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Abstract

Interacting particle systems have proven highly successful in various machine
learning tasks, including approximate Bayesian inference and neural network
optimization. However, the analysis of these systems often relies on the simplifying
assumption of the mean-field limit, where particle numbers approach infinity and
infinitesimal step sizes are used. In practice, discrete time steps, finite particle
numbers, and complex integration schemes are employed, creating a theoretical
gap between continuous-time and discrete-time processes. In this paper, we present
a novel framework that establishes a precise connection between these discrete-
time schemes and their corresponding mean-field limits in terms of convergence
properties and asymptotic behavior. By adopting a dynamical system perspective,
our framework seamlessly integrates various numerical schemes that are typically
analyzed independently. For example, our framework provides a unified treatment
of optimizing an infinite-width two-layer neural network and sampling via Stein
Variational Gradient descent, which were previously studied in isolation.

1 Introduction

Dynamics of interacting particle systems are central to many challenges in modern machine learning.
These range from algorithm design for approximate Bayesian inference, to the study of equilibria in
games [26, 31, 34]. Moreover, researchers have gained valuable insights by interpreting the training
process of over-parametrized two-layer neural networks as a system of interacting particles, thereby
advancing our intuition in this domain [11, 12, 36–38, 46, 51].

Analyzing the behavior of such systems poses a significant challenge. To simplify the analysis,
researchers often turn to the concept of the mean-field limit. In this approach, the number of particles
is increased to infinity, the step-size of the algorithm shrinks to zero, and results are deduced from this
continuous limit. Specifically, an initial probability distribution is assigned to the infinitely many parti-
cles, and a continuous-time evolution is derived for this distribution. The resulting evolutionary equa-
tion serves as a powerful tool for gaining insights into the system’s asymptotic behavior, significantly
aiding in the comprehension of systems with a large number of interacting particles [1, 5, 22, 26, 47].

Although the mean-field limit has offered valuable insights into the aforementioned problems, its
rigorous justification necessitates examining systems with both a finite number of particles and the
discrete-time algorithms commonly used in practice. Unfortunately, to the best of our knowledge,
while a substantial body of work exists on finite-particle systems (see, e.g., the review papers [8, 9]
and references therein), these studies are confined to analyzing continuous-time dynamics. As a
result, a gap between theory and practice has emerged, and a precise link between continuous and
discrete-time schemes is still largely lacking.

§ Contributions. Our paper aims to bridge this gap by rigorously establishing the convergence
of discrete-time algorithms to their continuous-time counterparts in terms of long-term behavior.
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To accomplish this, we draw inspiration from the field of dynamical system theory, which traces
its origins back to early developments in statistics [42] and has recently found success in various
domains of machine learning, including optimization theory, games, and sampling [21, 23, 24].

This dynamical system framework offers two significant advantages. Firstly, it provides a flexible
framework capable of accommodating a wide range of practical schemes commonly employed in
real-world scenarios. Secondly, this framework enables a unified treatment of various machine
learning tasks that were previously studied in isolation. Notably, it allows us to address tasks such as
training neural networks and approximate Bayesian inference using techniques like Stein variational
gradient descent in a coherent and unified manner.

In summary, our paper makes the following contributions:

1. We introduce a comprehensive framework for analyzing a broad class of algorithms called
stochastic approximation schemes. These schemes are widely utilized in simulating systems of
interacting particles, and our framework provides a unified approach to analyze their behavior.

2. Under mild assumptions on the discrete-time schemes and the mean-field dynamics, we prove
the convergence of these schemes towards their respective mean-field limits. The convergence
is established in terms of the 2-Wasserstein distance, a metric commonly used to measure the
dissimilarity between probability distributions.

3. Since our framework is specifically tailored to address a wide range of fields, we instantiate our
main theorem and provide novel guarantees to a diverse array of interacting particle systems
across domains such as the Stein variational gradient descent, the training of wide two-layer neural
networks, and the examination of game equilibria.

2 Illustration: Training Two-Layer Neural Networks via Noisy SGD

To illustrate the particle system under study and its corresponding mean-field limit, let us consider
the example of training a two-layer neural network with 𝑁 neurons and squared loss using the noisy
SGD algorithm. The network takes an input 𝑧 ∈ ℝ𝑑−1 and computes function:

ℎθ (𝑧) B 1
𝑁

∑𝑁
𝑖=1 𝜑(𝜃

𝑖 , 𝑧), with 𝜃𝑖 = (𝑎𝑖 , 𝑏𝑖) ∈ ℝ𝑑−1 ×ℝ and 𝜑(𝜃𝑖 , 𝑧) = 𝑏𝑖 𝜅(〈𝑎𝑖 , 𝑧〉).

Here, θ = (𝜃1, . . . , 𝜃𝑁 ) denotes the collection of neurons’ parameters, and 𝜅 is an activation
function (such as sigmoid or tanh). To train this network, one ideally minimizes the regularized risk
𝐿 (θ) B 𝔼(𝑦,𝑧)∼D

1
2 (𝑦−ℎθ (𝑧))

2+𝜆𝑈 (θ), where D is the data distribution, and𝑈 (θ) = 1
𝑁

∑
𝑖𝑈 (𝜃𝑖) is

a regularizer, such as𝑈 (𝜃) = 1
2 |𝜃 |

2. Applying the noisy gradient descent algorithm to the regularized
risk then results in the update rule:

𝜃𝑖𝑘+1 = 𝜃𝑖𝑘 − 𝛾𝑘+1∇𝜃 𝑖 𝐿 (θ𝑘 ) + 𝜎
√︁

2𝛾𝑘+1 𝜉
𝑖
𝑘+1, 𝑖 = 1, . . . , 𝑁, (SGD𝜎)

where 𝛾𝑘+1 is the step-size, 𝜎 ≥ 0 is the noise level, and {𝜉𝑖
𝑘+1} is a collection of i.i.d. standard

Gaussians. To cast this algorithm as a system of interacting particles, we define the interaction kernel
𝑊 and the potential 𝑉 as

𝑊 (𝜃, 𝜃 ′) = 𝔼𝑧∼D [𝜑(𝜃, 𝑧)𝜑(𝜃 ′, 𝑧)] and 𝑉 (𝜃) = 𝔼(𝑦,𝑧)∼D [𝑦 𝜑(𝜃, 𝑧)] + 𝜆𝑈 (𝜃). (1)

It is then easily seen (cf. [36, Eqn. 4]) that the update rule (SGD𝜎) can be rewritten as

𝜃𝑖𝑘+1 = 𝜃𝑖𝑘 − 𝛾𝑘+1

( 1
𝑁

𝑁∑︁
𝑗=1

∇𝜃𝑊 (𝜃𝑖𝑘 , 𝜃
𝑗

𝑘
) + ∇𝑉 (𝜃𝑖𝑘 )

)
+ 𝜎

√︁
2𝛾𝑘+1 𝜉

𝑖
𝑘+1, 𝑖 = 1, . . . , 𝑁. (2)

By considering neurons as particles, the equation (2) reveals that the training dynamics of each
particle is influenced by the potential 𝑉 and the interaction energy 𝑊 with other particles. This
interpretation highlights that (SGD𝜎) represents the evolution of a system of interacting particles. In
a broader context, one may consider more sophisticated algorithms, several of which (see Section 4
for examples) can be formulated as

𝜃𝑖
𝑘+1 = 𝜃𝑖

𝑘
− 𝛾𝑘+1

(
∇𝜃 𝑖 𝐿 (θ𝑘 ) + 𝑃𝑖

𝑘+1
)
+ 𝜎

√︁
2𝛾𝑘+1 𝜉

𝑖
𝑘+1, 𝑖 = 1, . . . , 𝑁 (3)

where 𝑃𝑖
𝑘+1 is the (random or deterministic) perturbation in evaluating the gradient. These algorithms

are usually called stochastic approximation algorithms. For example, Noisy SGD corresponds to
setting 𝑃𝑖

𝑘+1 = ∇𝜃 𝑖 �̃� (θ𝑘 ) − ∇𝜃 𝑖 𝐿 (θ𝑘 ), where �̃� is the loss of a random batch of data.
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§ Continuous-time limit and the mean-field approximation. We now go from the discrete-
time algorithm (3) to a continuous-time process and then derive the mean-field approximation.
First, observe that the risk 𝐿 (θ) depends on (𝜃1, . . . , 𝜃𝑁 ) only through their empirical measure
𝜇 = 1

𝑁

∑
𝑖 𝛿𝜃 𝑖 . For example,

1
𝑁

∑𝑁
𝑗=1 ∇𝜃𝑊 (𝜃, 𝜃 𝑗 ) + ∇𝑉 (𝜃) =

∫
∇𝜃𝑊 (𝜃, 𝜃 ′) 𝜇 (𝑑𝜃 ′) + ∇𝑉 (𝜃) C 𝑏(𝜃, 𝜇), (4)

where we have introduced the drift function 𝑏. To simplify the analysis, previous studies then consider
the idealized setting where an infinitesimal step-size is employed, thereby further reducing (3) to the
following system of stochastic differential equations (SDEs):

𝑑𝜃𝑖𝑡 = 𝑏(𝜃𝑖𝑡 , 𝜇𝑡 ) 𝑑𝑡 + 𝜎
√

2 𝑑𝑊 𝑖
𝑡 , 𝑖 = 1, . . . , 𝑁, (5)

where 𝜇𝑡 = 1
𝑁

∑
𝑖 𝛿𝜃 𝑖𝑡

is the empirical measure of the particles at time 𝑡, and {𝑊 𝑖
· } is a collection of

i.i.d. standard Brownian motions. In the over-parametrized regime where the number of particles
𝑁 becomes very large, one can approximate the initial setting of the particles 𝜇0 with a probability
density 𝜌0, and consider the following mean-field approximation defined over ℝ𝑑 as

𝑑𝜃𝑡 = 𝑏(𝜃𝑡 , 𝜌𝑡 ) 𝑑𝑡 + 𝜎
√

2 𝑑𝑊𝑡 , 𝜌𝑡 = density(𝜃𝑡 ). (6)
This dynamics captures the behavior of an individual particle 𝜃 within a density of particles distributed
according to 𝜌. The analysis of (6) turns out to be considerably simpler compared to the system of
SDEs in (5), e.g., via studying the evolutionary PDE 𝜕𝑡 𝜌𝑡 = ∇ · (𝜌𝑡 𝑏(·, 𝜌𝑡 )) + 𝜎2Δ𝜌𝑡 . As a result, it
has attracted significant interest in the field of deep learning theory [11, 12, 36–38].

