Proofs

proof of Theorem (2.1). By (2.4), Matg(X) is a spiked matrix with aspect ratio N(S)?/N; and signal
strength A (as ®;jegv; is unit norm). There are four cases to consider:
e Let N(S)%/N; — 0; by the first point of (1.6), the recovery threshold lies at (N, /N(S) - N(S))"/4 =
N4
e Let N(S)2/N; — « € (0, 1]; by the first point of (1.5), partial recovery occurs for lim inf A\/y/Ny /N(S) >
~1/4 Equivalently, liminf A/N/* > 1. Under A = (1 + o(1))N\/*, lim A//N1 /N(S) = 7v1/4, imply-

a.s.

ing [(®;esv),w)[* == A(1y14,7).

e Let N(S)2/N; — v € (1, 0]; by the second point of (1.5), partial recovery occurs for lim inf A//N(S) >
~~1/4 Equivalently, lim inf )\/Nll/4 > 1. Under A = T(1+O(1))N11/4, lim )\/\/W = 7y~ /4 implying
[(®jesv,w)[* == ATy 12 ) = (914, ).

e Let N(S)?/N; — o0o; by the second point of (1.7), the recovery threshold lies at /N (S).

O

Proof of Theorem 3.1. We provide proof for k = 3; the proof for higher orders is similar and omitted. For
notational simplicity, we suppress the subscripts of n; and v;.

Let w; = tr(Z;), i € [n], and w = (w1, ..., w,)". Expanding the partial trace matrix,
Tre(X) = Z(Am +w)X; = Z [(/\21)? + )\viwi)vv—r + (A + wi)Zi]
iil i=1 (44)
= Z [()\21)? + )\mwi)va + (Av; +w)(Z; — diag(Z; — Z;)) + (Av; + w; )diag(Z; — Zi)] ,
i=1

where Z is an independent copy of Z. _ _
Let M = | Av+wl|3 " i, (A +wi)(Z; — diag(Z; — Z;)). As w; and Z; — diag(Z; — Z;) are independent
and the Gaussian distribution is rotationally invariant, M 2 Z1. Hence, we have

n

A0 + w3 T (X) = avv " + M+ Ao+ wlz" Y (i + w;)diag(Z: — Z;). (4.5)
i=1
where a = ||Av + wl|; (A2 + A{v,w)). The partial trace matrix is thus proportional to a perturbation of a

spiked matrix with aspect ratio v = 1.

Let € denote the third term on the right-hand side of (4.5); we shall prove n~/2| |l =3 0. Denoting
u = (Av + w)/||Av + w2, the diagonal entries of Y7 u;diag(Z;) are i.i.d. Gaussians with variance one,
implying || 37, widiag(Z;)| < vlogn, almost surely. Similarly, since w ~ N(0,n1,) and |[Av + wls =
Oa.s.(A+n),

1/2

, < logn(l + %) . (4.6)

A|Av + wH;lH Zvidiag(ZL—)
i=1

To bound the remaining term of &, let Z € R"*™ denote the matrix with entries Z;; = Z;;;, i,j € [n], in
which case we may write

Hiwidiag(Zi) = sup zn:wizijj
i=1 i=1

= sup |e;-rZT21n|, (4.7
2 1gicn S 1<j<n

where 1,, is the length-n vector of ones. As e;rZTZej ~ x2 and

e] ZTZ(1, —e)) L Vn—1e] 2" Zej ~ Vo — 1-N(0,1) - /X2,
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standard bounds such as (2.19) in [24] yield

P( sup }(’TZTZl —n‘ >c- n) <ne €, (4.8)

1<j<n
where ¢, C' > 0 are constants. As the right-hand side is summable, the Borel-Cantelli lemma implies

sup |CTZTZIH| <n, (4.9)
1<j<n

almost surely. Collecting the above bounds, we have that n~1/2||€||y <25 0.

By Weyl’s inequality, the limiting spectral distribution of n_l/z(M + &) equals that of n~/2M, the
quarter circle law. The limits (1.5) from Lemma 1.1 therefore apply to cvv ' + M +& as well (see [7]). Basic
calculations yield (1) liminf o/ /n > 1 if and only if liminf \/n3/4 > 1, and (2) under A = 7(1 + o(1))n/4,
@ = 72(1 + 04.5.(1))y/n. Therefore, © partially recovers v if and only if liminf \/n%/4 > 1, and under
A =7(14o(1))n%/4,

|(v,0)]? =25 2(7%,1) = &3(7), (4.10)
completing the proof. O

Proof of Theorem 4.1. By the linearity of the operators xi,..., Xg,

—)\ H ’Uz Ug ’Uj+Z><11A}1"'><j,1?A}j,1 Xj+1’lA)j+1"'><k7§k, (411)
Le[k\ {7}

(vj,wj> =\ H <v[,@g>+<Z,f}1®"'®’lA)j71®”Uj®@j+1"'®@k>. (412)
Le[kN\{5}

Assume that (4.1) holds for £ € [j —1]. For £ € {j + 1,...,k}, Corollary 2.1.1 implies |(vy, 9¢)| is bounded
away from zero. The first term on the right-hand side of (4.12) is therefore ©,. s (A). The second term is
bounded by the spectral norm of Z: using Theorem 1 of [23],

