dependencies, we claim that appropriately scaled, $\text{Mat}_1(Z)\hat{v}_1$ is Gaussian noise, in which case exact recovery thresholds are a consequence of spiked matrix model results of Section 1.3 applied to (4.16).

By definition, \hat{v}_1 is the first eigenvector of the symmetric matrix

$$\operatorname{Mat}_{1}(X)^{\top} \operatorname{Mat}_{1}(X) = \lambda^{2} v_{1} v_{1}^{\top} + \operatorname{Mat}_{1}(Z)^{\top} \operatorname{Mat}_{1}(Z) + \mathcal{E},$$

$$(4.17)$$

where \mathcal{E} is a rank-two matrix given by

$$\mathcal{E} = \lambda v_1 (\otimes_{\ell \in [k] \setminus \{1\}} v_\ell)^\top \mathrm{Mat}_1(Z) + \lambda \mathrm{Mat}_1(Z)^\top (\otimes_{\ell \in [k] \setminus \{1\}} v_\ell) v_1^\top.$$

Let \tilde{v}_1 denote the first eigenvector of $\operatorname{Mat}_1(X)^{\top} \operatorname{Mat}_1(X) - \mathcal{E}$; without loss of generality, we assume $\hat{v}_1^{\top} \tilde{v}_1 \geq 0$. Since $\operatorname{Mat}_1(Z)^{\top} (\otimes_{\ell \in [k] \setminus \{1\}} v_{\ell}) \sim \mathcal{N}(0, I_{n_1})$, we have $\|\mathcal{E}\|_2 \lesssim \lambda \sqrt{n_1}$ almost surely. By Theorem 1.1 of [13], the spectral gap of $\operatorname{Mat}_1(X)^{\top} \operatorname{Mat}_1(X)$ is $\Theta(\lambda^2)$. Thus, using the Davis-Kahan theorem (see Corollary 3 of [25]), we have

$$\|\hat{v}_1 - \tilde{v}_1\|_2 \lesssim \frac{\|\mathcal{E}\|_2}{\lambda^2} \xrightarrow{a.s.} 0. \tag{4.18}$$

Let $\operatorname{Mat}_1(Z) = U\Lambda V^{\top}$ be a singular value decomposition. As Z contains i.i.d. Gaussian entries, (1) U, Λ , and V are independent, (2) U and V are Haar-distributed. Moreover, as \tilde{v}_1 is the first eigenvector of $\lambda^2 v_1 v_1^{\top} + \operatorname{Mat}_1(Z)^{\top} \operatorname{Mat}_1(Z) = \lambda^2 v_1 v_1^{\top} + V\Lambda^2 V^{\top}$, \tilde{v}_1 is independent of U. Thus, $U\Lambda V^{\top} \tilde{v}_1 / \|\Lambda V^{\top} \tilde{v}_1\|_2$ is uniform on \mathbb{S}^{N_2-1} . Generating $\xi \sim \chi_{N_2}^2$ independent of Z, it follows that

$$\frac{\xi}{\sqrt{N_2}} \cdot \frac{\operatorname{Mat}_1(Z)\tilde{v}_1}{\|\Lambda V^{\top} \tilde{v}_1\|_2} \sim \mathcal{N}(0, I_{N_2}). \tag{4.19}$$

Defining the constant $\alpha = \xi/(\sqrt{N_2}\|\Lambda V^{\top}\tilde{v}_1\|_2)$, we deduce that $\alpha Z \times_1 \tilde{v}_1$ (which is a reshaping of the left-hand side of (4.19)) is distributed as a tensor with i.i.d. Gaussian entries—despite dependencies between Z and \tilde{v}_1 . Additionally, since $\Lambda_{11}/\sqrt{N_2} \xrightarrow{a.s.} 1$ and $\Lambda_{n_1n_1}/\sqrt{N_2} \xrightarrow{a.s.} 1$, we have $\|\Lambda V^{\top}\tilde{v}_1\|_2/\sqrt{N_2} \xrightarrow{a.s.} 1$ and $\alpha \xrightarrow{a.s.} 1$. Thus, we conclude that