In conclusion, the mean-field dynamics (6) offers a powerful and elegant framework, but its validity
rests on two simplifying assumptions: an infinite number of particles and a step-size approaching zero.
A rigorous justification of these two steps is by no means trivial. While the existing literature has made
progress in addressing the infinite particle issue, the second assumption has received comparatively
less attention. Bridging this gap is one of the primary objectives of our paper. Specifically, we aim to
establish the Wasserstein convergence of the discrete-time dynamics (3) to the same limit sets1 as the
continuous-time particle dynamics (5), under mild conditions on the drift 𝑏 and perturbations {𝑃𝑖

𝑘+1},
as well as the step-size rule 𝛾𝑘+1.

3 Dynamics of Systems of Interacting Particles

This section presents the fundamental master theorem that forms the basis for all the applications
discussed in Section 4. Our objectives are two-fold. Firstly, we aim to provide a set of assumptions for
the discrete-time scheme that can be easily verified by practical algorithms. Secondly, we establish
a set of assumptions on the mean-field dynamics, which, as demonstrated in Section 4, are readily
implied by the standard assumptions in the finite particle regime. The key result of our paper asserts
that, under these assumptions, any discrete-time scheme converges to its continuous counterpart, thus
closing the existing theoretical gap.

3.1 The algorithmic template

In this paper, we study the stochastic approximation algorithms for simulating systems of interacting
particles of the form:

𝑥𝑖𝑘+1 = 𝑥𝑖𝑘 + 𝛾𝑘+1
{
𝑏(𝑥𝑖𝑘 , 𝜇𝑘 ) + 𝑃

𝑖
𝑘+1

}
+ √

𝛾𝑘+1𝜎(𝑥𝑖𝑘 , 𝜇𝑘 ) 𝜉
𝑖
𝑘+1, 𝑖 = 1, . . . , 𝑁, (SAA)

where 𝑏 : ℝ𝑑 ×𝒫2 (ℝ𝑑) → ℝ𝑑 is the (non-local) drift,2 𝜎 : ℝ𝑑 ×𝒫2 (ℝ𝑑) → ℝ𝑑×𝑑 is the (state-
dependent and non-local) diffusion coefficient, 𝑃𝑖

𝑘+1 is the noise and bias in evaluating the drift, and
𝜇𝑘 is the empirical measure of the particles at iteration 𝑘 . The system (SAA) can be written in a more
succinct way by stacking all the variables in a larger vector. That is, define 𝑥 B (𝑥𝑖)𝑖∈[𝑁 ] ∈ (ℝ𝑑)⊗𝑁 ,
and let 𝜇𝑥 be the empirical distribution corresponding to the 𝑁 vectors in 𝑥, and define the aggregated
drift and diffusion terms as

𝒃(𝑥) B (𝑏(𝑥𝑖 , 𝜇𝑥))𝑖∈[𝑁 ] ∈ (ℝ𝑑)⊗𝑁 , 𝝈(𝑥) B diag((𝜎(𝑥𝑖 , 𝜇𝑥))𝑖∈[𝑁 ]). (7)
Define {𝑃𝑘+1} and {𝜉𝑘+1} analogously. We can then rewrite (SAA) as:

𝑥𝑘+1 = 𝑥𝑘 + 𝛾𝑘+1{𝒃(𝑥𝑘 ) + 𝑃𝑘+1} +
√
𝛾𝑘+1 𝝈(𝑥𝑘 ) 𝜉𝑘+1. (PSAA)

1The limit set of a curve (𝑐(𝑡))𝑡≥0 in a metric space is
⋂

𝑡≥0 cl(𝑐( [𝑡,∞))), that is, the set of all limits of
convergent sequences {𝑐(𝑡𝑘 ), 𝑡𝑘 → ∞}.

2
𝒫2 (ℝ𝑑) is the space of probability measures on ℝ𝑑 with bounded second moments.
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3.2 Dynamical system theory

By considering infinitesimal step-sizes and neglecting the perturbations 𝑃𝑖
𝑘+1, we can derive a system

of corresponding SDEs as follows:

𝑑𝑋 𝑖
𝑡 = 𝑏(𝑋 𝑖

𝑡 , 𝜇𝑡 ) 𝑑𝑡 + 𝜎(𝑋 𝑖
𝑡 , 𝜇𝑡 ) 𝑑𝑊 𝑖

𝑡 , 𝑖 = 1, . . . , 𝑁, 𝜇𝑡 =
1
𝑁

∑
𝑖𝛿𝑋 𝑖

𝑡
, (Sys-SDE)

with the corresponding aggregated version

𝑑𝑋𝑡 = 𝒃(𝑋𝑡 ) 𝑑𝑡 + 𝝈(𝑋𝑡 ) 𝑑𝑊𝑡 . (PSDE)

It is important to emphasize that even though we have rearranged the particles into a unified vec-
tor and introduced the concepts of aggregated drift and diffusion, the original process retains its
exchangeability. This property implies that the distribution of 𝑋 𝑖

𝑡 in (Sys-SDE) remains invariant
under permutations of the particles (for further details, refer to [8, Def. 2.1]).

The primary objective of our paper is to rigorously establish the convergence of the stochastic
approximation scheme (PSAA) to its continuous-time counterpart (PSDE). To accomplish this, we
employ the dynamical system theory introduced by Benaïm and Hirsch [4]. First, we construct a
continuous-time interpolated process associated with the discrete-time algorithm (PSAA):

𝑋𝑡 = 𝑥𝑘 + (𝑡 − 𝜏𝑘 ) (𝒃(𝑥𝑘 ) + 𝔼[𝑃𝑘+1 |ℱ𝑡 ]) + 𝝈(𝑥𝑘 ) (𝑊𝑡 −𝑊𝜏𝑘 ), 𝜏𝑘 ≤ 𝑡 < 𝜏𝑘+1. (Int)

Here, 𝜏𝑘 =
∑𝑘

𝑗=1 𝛾 𝑗 represents the cumulative time until step 𝑘 . It is worth noting that we construct
(Int) in such a way that it is adapted to the same filtration (ℱ𝑡 ) as the Brownian motion.

To compare (PSAA) with (PSDE), we integrate (PSDE) using the following approach: For a fixed
𝑡 ≥ 0, we define𝑊 (𝑡)

𝑠 = 𝑊𝑡+𝑠 −𝑊𝑡 and denote the solution of (PSDE) as the flow:

Φ
(𝑡)
𝑠 = 𝑋𝑡 +

∫ 𝑠

0
𝒃(Φ(𝑡)

𝑢 ) 𝑑𝑢 +
∫ 𝑠

0
𝝈(Φ(𝑡)

𝑢 ) 𝑑𝑊 (𝑡)
𝑢 . (Flow)

It is important to observe that the flow starts at 𝑋𝑡 and continues according to the true SDE.

We now introduce the central concept in our paper, which is the asymptotic pseudotrajectory theory
of Benaïm and Hirsch [4].

Definition 1 (Wasserstein asymptotic pseudotrajectory). We say the stochastic process (𝑋𝑡 )𝑡≥0 is a
Wasserstein asymptotic pseudotrajectory (WAPT) of the flow Φ if for any fixed 𝑇 > 0,

lim
𝑡→∞

sup
0≤𝑠≤𝑇

W2 (𝑋𝑡+𝑠 ,Φ(𝑡)
𝑠 ) = 0, (8)

where W2 (·, ·) denotes the 2-Wasserstein distance between two distributions.

The notion of WAPT provides a measure of “asymptotic closeness” between two stochastic processes.
In particular, (8) requires that (𝑋𝑡 )𝑡≥0 closely tracks the flow Φ

(𝑡)
𝑠 over arbitrarily long time intervals

𝑇 with arbitrary precision. The key aspect of the WAPT is that it serves as a tool specifically designed
to establish the convergence of a stochastic approximation scheme to its continuous-time counterparts.
In particular, it is known that proving the convergence of a stochastic approximation algorithm
(PSAA) to its continuous-time counterparts (PSDE) can be accomplished by demonstrating the
following two conditions [3, 4]:

• The interpolation (Int) satisfies the WAPT condition with respect to the corresponding flow.

• The iterates {𝑥𝑘 }𝑘 ’s in (PSAA) have bounded second moments.

Below, we present a set of general conditions that are straightforward to verify and ensure the
satisfaction of the above two conditions.
Remark. There are two major reasons for choosing W2 as the distance in (8): Firstly, the 2-Wasserstein
space is a metric space on which McKean–Vlasov equations can be seen as a flow, both aspects
indispensable for invoking the dynamical system theory of Benaïm and Hirsch [3, 4]. Secondly, it
is a popular metric in the propagation of chaos literature. This allows a seamless transition from
convergence guarantees for stochastic approximation schemes to their mean-field limit counterparts
via combining our results with the propagation of chaos results in the literature, see (13).
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3.3 Technical Assumptions

We proceed to present our technical assumptions and discuss their generality.

§ On the mean-field dynamics. We begin by introducing three assumptions that pertain to the drift
and diffusion coefficients of the continuous-time dynamics (Sys-SDE):
Assumption 1 (Lipschitzness of drift and diffusion). There is some 𝐿 > 0 such that for all 𝑥, 𝑦 ∈ ℝ𝑑

and all 𝜇, 𝜈 ∈ 𝒫2 (ℝ𝑑),
|𝑏(𝑥, 𝜇) − 𝑏(𝑦, 𝜈) | + ‖𝜎(𝑥, 𝜇) − 𝜎(𝑦, 𝜈)‖F ≤ 𝐿 ( |𝑥 − 𝑦 | +W2 (𝜇, 𝜈)).

Assumption 2 (Drift growth condition). For all 𝜇 ∈ 𝒫2 (ℝ𝑑), there is some 𝐶𝑣 > 0 such that∫
〈𝑥, 𝑏(𝑥, 𝜇)〉 𝜇(𝑑𝑥) ≤ 𝐶𝑣

∫
( |𝑥 | + 1) 𝜇(𝑑𝑥).

Assumption 3 (Boundedness of the diffusion). There is some 𝐾 > 0 such that for all 𝑥 ∈ ℝ𝑑 and all
𝜇 ∈ 𝒫2 (ℝ𝑑), ‖𝜎(𝑥, 𝜇)‖𝐹 ≤ 𝐾 .

We note that the first assumption is standard and is commonly used to prove existence of strong
solutions for the mean-field equation (see [26, Thm. 3.3]). The other two assumptions are exceedingly
weak and are satisfied by all the applications we consider.