<Z,1A)1®~"®1A)j_1®’Uj®@j+1®"'®@k>S sup <Zau1®"'®uk>§\/nkv (413)
uj €S-t j€lk]

almost surely. Thus, as (y/nx/\)?* <ni/Ni — 0,

o, 85} = 1+ 0 (S2) 2551, (1.14)

from which (4.1) follows inductively.
Equation (4.2) follows from (4.1) and (4.13), which imply ||v; ® -+ @ vp — 0 @ - -+ @ O || p =25 0 and

k
H 0, 0;) FATHZ, 01 @ - Op) | =251 (4.15)
7j=1
O
Proof of Theorem 4.2. We shall prove va, ..., v are recovered exactly; proofs for the first and last axes are
similar and omitted. By the linearity of the unfolding operator,
Matj_1<X X1 @1) = )\<v1,61>(®ge[k]\{1:j}w)v; + Matj_l(Z X1 ﬁl) . (4.16)

Observe that Z x1 07 is a reshaping of the vector Matq(Z)01. As 01 and Z are dependent, the second term
on the right-hand side is not a matrix of i.i.d. entries. Despite dependencies, we claim that appropriately
scaled, Maty(Z)0; is Gaussian noise, in which case exact recovery thresholds are a consequence of spiked
matrix model results of Section 1.3 applied to (4.16).
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By definition, 97 is the first eigenvector of the symmetric matrix
Mat; (X) "Mat1(X) = Nvyv] + Mat,(Z) Maty(Z) + &, (4.17)
where & is a rank-two matrix given by
€ = 1 (®re (130¢) ' Maty (Z) + AMat1 (Z) T (R (1)0)0] -

Let @) denote the first eigenvector of Mat (X ) Mat; (X) —&; without loss of generality, we assume 91 ¥ > 0.
Since Maty(Z) " (e (13ve) ~ N(0, L, ), we have [|E]2 < Ay/n1 almost surely. By Theorem 1.1 of [13],

the spectral gap of Mat; (X ) Mat; (X) is ©(\2?). Thus, using the Davis-Kahan theorem (see Corollary 3 of
[25]), we have

L Ell2 as.
0~ al < 1212 2 g (4.18)
Let Mat;(Z) = UAV T be a singular value decomposition. As Z contains i.i.d. Gaussian entries, (1) U,
A, and V are independent, (2) U and V are Haar-distributed. Moreover, as ¥; is the first eigenvector of
A2viv] 4+ Maty(Z) TMaty(Z) = X2viv{ + VA2V'T, & is independent of U. Thus, UAV "5, /[|AV Ty is
uniform on SM2~!. Generating & ~ X?\,z independent of Z, it follows that

§ Matl(Z)f)l

: ~N(0,In,). 4.19
\/m ||AVT1~11H2 N( ) Nz) ( )

Defining the constant o = £/(v/No||AV T 91 ||2), we deduce that aZ x,¥; (which is a reshaping of the left-hand
side of (4.19)) is distributed as a tensor with i.i.d. Gaussian entries—despite dependencies between Z and ;.

Additionally, since A11 /v Ny 225 1 and Ay, /v N2 225 1, we have [|[AV T |l2/vNo 225 1 and o 225 1.
Thus, we conclude that

aMatj,l(X X1 ’l~)1) = )\(1 -+ Oa_s_(].))<2)1,’l~)1>(®ge[k]\{1’j}’v1{)?};—r + Z, ] S {2, ey k— 1} y (420)

where Z € R *(N2/7)) contains i.i.d. Gaussian entries, enabling us to apply spiked matrix results. Let v;
denote the first right singular vector of Mat;_1(X x1 01) (equivalently, that of aMat;_1(X X1 01)); without
loss of generality, we assume o] ; > 0. In particular, since |(vy,91)| < |{v1,91)| < 1 by Corollary 2.1.1 and
(4.18), Lemma 1.2 implies |(v;, ;)| —= 1 (we have A > (n; - No/n;)t/4).

It therefore suffices to prove that [0; — 9j]l2 = 0. By Theorem 2.3 of [5] or Theorem 1.1 of [13] and
Cauchy’s interlacing inequality, the spectral gap of Mat;_1(X x1 91) " Mat;_1(X x; @1) is ©(A\%). Let Z
denote the reshaping of Z with dimensions ny x n; x No/n; and slices Mat;_1(Z;), i € [n1]. Using the bound

||Matj,1(Z X1 (f)l — 171))”2 < sup (Z X1 Up X2 Ug X3 Ug) . H@l — ’51”2
uleS"I’l,ugesnﬂ"l,
ugesN2/ni 1

and Theorem 1 of [23],

[Mat; 1 (X x1 (01 — 01))[[2 < A9 — 91 [2]|[Mat; 1 (ve ® - @ vg)[|2 + [[Mat; 1 (Z X1 (01 — 01))]]2 (4.21)
< (A + (N2/nj)2) |6y — 612, .

almost surely. Thus, using the Davis-Kahan theorem (Theorem 4 of [25]), (4.18), and (4.21), we have

)\()\ + (N2/7lj>1/2)”’{)1 — ’I~)1H2 a.s.
22 —

105 = vjll2 < 0, (4.22)

completing the proof. O
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