$$\alpha \operatorname{Mat}_{j-1}(X \times_{1} \tilde{v}_{1}) = \lambda(1 + o_{a.s.}(1)) \langle v_{1}, \tilde{v}_{1} \rangle (\otimes_{\ell \in [k] \setminus \{1, j\}} v_{\ell}) v_{j}^{\top} + \widetilde{Z}, \quad j \in \{2, \dots, k-1\}, \quad (4.20)$$

where $\widetilde{Z} \in \mathbb{R}^{n_j \times (N_2/n_j)}$ contains i.i.d. Gaussian entries, enabling us to apply spiked matrix results. Let \widetilde{v}_j denote the first right singular vector of $\operatorname{Mat}_{j-1}(X \times_1 \widetilde{v}_1)$ (equivalently, that of $\alpha \operatorname{Mat}_{j-1}(X \times_1 \widetilde{v}_1)$); without loss of generality, we assume $\widehat{v}_1^{\top} \widetilde{v}_1 \geq 0$. In particular, since $|\langle v_1, \widetilde{v}_1 \rangle| \approx |\langle v_1, \widehat{v}_1 \rangle| \approx 1$ by Corollary 2.1.1 and (4.18), Lemma 1.2 implies $|\langle v_j, \widetilde{v}_j \rangle| \xrightarrow{a.s.} 1$ (we have $\lambda \gg (n_j \cdot N_2/n_j)^{1/4}$).

It therefore suffices to prove that $\|\hat{v}_j - \tilde{v}_j\|_2 \xrightarrow{a.s.} 0$. By Theorem 2.3 of [5] or Theorem 1.1 of [13] and Cauchy's interlacing inequality, the spectral gap of $\operatorname{Mat}_{j-1}(X \times_1 \tilde{v}_1)^{\top} \operatorname{Mat}_{j-1}(X \times_1 \tilde{v}_1)$ is $\Theta(\lambda^2)$. Let \mathcal{Z} denote the reshaping of Z with dimensions $n_1 \times n_j \times N_2/n_j$ and slices $\operatorname{Mat}_{j-1}(Z_i)$, $i \in [n_1]$. Using the bound

$$\|\mathrm{Mat}_{j-1}(Z \times_1 (\hat{v}_1 - \tilde{v}_1))\|_2 \le \sup_{\substack{u_1 \in \mathbb{S}^{n_1-1}, u_2 \in \mathbb{S}^{n_j-1}, \\ u_3 \in \mathbb{S}^{N_2/n_j-1}}} (\mathcal{Z} \times_1 u_1 \times_2 u_2 \times_3 u_3) \cdot \|\hat{v}_1 - \tilde{v}_1\|_2$$

and Theorem 1 of [23].

$$\|\operatorname{Mat}_{j-1}(X \times_{1} (\hat{v}_{1} - \tilde{v}_{1}))\|_{2} \leq \lambda \|\hat{v}_{1} - \tilde{v}_{1}\|_{2} \|\operatorname{Mat}_{j-1}(v_{2} \otimes \cdots \otimes v_{k})\|_{2} + \|\operatorname{Mat}_{j-1}(Z \times_{1} (\hat{v}_{1} - \tilde{v}_{1}))\|_{2} \\ \lesssim (\lambda + (N_{2}/n_{j})^{1/2}) \|\hat{v}_{1} - \tilde{v}_{1}\|_{2},$$

$$(4.21)$$

almost surely. Thus, using the Davis-Kahan theorem (Theorem 4 of [25]), (4.18), and (4.21), we have

$$\|\hat{v}_j - \tilde{v}_j\|_2 \lesssim \frac{\lambda \left(\lambda + (N_2/n_j)^{1/2}\right) \|\hat{v}_1 - \tilde{v}_1\|_2}{\lambda^2} \xrightarrow{a.s.} 0, \tag{4.22}$$

completing the proof. \Box