§ On the stochastic approximation schemes. The following assumptions concern the time-
discretization scheme and the induced noise and bias.
Assumption 4 (Noise and bias). The perturbation 𝑃𝑘+1 decomposes into noise and bias as 𝑃𝑘+1 =

𝑈𝑘+1 + 𝜀𝑘+1, where the noises {𝑈𝑘+1} form a martingale difference sequence, i.e., 𝔼[𝑈𝑘+1 |𝑈𝑘 ] = 0,
and have second moments uniformly bounded by 𝑀𝑈 . In addition, the bias terms satisfy 𝜀𝑘 ∈ ℱ𝜏𝑘

and
𝔼[|𝜀𝑘+1 |2 |ℱ𝜏𝑘 ] = O(𝛾2

𝑘+1 |𝒃(𝑥𝑘 ) |
2 + 𝛾𝑘+1). (9)

Assumption 5 (Step-sizes). The step-sizes are decreasing and satisfy the Robbins-Monro summability
conditions ∑︁

𝑘

𝛾𝑘+1 = ∞ and
∑︁
𝑘

𝛾2
𝑘+1 < ∞. (10)

Moreover, we require, for some constant 𝑃 > 0,

𝛾𝑘+1/𝛾𝑘 + 𝑃𝛾𝑘𝛾𝑘+1 ≤ 1 − 𝛾𝑘+1. (11)

The condition specified in equation (9) is algorithm-dependent, and as we will prove in Section 4,
it is satisfied by numerous practical schemes. In Assumption 5, equation (10) is a commonly used
condition in the literature [42], while (11) imposes a mild growth condition on the step size, which
remains satisfied even for slowly-decreasing step-sizes such as 𝛾𝑘+1 ∼ (

√
𝑘 log 𝑘)−1. Therefore, this

condition is not overly restrictive and accommodates a wide range of scenarios.

§ On dissipativity. In the context of dynamical system theory, it is important to ensure that the
iterates of stochastic approximation schemes have bounded second moments. In the literature, this
requirement is often met by imposing dissipativity-type conditions. Building upon this concept, we
introduce the following definition:
Definition 2 (Average Dissipativity). We call the drift 𝑏 to be (𝛼, 𝛽)-dissipative on average for some
𝛼 > 0 and 𝛽 ∈ ℝ, if for all probability measures 𝜇 ∈ 𝒫2 (ℝ𝑑), it holds∫

〈𝑥, 𝑏(𝑥, 𝜇)〉 𝜇(𝑑𝑥) ≤ −𝛼
∫

|𝑥 |2 𝜇(𝑑𝑥) + 𝛽.

The concept of average dissipativity, as introduced in Definition 2, provides a novel formulation
specifically designed to capture the dissipativity property of a drift function that depends on measures,
as in equation (Sys-SDE). In contrast to the traditional notion of dissipativity [19], which focuses
on the dissipative behavior of individual particles in isolation, this formulation allows for a more
fine-grained control over the collective behavior exhibited by 𝑁 particles, each running in parallel
with the same stochastic approximation scheme. In Section 4, we will provide concrete examples
from the applications of machine learning to demonstrate the satisfaction of average dissipativity.
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3.4 Main Results

We are now ready to state our main theorem, whose proof can be found in Appendix B.
Theorem 1. Consider the algorithm (SAA), where the drift 𝑏 and diffusion 𝜎 satisfy Assumptions 1–3,
and the step-sizes {𝛾𝑘+1} and the perturbations {𝑃𝑖

𝑘+1} satisfy Assumptions 4 and 5. Then the
following holds:

• The interpolation (Int) of iterates of the algorithm is a WAPT of the flow in (Flow).

• Moreover, if the drift 𝑏 is dissipative on average (see Definition 2), the iterates of (PSAA) are
bounded in second moments, and their limit set is included in that of the original SDE (PSDE).

Proof sketch. The main step of the proof is the construction of the Picard process, which is inspired
by [23] and defined as follows:

Π
(𝑡)
𝑠 = 𝑋𝑡 +

∫ 𝑠

0
𝒃(𝑋𝑡+𝑢) 𝑑𝑢 +

∫ 𝑠

0
𝝈(𝑋𝑡+𝑢) 𝑑𝑊 (𝑡)

𝑢 . (Picard)

The proof is completed in four steps: first, we prove that the Picard process closely tracks the flow
(Flow), and then we bound the distance between the Picard process and the interpolation (Int). By
using martingale convergence arguments, employing our assumption on bias Assumption 4, and
Grönwall inequality, we conclude the proof of the WAPT property. Lastly, we show that dissipativity
on average ensures a uniform bound on the second moments of the iterates. The convergence is then
implied by invoking [23, Theorem 3]. �

In summary, according to Theorem 1, the convergence of the stochastic approximation scheme in
(SAA) can be reduced to its continuous-time counterpart in (Sys-SDE) when the assumptions stated
in Section 3.3 are satisfied.

Our Theorem 1 can be combined with existing results in the finite particle regime to establish the
overall convergence towards the desired mean-field limit. To see this, let 𝑀 𝑖,𝑁

𝑡 be 𝑁 independent
processes, synchronously coupled with (Sys-SDE), each starting from 𝑋 𝑖

0 and following

𝑑𝑀
𝑖,𝑁
𝑡 = 𝑏(𝑀 𝑖,𝑁

𝑡 , 𝜇𝑡 ) 𝑑𝑡 + 𝜎(𝑀 𝑖,𝑁
𝑡 , 𝜇𝑡 ) 𝑑𝑊 𝑖,𝑁

𝑡 ,

where 𝜇𝑡 is the mean-field solution. A common phenomenon in the study of interacting particle
systems, known as uniform propagation of chaos [8, 22, 27, 47], implies the existence of a constant
𝐶 such that for every 𝑁:

sup𝑡≥0
1
𝑁

∑𝑁
𝑖=1 W

2
2 (𝑋

𝑖,𝑁
𝑡 , 𝑀

𝑖,𝑁
𝑡 ) ≤ 𝐶

𝑁
, (12)

where 𝑋 𝑖,𝑁
𝑡 represents the particles following the continuous-time dynamics in (Sys-SDE). Letting

𝜇∞ represent the limit of the mean-field equation, a straightforward application of the triangle
inequality argument, which we defer to Appendix B.2, yields:

lim𝑘→∞
1
𝑁

∑𝑁
𝑖=1 W

2
2 (𝑥

𝑖
𝑘
, 𝜇∞) ≤ 𝐶

𝑁
→ 0 as 𝑁 → ∞. (13)

In other words, as the number of particles approaches infinity, the law of the empirical distribution of
the particles following the discrete-time algorithm (SAA) also converges to the mean-field solution.

§ A note on the literature. The rich body of literature on McKean-Vlasov SDEs and interacting
particle systems offers considerable insights on the convergence of Euler-Maruyama and Milstein type
numerical schemes to their limiting mean-field equations, e.g., [2, 28, 41]. However, it is noteworthy
that our study diverges in several key respects: Firstly, our work emphasizes on generic stochastic
and biased drift oracles. This contrasts with the deterministic and unbiased drift oracles considered
in the aforementioned studies, making our algorithmic approach broader in scope. Secondly, while
those studies present strong finite-time error bounds, our convergence results focus on providing
asymptotic guarantees. Lastly, we incorporate different underlying assumptions. For instance, we
need global Lipschitz drifts to ensure globally integrable flows, while one-sided Lipschitz drifts are
allowed in the works by [2, 28, 41]. However, our growth condition in Assumption 2 requires control
on average, whereas the works mentioned assume stronger pointwise controls.

In the light of these distinctions, we believe that our work complements this body of literature.

6



4 Applications

The goal of this section is to demonstrate the wide-ranging applicability of our framework across
diverse domains such as machine learning, game theory, and physics, which were previously analyzed
in isolation. In each of these applications, we demonstrate that standard assumptions in their respective
domains meet the necessary conditions to invoke Theorem 1. All proofs are deferred to Appendix C.

4.1 Two-Layer Neural Networks and Mean-Field Langevin

Our first application is providing a rigorous guarantee for the training dynamics of wide two-layer
neural networks as alluded to in Section 2. To begin, let us quickly recall the notations therein: The
noisy SGD iterates in (SGD𝜎) for wide two-layer neural networks can be viewed as approximations
of the mean-field dynamics (6) through the discrete-time system (SAA), whose drift term 𝑏(·, ·)
is defined in (1). The corresponding continuous-time and finite-particle dynamics is (5), which
has been extensively studied in recent years; see [11, 12, 36–38, 46, 51] and references therein.
Under the standard assumptions as in [11, 12, 37], a simple application of Theorem 1 then yields the
convergence of (SGD𝜎):
Corollary 1. Let 𝜅(·) denote the activation function. Assume that (1) 𝜅 and 𝜅′ are Lipschitz and
bounded, (2) the data has bounded support, and (3) |𝑎 𝜅′(𝑎) | is bounded. Then the discrete-time
scheme (SGD𝜎) converges in W2 to the same limit sets as the continuous-time (5).

The mean-field dynamics for two-layer neural networks converges to a stationary point in Wasserstein
space due to its gradient flow structure [12]. In addition, it is known that under fairly mild assumptions,
the resulting limit becomes a unique global risk minimizer [12]. By employing uniform propagation
of chaos for neural networks [46], it is observed that the limit sets of the continuous-time 𝑁-particle
dynamics exhibit similar generalization error to the global minimizer. Remarkably, Corollary 1
validates that noisy SGD and other discretizations following template (SAA) eventually converge
to this limit set, providing justification for the observed generalization behavior in neural networks.

§ Comparison to prior work. Our result above cannot be directly compared to the existing analysis
conducted on the discrete-time scheme (SGD𝜎), namely [37], due to the assumption A1 therein,
which excludes step-size rules of the form 𝛾𝑘+1 ∼ 𝑘−𝛽 where 𝛽 ∈ (1/2, 1]. Conversely, the bounds
provided in [37] for a constant step-size are non-asymptotic (albeit doubly-exponential), resulting in
stronger conclusions compared to our asymptotic results. Therefore, these two analyses complement
each other and contribute to a more comprehensive understanding of the training dynamics exhibited
by neural networks.

4.2 Stein Variational Gradient Descent

Sampling from a distribution 𝜋 ∝ 𝑒−𝑉 is a crucial task in various machine learning applications. An
effective method that has demonstrated practical success in this regard is the Stein variational gradient
descent (SVGD) [29, 30]. Intuitively, this method emulates the steepest descent for the KL divergence
in continuous-time with a continuous probability measure. In practice, the algorithm is implemented
as an interacting particle system as follows (see [33] for a derivation). Let 𝐾 : ℝ𝑑 ×ℝ𝑑 → ℝ be a
positive definite kernel. The SVGD algorithm updates the set of 𝑁 particles as

𝑥𝑖𝑘+1 = 𝑥𝑖𝑘 −
𝛾𝑘+1
𝑁

∑𝑁
𝑗=1

(
𝐾 (𝑥𝑖

𝑘
, 𝑥

𝑗

𝑘
)∇𝑉 (𝑥 𝑗

𝑘
) − ∇2𝐾 (𝑥𝑖

𝑘
, 𝑥

𝑗

𝑘
)
)
, 𝑖 = 1, . . . , 𝑁, (SVGD𝑘 )

where ∇2𝐾 is the gradient of 𝐾 with respect to its second input. The corresponding continuous-time
dynamics is then:

𝑑
𝑑𝑡
𝑋 𝑖
𝑡 =

1
𝑁

∑
𝑗 ∇2𝐾 (𝑋 𝑖

𝑡 , 𝑋
𝑗
𝑡 ) − 1

𝑁

∑
𝑗 𝐾 (𝑋 𝑖

𝑡 , 𝑋
𝑗
𝑡 )∇𝑉 (𝑋

𝑗
𝑡 ), 𝑖 = 1, . . . , 𝑁, (SVGD𝑡 )

which is a special case of (Sys-SDE) with 𝑏(𝑥, 𝜇) = (∇2𝐾 ∗ 𝜇) (𝑥) − (𝐾 ∗ (𝜇∇𝑉)) (𝑥) and 𝜎 ≡ 0 (no
diffusion), where ∗ denotes the convolution operator. We now prove:
Corollary 2. Suppose that (1) ∇𝑉 (𝑥) is Lipschitz, (2) 𝑉 is dissipative,3 (3) for some 𝐶 > 0,
|∇𝑉 (𝑥) | ≤ 𝐶 (1 + |𝑥 |2), (4) ‖𝐾 ‖∞, ‖∇2𝐾 ‖∞, ‖∇2𝐾 ‖∞ < ∞, (5) |∇2𝐾 (𝑥, 𝑦) | ≤ 𝜂/|𝑥 − 𝑦 |, and
(6) 𝐾 (𝑥, 𝑦) ≤ 𝜂/|𝑥 − 𝑦 |2 for some 𝜂 > 0. Then the iterates in (SVGD𝑘 ) converge in W2 to the same
limit sets as the continuous-time process (SVGD𝑡 ).

3That is, ∃𝑚 > 0, 𝑚′ ∈ ℝ such that 〈𝑥,∇𝑉 (𝑥)〉 ≥ 𝑚 |𝑥 |2 − 𝑚′.
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Similar to neural networks training discussed in Section 4.1, the mean-field SVGD also exhibits
a gradient flow structure, and in this case, the target distribution 𝜋 serves as the only limit set for
the mean-field SVGD [29]. Combining Corollary 2 with a uniform propagation of chaos argument
for SVGD then confirms that the iterates of (SVGD𝑘 ), or any discretization of (SVGD𝑡 ) that satisfies
Assumption 4, effectively converge to a distribution that closely approximates 𝜋 in terms of W2.
This outcome underscores the effectiveness of these algorithms in sampling.

§ Comparison to prior work. While there has been extensive theoretical work on the convergence
of SVGD, most of it focuses on either the population limit (i.e., when 𝑁 → ∞ in (SVGD𝑘 )) or the
vanishing step-size (which directly examines the properties of (SVGD𝑡 )) [10, 14, 25, 29, 43, 45].
However, the convergence behavior of the discrete iterates (SVGD𝑘 ) remains a challenging task with
limited success. To the best of our knowledge, the only existing work in this direction is [44], but
its result is not directly comparable to ours. Although our assumptions on the bounded derivatives
of 𝑉 and𝑊 are similar to those in [44], the difference lies in the requirement imposed on the target
distribution 𝑒−𝑉 . Specifically, Shi and Mackey [44] assume a T1-inequality on 𝑒−𝑉 [50], whereas
our work requires 𝑉 to be dissipative. Notably, our approach holds a significant advantage over [44]
in terms of simplicity: The result of [44] is only applicable to a highly specific and fairly complicated
step-size rule (see [44, Cor 2]), whereas our sole requirement on 𝛾𝑘+1 is the standard Assumption 5.
However, it should be noted that the bounds in [44] are non-asymptotic (albeit doubly-exponential in
𝑁 and exponential in 𝑘), while we can only handle asymptotic convergence.
Remark. It is worth mentioning that Corollary 2 can be straightforwardly extended to the Stochastic
Particle-Optimization Sampling algorithm of Zhang et al. [53], which is identical to SVGD but
includes a constant diffusion term 𝜎 > 0. Since the analysis remains the same, we omit the details.

4.3 Two-Player Zero-sum Continuous Games

Min-max learning appears in several important machine learning tasks such as Generative Adversarial
Networks [18] and adversarial training [35]. These learning problems can be formulated as a
continuous zero-sum game between a min-player and a max-player. The min-player selects strategies
from the set X ⊂ ℝ𝑑 , while the max-player selects strategies from the set Y ⊂ ℝ𝑑 , with the goal of
finding a saddle point of a function 𝐾 (𝑥, 𝑦):

min
𝑥∈X

max
𝑦∈Y

𝐾 (𝑥, 𝑦). (14)

However, solving (14) becomes challenging and sometimes impossible when 𝐾 is non-convex in
𝑥 and non-concave in 𝑦, as a solution to (14) may not even exist. To address this issue, mixed
Nash equilibriums (MNEs) are introduced, where the pure strategies are replaced by probability
distributions over the sets of strategies, which exist under mild assumptions on 𝐾 [13, 17].

Specifically, an MNE is represented by a pair of measures (𝜇★, 𝜈★) ∈ 𝒫2 (X ) ×𝒫2 (Y), forming a
saddle point of the functional 𝐸 (𝜇, 𝜈) B

∬
𝐾 (𝑥, 𝑦)𝜇(𝑑𝑥)𝜈(𝑑𝑦). The quest for efficient solutions to

the MNE problem in machine learning has led to the development of particle-based methods that
offer approximate solutions [13, 20, 34]. However, the existing studies have primarily focused on
analyzing the continuous-time dynamics of these methods. Below, we shift our focus to the more
practical setting of the discrete-time system of interacting particles in these work:{

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘
− 𝛾𝑘+1

1
𝑁

∑
𝑗 ∇𝑥𝐾 (𝑥𝑖

𝑘
, 𝑦

𝑗

𝑘
) +

√︁
2𝜏𝛾𝑘+1 𝜉

𝑖
𝑘+1

𝑦𝑖
𝑘+1 = 𝑦𝑖

𝑘
+ 𝛼𝛾𝑘+1

1
𝑁

∑
𝑗 ∇𝑦𝐾 (𝑥 𝑗

𝑘
, 𝑦𝑖

𝑘
) +

√︁
2𝛼𝜏𝛾𝑘+1 𝜁

𝑖
𝑘+1

, (GDA𝑘 )

where 𝜉𝑖
𝑘+1 and 𝜁 𝑖

𝑘+1 are independent standard Gaussians, 𝜏 > 0 is a hyperparameter chosen by the
user, and 𝛼 is the scale difference between the two players [34]. We will additionally consider the
optimistic version of (GDA𝑘 ) in [20], which has shown empirical benefits over (GDA𝑘 ):

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘
− 𝛾𝑘+1

1
𝑁

∑
𝑗

(
2∇𝑥𝐾 (𝑥𝑖

𝑘
, 𝑦

𝑗

𝑘
) − ∇𝑥𝐾 (𝑥𝑖

𝑘−1, 𝑦
𝑗

𝑘−1)
)
+
√︁

2𝜏𝛾𝑘+1 𝜉
𝑖
𝑘+1

𝑦𝑖
𝑘+1 = 𝑦𝑖

𝑘
+ 𝛼𝛾𝑘+1

1
𝑁

∑
𝑗

(
2∇𝑦𝐾 (𝑥 𝑗

𝑘
, 𝑦𝑖

𝑘
) − ∇𝑦𝐾 (𝑥 𝑗

𝑘−1, 𝑦
𝑖
𝑘−1)

)
+
√︁

2𝛼𝜏𝛾𝑘+1 𝜁
𝑖
𝑘+1.

(OGDA𝑘 )

At first glance, it may seem that (GDA𝑘 ) and (OGDA𝑘 ) are distinct algorithms that cannot be analyzed
together. However, our subsequent corollary reveals that these systems actually converge to the same
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continuous-time dynamics:{
𝑑𝑋 𝑖

𝑡 = − 1
𝑁

∑
𝑗 ∇𝑥𝐾 (𝑋 𝑖

𝑡 , 𝑌
𝑗
𝑡 ) 𝑑𝑡 +

√
2𝜏𝑑𝑊 𝑖

𝑡

𝑑𝑌 𝑖
𝑡 = 𝛼

𝑁

∑
𝑗 ∇𝑦𝐾 (𝑋 𝑗

𝑡 , 𝑌
𝑖
𝑡 ) 𝑑𝑡 +

√
2𝛼𝜏𝑑𝐵𝑖

𝑡

, (GDA𝑡 )

where𝑊 𝑖
𝑡 and 𝐵 𝑗

𝑡 are collections of i.i.d. Brownian motions. The key enabling factor for this unified
treatment is to allow for a non-zero bias in the algorithmic template (SAA).

To facilitate the analysis, we introduce a pairing of players’ particles by setting 𝑄𝑖
𝑡 B (𝑋 𝑖

𝑡 , 𝑌
𝑖
𝑡 ) ∈ ℝ2𝑑 ,

and define the drift 𝑏 : ℝ2𝑑 ×𝒫2 (ℝ2𝑑) → ℝ2𝑑 as

𝑏(𝑞, 𝜇) B
∫ (

−∇𝑥𝐾 (𝑞1, 𝑞
′
2)

𝛼 ∇𝑦𝐾 (𝑞′1, 𝑞2)

)
𝜇(𝑑𝑞′), 𝑞 = (𝑞1, 𝑞2),

and the diffusion 𝜎(𝑞, 𝜇) B
√

2𝜏 diag(𝐼𝑑×𝑑 ,
√
𝛼 𝐼𝑑×𝑑). By doing so, we can then cast (GDA𝑡 ) in

template of (Sys-SDE).
Corollary 3. Assume that (1) ∇𝑥𝐾 and ∇𝑦𝐾 are Lipschitz, and (2) ∇𝑥𝐾 and −∇𝑦𝐾 are dissipative,
or (2’) the domains X and Y are bounded. Then the algorithms (GDA𝑘 ) and (OGDA𝑘 ) converge in
W2 to the same limits of (GDA𝑡 ).

We note that the assumptions in (3) are mild and are even required for analying the continuous-time
dynamics; see e.g., [34]. Consequently, our Corollary 3 provides a rigorous foundation for the
consideration of continuous-time dynamics in existing studies such as [13, 20, 34].
Remark. The schemes (GDA𝑘 ) and (OGDA𝑘 ) above rely on simultaneous updates, i.e., from (𝑥𝑘 , 𝑦𝑘 ),
one obtains (𝑥𝑘+1, 𝑦𝑘+1). However, empirical evidence suggests that alternating updates i.e., fol-
lowing (𝑥𝑘 , 𝑦𝑘 ) → (𝑥𝑘+1, 𝑦𝑘 ) → (𝑥𝑘+1, 𝑦𝑘+1), often preforms better. Our framework allows for this
flexibility, as it is easy to cast the alternating (GDA𝑘 ) and (OGDA𝑘 ) as stochastic approximation
schemes satisfying Assumption 4, see [24, Proposition 4] for an example of this argument.

4.4 Kinetic Equations

In this section, we study the kinetic equations defined on the space of probability measures. Initially
emerging from the physics community, these equations have recently gained attention in the machine
learning community due to their connection to Wasserstein gradient flows [15, 32, 39, 40, 48, 49, 52].
Here, we denote 𝜌 as a probability density, and we examine three distinct “energy” functionals: an
internal energy U , a potential energy V , and an interaction energy W . These functionals are defined
as follows:

U (𝜌) =
∫
𝑈 (𝜌(𝑥)) 𝑑𝑥, V (𝜌) =

∫
𝑉 (𝑥) 𝜌(𝑑𝑥), W (𝜌) = 1

2

∬
𝑊 (𝑥 − 𝑦) 𝜌(𝑑𝑥)𝜌(𝑑𝑦). (15)

The most interesting scenario is when 𝑈 (𝑠) = 𝑠 log 𝑠 represents the entropy, in which case the
Wasserstein gradient flow with finite particles becomes [5, 7]:

𝑑𝑋 𝑖
𝑡 = −∇𝑉 (𝑋 𝑖

𝑡 ) 𝑑𝑡 − 1
𝑁

∑𝑁
𝑗=1 ∇𝑊 (𝑋 𝑖

𝑡 − 𝑋
𝑗
𝑡 ) 𝑑𝑡 +

√
2 𝑑𝑊 𝑖

𝑡 , 𝑖 = 1, . . . , 𝑁. (Kin-SDE)

By setting 𝑏(𝑥, 𝜇) B −∇𝑉 (𝑥) − (∇𝑊 ∗ 𝜇) (𝑥) and 𝜎(𝑥, 𝜇) ≡
√

2, we again see that (Kin-SDE) is a
special case of (Sys-SDE).

In the physics community, the equation is commonly simulated using a system of interacting particles
through the proximal point method [6, 48]:

𝑥𝑖𝑘+1 = 𝑥𝑖𝑘 − 𝛾𝑘+1

(
∇𝑉 (𝑥𝑖𝑘+1) + 1

𝑁

∑𝑁
𝑗=1 ∇𝑊 (𝑥𝑖

𝑘+1 − 𝑥
𝑗

𝑘
)
)
+
√︁

2𝛾𝑘+1 𝜉
𝑖
𝑘+1. (Kin-Prox)

Note that the right-hand side of (Kin-Prox) involves the next iterates 𝑥𝑖
𝑘+1 so that, as opposed to

the simple Euler discretization, it is an implicit rule. The key factor that enables the application of
our framework to these implicit schemes is the observation that (Kin-Prox) can be formulated as a
stochastic approximation scheme in (SAA) by incorporating a non-zero bias term; see Appendix C.
Our next result provides a rigorous guarantee for these methods:
Corollary 4. Assume that (1) 𝑉 is dissipative and ∇𝑉 is 𝐿-Lipschitz, (2) 𝑊 is symmet-
ric and ∇𝑊 is 𝐿-Lipschitz, (3) There exists some 𝑀𝑊 ≥ 0 such that for all 𝑥, 𝑦 ∈ ℝ𝑑 ,
〈∇𝑊 (𝑥) − ∇𝑊 (𝑦), 𝑥 − 𝑦〉 ≥ −𝑀𝑊 . Then, the iterates (Kin-Prox) converge in W2 to the same
limit sets as (Kin-SDE).
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We remark that the convergence of (Kin-Prox) under these standard assumptions is known [15, 48].
However,we emphasize that the aforementioned results only apply to deterministic updates, while
our proof is robust enough to accommodate updates with finite-variance noise. This flexibility sets
our approach apart, allowing for a broader range of practical applications.

5 Conclusion and Future Directions

In conclusion, our work has successfully bridged the gap between continuous- and discrete-time
schemes by establishing the convergence of discrete-time algorithms to their continuous-time coun-
terparts, drawing inspiration from dynamical system theory. This achievement offers a flexible
framework that can accommodate practical schemes and unify tasks from various domains, including
machine learning, game theory, and physics. By introducing a comprehensive framework for analyz-
ing stochastic approximation schemes, providing convergence proofs, and presenting easily verifiable
conditions at the finite particle level, our contributions enhance the understanding and application of
stochastic approximation schemes for simulating interacting particle systems.

In our future works, we will explore the exciting possibilities offered by the dynamical system theory
of [4] to derive convergence rates through 𝜆-pseudotrajectories. This avenue of research will allow
us to establish exponential convergence for dynamics using smaller step-sizes after a “burn-in” time,
thereby sharpening our understanding for the long-term behavior of these practical schemes.

Additionally, we aim to relax the Lipschitzness assumption on the drift and expand the scope of
guaranteed algorithms, such as the Ensemble Kalman Sampler [16]. We also aim to explore further
applications in natural sciences, including stochastic mean-field FitzHugh-Nagumo models and
networks of Hodgkin-Huxley neurons [1]. These models are important because they provide a
mathematical description of neuronal dynamics, contribute to our understanding of neurological
disorders, and inform the development of brain-computer interfaces. By leveraging our novel
framework, we hope to offer rigorous guarantees for the algorithms employed in these domains while
also designing new, efficient approaches that can support computational neuroscience research.
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A Properties of Mean-field Transfer to Particle System

Lemma A.1. The Assumptions 1–3 transfer seamlessly to the aggregated notions of drift and diffusion
given in (7):

1. If 𝑏(·, ·) and 𝜎(·, ·) satisfy Assumption 1, then 𝒃(·) and 𝝈(·) are 𝐿 (
√
𝑁 + 1)-Lipschitz.

2. If 𝑏(·, ·) satisfies Assumption 2, then 𝒃(·) satisfies the same condition with the constant
√
𝑁𝐶𝑣 .

3. If 𝜎(·, ·) satisfies Assumption 3, then the same holds for 𝝈(·) with constant
√
𝑁𝐾 .

Proof. We prove these statements separately:

1. Let 𝑥, 𝑦 ∈ (ℝ𝑑)⊗𝑁 and define 𝑎𝑖 = |𝑥𝑖 − 𝑦𝑖 |. First, notice that W2
2 (𝜇𝑥 , 𝜇𝑦) ≤ 1

𝑁

∑
𝑎2
𝑖
, as the

average on the right-hand-side corresponds to the specific coupling of 𝑥𝑖 ↔ 𝑦𝑖 . Now, observe that

|𝒃(𝑥) − 𝒃(𝑦) |2 =
∑︁
𝑖

|𝑏(𝑥𝑖 , 𝜇𝑥) − 𝑏(𝑦𝑖 , 𝜇𝑦) |2

≤ 𝐿2 ∑︁
𝑖

(
𝑎𝑖 +W2 (𝜇𝑥 , 𝜇𝑦)

)2
≤ 𝐿2 ∑︁

𝑖

(
𝑎𝑖 +

√︃
1
𝑁

∑︁
𝑗
𝑎2
𝑗

)2
.

Let a = (𝑎1, . . . , 𝑎𝑁 ), and notice that the last quantity above is equal to

𝐿2
����a +

√︃
1
𝑁
|a| · 1

����2 = 𝐿2 |a|2
���� a|a| +√︃

1
𝑁

· 1
����2 ≤ 𝐿2 |a|2𝑁

(
1 +

√︃
1
𝑁

)2
.

This means that
|𝒃(𝑥) − 𝒃(𝑦) | ≤ 𝐿 (

√
𝑁 + 1) |𝑥 − 𝑦 |.

For the diffusion, it suffices to notice that

‖𝝈(𝑥) − 𝝈(𝑦)‖2
F =

∑︁
𝑖

‖𝜎(𝑥𝑖 , 𝜇𝑥) − 𝜎(𝑦𝑖 , 𝜇𝑦)‖2
F.

The rest of the proof is similar to the one for the drift.

2. We have

1
𝑁
〈𝑥, 𝒃(𝑥)〉 = 1

𝑁

𝑁∑︁
𝑖=1

〈𝑥𝑖 , 𝑏(𝑥𝑖 , 𝜇𝑥)〉 ≤ 𝐶𝑣 (
1
𝑁

∑︁
|𝑥𝑖 | + 1) ≤ 𝐶𝑣 (

1
√
𝑁

√︃∑︁
|𝑥𝑖 |2 + 1),

where in the last inequality, we used Cauchy-Schwarz. This implies 〈𝑥, 𝒃(𝑥)〉 ≤ 𝐶𝑣

√
𝑁 ( |𝑥 | + 1).

3. It is easy to see that

‖𝝈(𝑥)‖2
𝐹 = tr(𝝈(𝑥)>𝝈(𝑥)) =

𝑁∑︁
𝑖=1

tr(𝜎(𝑥𝑖 , 𝜇𝑥)>𝜎(𝑥𝑖 , 𝜇𝑥)) ≤ 𝑁𝐾2. �

Lemma A.2. If 𝑏(·, ·) is (𝛼, 𝛽)-dissipative on average, then 𝒃(·) is (𝛼, 𝑁𝛽)-dissipative in the usual
sense, that is, for all 𝑥 ∈ (ℝ𝑑)⊗𝑁 , 〈𝑥, 𝒃(𝑥)〉 ≤ −𝛼 |𝑥 |2 + 𝑁𝛽.

Proof. Observe that for 𝑥 ∈ (ℝ𝑑)⊗𝑁 we have

1
𝑁
〈𝑥, 𝒃(𝑥)〉 = 1

𝑁

𝑁∑︁
𝑖=1

〈𝑥𝑖 , 𝑏(𝑥𝑖 , 𝜇𝑥)〉 = 𝔼𝜇𝑥
[〈𝑦, 𝑏(𝑦, 𝜇𝑥)〉] ≤ −𝛼 𝔼𝜇𝑥

|𝑦 |2 + 𝛽

= −𝛼 1
𝑁

𝑁∑︁
𝑖=1

|𝑥𝑖 |2 + 𝛽 = −𝛼 1
𝑁
|𝑥 |2 + 𝛽.

This means that 〈𝑥, 𝒃(𝑥)〉 ≤ −𝛼 |𝑥 |2 + 𝑁𝛽. �
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B The Main Theorem

B.1 Proof of Theorem 1

Recall the Picard process (Picard):

Π
(𝑡)
𝑠 = 𝑋𝑡 +

∫ 𝑠

0
𝒃(𝑋𝑡+𝑢) 𝑑𝑢 +

∫ 𝑠

0
𝝈(𝑋𝑡+𝑢) 𝑑𝑊 (𝑡)

𝑢 .

We break down the proof into four steps: first, we prove that the Picard process is close to the
flow (Flow), and then we bound the distance between the Picard process and the interpolation (Int).
We then conclude the proof of the WAPT property. Lastly, we prove that stability is implied by
dissipativity.

§ Distance of Picard from Flow.

𝔼|Π(𝑡)
𝑠 −Φ

(𝑡)
𝑠 |2 ≤ 2𝔼

����∫ 𝑠

0
𝒃(𝑋𝑡+𝑢) − 𝒃(Φ(𝑡)

𝑢 ) 𝑑𝑢
����2 + 2𝔼

����∫ 𝑠

0
𝝈(𝑋𝑡+𝑢) − 𝝈(Φ(𝑡)

𝑢 ) 𝑑𝑊 (𝑡)
𝑢

����2
≤ 𝑇

∫ 𝑠

0
𝔼|𝒃(Φ(𝑡)

𝑢 ) − 𝒃(𝑋𝑡+𝑢) |2 𝑑𝑢 + 2𝔼
∫ 𝑠

0
‖𝝈(𝑋𝑡+𝑢) − 𝝈(Φ(𝑡)

𝑢 )‖2
F 𝑑𝑢

≤ 2(𝑇 + 1)𝐿2
∫ 𝑠

0
𝔼|Φ(𝑡)

𝑢 − 𝑋𝑡+𝑢 |2

where we used Lipschitzness of 𝒃 and 𝝈 (implied by Assumption 1 and Lemma A.1), Itô’s isometry
(see, e.g., [54, Lemma 3.4]), and Lemma A.1.

§ Distance of Picard to Interpolation. We place a bar above a symbol to denotes its piecewise
constant interpolation.

𝔼|Π(𝑡)
𝑠 − 𝑋𝑡+𝑠 |2 = 𝔼

����∫ 𝑡+𝑠

𝑡

𝒃(𝑋𝑢) − 𝒃(𝑋𝑢) 𝑑𝑢 +
∫ 𝑡+𝑠

𝑡

𝝈(𝑋𝑢) − 𝝈(𝑋𝑢) 𝑑𝑊 (𝑡)
𝑢 + Δ𝑃 (𝑡, 𝑠)

����2
≤ 3(𝑇 + 1)𝐿2

∫ 𝑡+𝑠

𝑡

𝔼|𝑋𝑢 − 𝑋𝑢 |2 𝑑𝑢 + 3𝔼
��Δ𝑃 (𝑡, 𝑠)

��2,
where Δ𝑃 (𝑡, 𝑠) is the accumulated noise and bias from time 𝑡 to time 𝑡 + 𝑠, which is equal to

Δ𝑃 (𝑡, 𝑠) B
𝑛−1∑︁
𝑖=𝑘

𝛾𝑖+1𝑃𝑖+1 + (𝑡 + 𝑠 − 𝜏𝑛) 𝔼[𝑃𝑛+1 |ℱ𝑡+𝑠] − (𝑡 − 𝜏𝑘 ) 𝔼[𝑃𝑘+1 |ℱ𝑡 ], (B.1)

with 𝑛 = 𝑚(𝑡 + 𝑠) and 𝑘 = 𝑚(𝑡). It is shown in [23] that lim𝑡→∞ 𝔼
��Δ𝑃 (𝑡, 𝑠)

��2 = 0, a.s.

Continuing to bound the inside of the integral, we have

𝔼|𝑋𝑡 − 𝑥𝑘 |2 ≤ 3(𝑡 − 𝜏𝑘 )2 (𝔼|𝒃(𝑥𝑘 ) |2 + 𝔼|𝑃𝑘+1 |2) + 3(𝑡 − 𝜏𝑘 ) 𝔼 tr(𝝈(𝑥𝑘 )>𝝈(𝑥𝑘 ))

where we used the fact that conditional expectation is a contraction in 𝐿2, and

𝔼|𝝈(𝑥𝑘 ) 𝜉𝑘+1 |2 = 𝔼 tr
(
𝜉>𝑘+1𝝈(𝑥𝑘 )>𝝈(𝑥𝑘 ) 𝜉𝑘+1

)
= 𝔼 tr

(
𝝈(𝑥𝑘 )>𝝈(𝑥𝑘 ) 𝜉𝑘+1𝜉

>
𝑘+1

)
= 𝔼 tr

(
𝝈(𝑥𝑘 )>𝝈(𝑥𝑘 ) 𝔼[𝜉𝑘+1𝜉

>
𝑘+1 |ℱ𝜏𝑘 ]

)
= 𝔼 tr

(
𝝈(𝑥𝑘 )>𝝈(𝑥𝑘 )

)
.

Moreover, by Assumption 3 we have 𝔼 tr(𝝈(𝑥𝑘 )>𝝈(𝑥𝑘 )) = O(1). We thus get by Lemma B.1

𝔼|𝑋𝑡 − 𝑥𝑘 |2 ≤ 3𝐶𝛾2
𝑘+1 (1/𝛾𝑘+1 + 1) + 3𝐶𝛾𝑘+1 = O(𝛾𝑘+1).

This implies

sup
𝑠∈[0,𝑇 ]

𝔼|Π(𝑡)
𝑠 − 𝑋𝑡+𝑠 |2 ≤ 𝐶𝑇2𝐿2 sup

𝑡≤𝑢≤𝑡+𝑇
𝛾𝑢 + 3𝔼

��Δ𝑃 (𝑡, 𝑇)
��2 C 𝐴𝑡 ,

with 𝐴𝑡 → 0 as 𝑡 → ∞, a.s.
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§ Concluding the proof of APT. By Grönwall inequality,

𝔼|𝑋𝑡+𝑠 −Φ
(𝑡)
𝑠 |2 ≤ 𝐶

∫ 𝑠

0
𝔼|𝑋𝑡+𝑢 −Φ

(𝑡)
𝑢 |2 + 𝐴𝑡 ≤ 𝐴𝑡 exp(𝑠𝐶) ≤ 𝐴𝑡 exp(𝑇𝐶) → 0

as 𝑡 → ∞. Since
W2

2 (law(𝑋𝑡+𝑠), law(Φ(𝑡)
𝑠 )) ≤ 𝔼|𝑋𝑡+𝑠 −Φ

(𝑡)
𝑠 |2,

we get the desired result.

§ Stability. Lemma A.2 implies that under dissipativity on average, the iterates are stable, and as in
[23, Theorem 3], we get the desired convergence result.

B.2 On Propagation of Chaos

Theorem 1 shows that the law 𝜇𝑘 of 𝑥𝑘 ∈ (ℝ𝑑)⊗𝑁 converges in the Wasserstein space to the limit-set
(or the internally chain-transitive (ICT) set) 𝑆 ⊂ 𝒫2 ((ℝ𝑑)⊗𝑁 ) of the corresponding flow:

lim
𝑘→∞

inf
𝜇∈𝑆

W2 (𝜇𝑘 , 𝜇) = 0.

By looking only at the first particle of 𝑥𝑘 , namely, 𝑥1
𝑘
, and given that the dynamics is exchangeable, it

follows that

W2
2 (𝜇𝑘 , 𝜇) = inf

𝜋

∫
|𝑥 − 𝑦 |2 𝜋(𝑑𝑥, 𝑑𝑦)

= inf
𝜋

(∫
|𝑥1 − 𝑦1 |2 𝜋1 (𝑑𝑥1, 𝑑𝑦1) + · · · +

∫
|𝑥𝑁 − 𝑦𝑁 |2 𝜋𝑁 (𝑑𝑥𝑁 , 𝑑𝑦𝑁 )

)
≥ inf

𝜋1

∫
|𝑥1 − 𝑦1 |2 𝜋1 (𝑑𝑥1, 𝑑𝑦1)

= W2
2 (law(𝑥1

𝑘 ),marginal1 (𝜇)),

where 𝜋1 (𝑑𝑥1, 𝑑𝑦1) =
∫
𝜋(𝑥, 𝑦) 𝑑𝑥2𝑑𝑦2 · · · 𝑑𝑥𝑁 𝑑𝑦𝑁 , and we used the exchangability in deducing that

the law of 𝑦𝑖 are the same as the first marginal of 𝜇, for all 𝑖 = 1, . . . , 𝑁 . Hence, as the limit-set 𝑆′ of
the first component of the SDE 𝑋1

𝑡 is a subset of the marginal of 𝑆,

lim
𝑘→∞

inf
𝜈∈𝑆′

W2 (law(𝑥1
𝑘 ), 𝜈) ≤ lim

𝑘→∞
inf

𝜈∈marginal1 (𝑆)
W2 (law(𝑥1

𝑘 ), 𝜈) = 0.

This means that the first particle converges in law to the ICT sets of the corresponding SDE. Assuming
a uniform propagation of chaos, we also know that the law of 𝑋1

𝑡 has a distance of 𝑂 (1/𝑁) from the
mean-field equation, and hence, we get that the law of the particles following the discrete algorithm
have controllable distance from the mean-field dynamics.

B.3 Supporting Lemmas

Lemma B.1. Suppose Assumptions 1–5 hold. One has 𝔼|𝒃(𝑥𝑘 ) |2 = O(1/𝛾𝑘+1), 𝔼|𝜀𝑘+1 |2 = O(𝛾𝑘+1),
and 𝔼|𝑃𝑘+1 |2 = O(1).

Proof. We repeatedly use the fact that 𝔼|𝒃(𝑥𝑘 ) |2 ≤ 2𝐿2 𝔼|𝑥𝑘 |2 + 𝔼|𝒃(𝑥0) |2 C 2𝐿2 𝔼|𝑥𝑘 |2 + 𝐶0. By
Assumption 4, 𝔼|𝜀𝑘+1 |2 ≤ O(𝛾2

𝑘+1)𝑎𝑘 +O(𝛾𝑘+1), and we have

𝔼|𝑃𝑘+1 |2 ≤ 2𝔼|𝜀𝑘+1 |2 + 2𝔼|𝑈𝑘+1 |2 = O(𝛾2
𝑘+1)𝑎𝑘 +O(1). (B.2)

Moreover, as
√
𝑝 + 𝑞 ≤ √

𝑝 + √
𝑞, we have√︁
𝔼|𝑃𝑘+1 |2 ≤ O(𝛾𝑘+1)

√
𝑎𝑘 +O(1). (B.3)

Assumption 3 also implies that 𝔼|𝝈(𝑥𝑘 )𝜉𝑘+1 |2 ≤ 𝐶𝜎 .
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Define 𝑎𝑘 B 𝔼|𝑥𝑘 |2. Then,

𝑎𝑘+1 − 𝑎𝑘 = 𝛾2
𝑘+1 𝔼|𝒃(𝑥𝑘 ) + 𝑃𝑘+1 |2 + 𝛾𝑘+1 𝔼|𝝈(𝑥𝑘 )𝜉𝑘+1 |2 + 2𝛾𝑘+1 𝔼〈𝑥𝑘 , 𝒃(𝑥𝑘 ) + 𝑃𝑘+1〉

+ 2𝛾1/2
𝑘+1 𝔼〈𝑥𝑘 ,𝝈(𝑥𝑘 )𝜉𝑘+1〉 + 2𝛾3/2

𝑘+1 𝔼〈𝒃(𝑥𝑘 ) + 𝑃𝑘+1,𝝈(𝑥𝑘 )𝜉𝑘+1〉
≤ 2𝐿2𝛾2

𝑘+1𝑎𝑘 + 𝛾
2
𝑘+1𝐶0 + 2𝛾2

𝑘+1 𝔼|𝑃𝑘+1 |2 + 𝛾𝑘+1𝐶𝜎 + 2𝛾𝑘+1𝐶𝑣 (
√
𝑎𝑘 + 1)

+ 2𝛾𝑘+1
√
𝑎𝑘

√︁
𝔼|𝑃𝑘+1 |2 + 2𝛾3/2

𝑘+1

√︁
𝐶𝜎

√︁
𝔼|𝑃𝑘+1 |2 (B.4)

Plugging the bounds from (B.2) and (B.3) into (B.4) gives

𝑎𝑘+1 − 𝑎𝑘 ≤ O(𝛾2
𝑘+1)𝑎𝑘 +O(𝛾𝑘+1)

√
𝑎𝑘 +O(𝛾𝑘+1)

C 𝑃𝛾2
𝑘+1𝑎𝑘 +𝑄𝛾𝑘+1

√
𝑎𝑘 + 𝑅𝛾𝑘+1,

for some 𝑃,𝑄, 𝑅 > 0 that do not depend on 𝑘 .

We now prove 𝑎𝑘 ≤ 𝑀/𝛾𝑘+1 for some fixed 𝑀 > 0 via induction. Suppose this is the case for 𝑘 . For
𝑘 + 1 we have

𝑎𝑘+1 ≤ (𝑃𝛾2
𝑘+1 + 1)𝑎𝑘 +𝑄𝛾𝑘+1

√
𝑎𝑘 + 𝑅𝛾𝑘+1

≤ 𝑀 (𝑃𝛾𝑘+1 + 1/𝛾𝑘+1) +
√
𝑀𝑄

√
𝛾𝑘+1 + 𝑅𝛾𝑘+1

!
≤ 𝑀/𝛾𝑘+2.

The last inequality is equivalent to the fact that the following quadratic equation (in
√
𝑀) has a

bounded largest root (and the bound shall not depend on 𝑘):

𝑀 (𝑃𝛾𝑘+1 + 1/𝛾𝑘+1 − 1/𝛾𝑘+2) +
√
𝑀𝑄

√
𝛾𝑘+1 + 𝑅𝛾𝑘+1

Notice that by Assumption 5, the leading coefficient is negative, and the larger root is computed as

𝑄
√
𝛾𝑘+1 +𝑄

√
𝛾𝑘+1 +

√︃
4𝑅(𝛾𝑘+1/𝛾𝑘+2 − 𝑃𝛾2

𝑘+1 − 1)
2(1/𝛾𝑘+2 − 𝑃𝛾𝑘+1 − 1/𝛾𝑘+1)

≤
2𝑄√𝛾𝑘+1 + 2

√
𝑅
√︁
𝛾𝑘+1/𝛾𝑘+2

2𝛾𝑘+1/𝛾𝑘+2
≤ 2𝑄

√
𝛾𝑘+2 +

√
𝑅
√︁
𝛾𝑘+2/𝛾𝑘+1 < 2𝑄 +

√
𝑅 C 𝑀.

The claim for 𝒃 follows by Lipschitzness, from which the claim for the bias and perturbation follows
directly. �

C Proofs of Results for Applications

C.1 Two-Layer Neural Networks and Mean-field Langevin

Proof of Corollary 1. Smoothness of drift: We start by showing Lipschitzness with respect to the
measure parameter of the drift. First, observe that ∇𝜃𝑊 (𝜃, ·) is Lipschitz:

|∇𝜃𝑊 (𝜃, 𝜃 ′) − ∇𝜃𝑊 (𝜃, 𝜃 ′′) | = |𝔼𝑧∼D [(𝜑(𝑧, 𝜃 ′) − 𝜑(𝑧, 𝜃 ′′)) ∇𝜃𝜑(𝑧, 𝜃)] |
= |𝔼𝑧∼D [(𝜅(〈𝑧, 𝜃 ′〉) − 𝜅(〈𝑧, 𝜃 ′′〉)) 𝜅′(〈𝑧, 𝜃〉) 𝑧] |
≤ 𝐶 |𝜃 ′ − 𝜃 ′′ |,

due to the boundedness of 𝜅′ and 𝑧, and Lipschitzness of 𝜅.

Now, consider 𝜇, 𝜈 ∈ 𝒫2 (ℝ𝑑) and let 𝜋 be the optimal coupling (in W2 sense) between them. Then,
for a fixed 𝜃 ∈ ℝ𝑑 ,

|𝑏(𝜃, 𝜇) − 𝑏(𝜃, 𝜈) |2 =

����∫ ∇𝜃𝑊 (𝜃, 𝑝) − ∇𝜃𝑊 (𝜃, 𝑞) 𝜋(𝑑𝑝, 𝑑𝑞)
����2

≤
∫

|∇𝜃𝑊 (𝜃, 𝑝) − ∇𝜃𝑊 (𝜃, 𝑞) |2 𝜋(𝑑𝑝, 𝑑𝑞)

≤
∫
𝐶2 |𝑝 − 𝑞 |2 𝜋(𝑑𝑝, 𝑑𝑞)

= 𝐶2𝑊2
2 (𝜇, 𝜈).
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Next, we show for a fixed measure 𝜇 ∈ 𝒫2 (ℝ𝑑), 𝑏(·, 𝜇) is Lipschitz in the first input.

|𝑏(𝜃, 𝜇) − 𝑏(𝜃 ′, 𝜇) | ≤
����∫ ∇𝜃𝑊 (𝜃, 𝑝) − ∇𝜃𝑊 (𝜃 ′, 𝑝) 𝜇(𝑑𝑝)

���� + |∇𝑉 (𝜃) − ∇𝑉 (𝜃 ′) |.

Let us treat each term separately. We have

|∇𝜃𝑊 (𝜃, 𝑝) − ∇𝜃𝑊 (𝜃 ′, 𝑝) | = |𝔼𝑧∼D [𝜑(𝑧, 𝑝) (∇𝜃𝜑(𝑧, 𝜃) − ∇𝜃𝜑(𝑧, 𝜃 ′))] |
= |𝔼𝑧∼D [𝜅(〈𝑝, 𝑧〉)(𝜅′(〈𝑧, 𝜃〉) − 𝜅′(〈𝑧, 𝜃 ′〉)) 𝑧] |
≤ 𝐶 𝔼𝑧∼D [|𝑧 | |𝜃 − 𝜃 ′ | 𝑧]
≤ 𝐶 |𝜃 − 𝜃 ′ |.

Similarly,

|∇𝑉 (𝜃) − ∇𝑉 (𝜃 ′) | =
��𝔼(𝑦,𝑧)∼D [𝑦𝑧(𝜅′(〈𝜃, 𝑧〉) − 𝜅′(〈𝜃 ′, 𝑧〉))D(𝑑𝑦, 𝑑𝑧)]

�� ≤ 𝐶 |𝜃 − 𝜃 ′ |.
Thus,

|𝑏(𝜃, 𝜇) − 𝑏(𝜃 ′, 𝜈) | ≤ |𝑏(𝜃, 𝜇) − 𝑏(𝜃, 𝜈) | + |𝑏(𝜃, 𝜈) − 𝑏(𝜃 ′, 𝜈) | ≤ 𝐿 ( |𝜃 − 𝜃 ′ | +W2 (𝜇, 𝜈)),

showing 𝑏 satisfies Assumption 1.

Growth control: First, let us calculate∫
〈𝜃, 𝑏(𝜃, 𝜇)〉 𝜇(𝑑𝜃) =

∬
𝜑(𝑧, 𝜃 ′)〈𝜃,∇𝜃𝜑(𝑧, 𝜃)〉D(𝑑𝑧)𝜇(𝑑𝜃 ′)𝜇(𝑑𝜃)

−
∬

𝑦 〈𝜃,∇𝜃𝜑(𝑧, 𝜃)〉D(𝑑𝑦, 𝑑𝑧)𝜇(𝑑𝜃)

− 𝜆
∫

|𝜃 |2 𝜇(𝑑𝜃)

=

∬
𝜑(𝑧, 𝜃 ′)𝜅′(〈𝑧, 𝜃〉)〈𝜃, 𝑧〉D(𝑑𝑧)𝜇(𝑑𝜃 ′)𝜇(𝑑𝜃)

−
∬

𝑦 𝜅′(〈𝑧, 𝜃〉)〈𝜃, 𝑧〉D(𝑑𝑦, 𝑑𝑧)𝜇(𝑑𝜃)

− 𝜆
∫

|𝜃 |2 𝜇(𝑑𝜃).

As 𝜑, 𝜅′, and supp(D) are bounded, we can see that����∫ 〈𝜃, 𝑏(𝜃, 𝜇)〉 𝜇(𝑑𝜃)
���� ≤ 𝐶∬

|𝜃 | |𝑧 |D(𝑑𝑧)𝜇(𝑑𝜃) + 𝐶 ′
∫

|𝜃 | |𝑧 |D(𝑑𝑧)𝜇(𝑑𝜃) ≤ 𝐶
∫

|𝜃 | 𝜇(𝑑𝜃),

thus, satisfying Assumption 2.

Dissipativity on average: Here we use the extra assumption that |𝑎 𝜅′(𝑎) | is bounded. We directly
bound the terms 𝜅′(〈𝜃, 𝑧〉)〈𝜃, 𝑧〉 above and obtain∫

〈𝜃, 𝑏(𝜃, 𝜇)〉 𝜇(𝑑𝜃) ≤ −𝜆
∫

|𝜃 |2 𝜇(𝑑𝜃) + 𝐶. �

C.2 Stein Variational Gradient Descent

Proof of Corollary 2. While the first term in the drift is standard to work with (see Section 4.4), it is
the second term in the drift that makes it difficult to analyze. Specifically, we prove the dissipativity on
average only for empirical measures. While this would be enough for our purposes (and Theorem 1
goes through), it is an interesting future direction to see when does dissipativity hold in a more
general setup. Moreover, for simplicity, we only consider the case where the kernel 𝐾 is of the form
𝐾 (𝑥, 𝑦) = ℎ(𝑥 − 𝑦), for some function ℎ.

Below, we first prove that 𝑏 is dissipative on average, which implies that the law of the iterates will
be in a compact subset of 𝒫2 (ℝ𝑑). Then, we show that 𝑏 is smooth on this compact subset.
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Dissipativity on average: Due to 𝐾 being symmetric, ∇2𝐾 (𝑥, 𝑦) = −∇2𝐾 (𝑦, 𝑥). We thus have∬
〈𝑥 − 𝑦,∇2𝐾 (𝑥, 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦)

=

∬
〈𝑥,∇2𝐾 (𝑥, 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦) −

∬
〈𝑦,∇2𝐾 (𝑥, 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦)

=

∬
〈𝑥,∇2𝐾 (𝑥, 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦) +

∬
〈𝑦,∇2𝐾 (𝑦, 𝑥)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦)

= 2
∬

〈𝑥,∇2𝐾 (𝑥, 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦).

Thus, ∬
〈𝑥,∇2𝐾 (𝑥, 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦) = 1

2

∬
〈𝑥 − 𝑦,∇2𝐾 (𝑥, 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦) ≤ 𝜂

by Cauchy-Schwarz and the assumption that |∇2𝐾 (𝑥, 𝑦) | ≤ 𝜂/|𝑥 − 𝑦 |. With similar arguments, and
using dissipativity of 𝑉 , we have∬

〈𝑥,∇𝑉 (𝑦)〉𝐾 (𝑥, 𝑦) 𝜇(𝑑𝑥)𝜇(𝑑𝑦)

=

∬
〈𝑥,∇𝑉 (𝑥)〉𝐾 (𝑥, 𝑦) 𝜇(𝑑𝑥)𝜇(𝑑𝑦) − 1

2

∬
〈𝑥 − 𝑦,∇𝑉 (𝑥) − ∇𝑉 (𝑦)〉𝐾 (𝑥, 𝑦) 𝜇(𝑑𝑥)𝜇(𝑑𝑦)

≥ 𝛼
∬

|𝑥 |2𝐾 (𝑥, 𝑦) 𝜇(𝑑𝑥)𝜇(𝑑𝑦) − 𝛽‖𝐾 ‖∞

− 1
2
𝐿

∬
|𝑥 − 𝑦 |2𝐾 (𝑥, 𝑦) 𝜇(𝑑𝑥)𝜇(𝑑𝑦)

≥ 𝛼
∬

|𝑥 |2𝐾 (𝑥, 𝑦) 𝜇(𝑑𝑥)𝜇(𝑑𝑦) − 𝛽‖𝐾 ‖∞ + 𝐿𝜂
2
.

As 𝐾 (𝑥, 𝑥) = ℎ(0) and 𝐾 (𝑥, 𝑦) > 0 for all 𝑥, 𝑦, and that 𝜇 is an empirical measure 𝜇 = 1
𝑁

∑𝑁
𝑖=1 𝛿𝑥𝑖 ,

the last quantity is equal to
1
𝑁2

∑︁
𝑖

|𝑥𝑖 |2
∑︁
𝑗

𝐾 (𝑥𝑖 , 𝑥 𝑗 ) ≥
1
𝑁2

∑︁
𝑖

|𝑥𝑖 |2𝐾 (𝑥𝑖 , 𝑥𝑖) ≥
ℎ(0)
𝑁

∫
|𝑥 |2 𝜇(𝑑𝑥).

In total, we derive that 𝑏 is dissipative on average.

Smoothness of the drift: We have, for 𝜇 in a compact set of 𝒫2 (ℝ𝑑)
|𝑏(𝑥, 𝜇) − 𝑏(𝑥 ′, 𝜇) |

≤
����∫ ∇2𝐾 (𝑥, 𝑦) − ∇2𝐾 (𝑥 ′, 𝑦) 𝜇(𝑑𝑦)

���� + ����∫ (𝐾 (𝑥, 𝑦) − 𝐾 (𝑥 ′, 𝑦))∇𝑉 (𝑦) 𝜇(𝑑𝑦)
����

≤ 𝐿 |𝑥 − 𝑥 ′ |
(
1 +

∫
|∇𝑉 (𝑦) | 𝜇(𝑑𝑦)

)
≤ 𝐿 |𝑥 − 𝑥 ′ |

(
1 + 𝐶

∫
(1 + |𝑦 |2) 𝜇(𝑑𝑦)

)
< 𝐿 ′ |𝑥 − 𝑥 ′ |.

Moreover, take 𝜇, 𝜈 in the same compact set, and let 𝜋 be the optimal coupling (in W2 sense). Then,

|𝑏(𝑥, 𝜇) − 𝑏(𝑥, 𝜈) |2

≤ 2
����∫ ∇2𝐾 (𝑥, 𝑦) − ∇2𝐾 (𝑥, 𝑧) 𝜋(𝑑𝑦, 𝑑𝑧)

����2
+ 2

����∫ 𝐾 (𝑥, 𝑦)∇𝑉 (𝑦) − 𝐾 (𝑥, 𝑧)∇𝑉 (𝑧) 𝜋(𝑑𝑦, 𝑑𝑧)
����2

≤ 2𝐿2W2
2 (𝜇, 𝜈)

+ 2
����∫ 𝐾 (𝑥, 𝑦)∇𝑉 (𝑦) − 𝐾 (𝑥, 𝑧)∇𝑉 (𝑦) + 𝐾 (𝑥, 𝑧)∇𝑉 (𝑦) − 𝐾 (𝑥, 𝑧)∇𝑉 (𝑧) 𝜋(𝑑𝑦, 𝑑𝑧)

����2
≤ 2𝐿2W2

2 (𝜇, 𝜈) + 4(𝐿2 + 𝐿 ′2)W2
2 (𝜇, 𝜈). �
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C.3 Two-player Zero-sum Continuous Games

Proof of Corollary 3. Recall that

𝑏(𝑞, 𝜇) B
∫ (

−∇𝑥𝐾 (𝑞1, 𝑞
′
2)

𝛼 ∇𝑦𝐾 (𝑞′1, 𝑞2)

)
𝜇(𝑑𝑞′), 𝑞 = (𝑞1, 𝑞2).

Smoothness of drift: For a fixed 𝜇 ∈ 𝒫2 (ℝ𝑑)ℝ2𝑑 and 𝑞, 𝑟 ∈ ℝ2𝑑 we have

|𝑏(𝑞, 𝜇) − 𝑏(𝑟, 𝜇) |2 ≤
∫ ����(−∇𝑥𝐾 (𝑞1, 𝑞

′
2)

𝛼 ∇𝑦𝐾 (𝑞′1, 𝑞2)

)
−
(
−∇𝑥𝐾 (𝑟1, 𝑞

′
2)

𝛼 ∇𝑦𝐾 (𝑞′1, 𝑟2)

)����2 𝜇(𝑑𝑞′)
≤ 𝐿2 |𝑞1 − 𝑟1 |2 + 𝛼2𝐿2 |𝑞2 − 𝑟2 |2

≤ 𝐿2 |𝑞 − 𝑟 |2,
where we used 𝐿-Lipschitzness of ∇𝑥𝐾 and ∇𝑦𝐾 .

Now, for a fixed 𝑞 ∈ ℝ2𝑑 , and 𝜇, 𝜈 ∈ 𝒫2 (ℝ𝑑)ℝ2𝑑 with optimal coupling 𝜋, we have

|𝑏(𝑞, 𝜇) − 𝑏(𝑞, 𝜈) |2 ≤
∬ ����(−∇𝑥𝐾 (𝑞1, 𝑟2)

𝛼 ∇𝑦𝐾 (𝑟1, 𝑞2)

)
−
(
−∇𝑥𝐾 (𝑞1, 𝑟

′
2)

𝛼 ∇𝑦𝐾 (𝑟 ′1, 𝑞2)

)����2 𝜋(𝑑𝑟, 𝑑𝑟 ′)
≤ 𝐿2

∬
|𝑟2 − 𝑟 ′2 |

2 + |𝑟1 − 𝑟 ′1 |
2 𝜋(𝑑𝑟, 𝑑𝑟 ′)

= 𝐿2W2
2 (𝜇, 𝜈).

Average dissipativity of drift: Suppose ∇𝑥𝐾 and −∇𝑦𝐾 are (𝑎, 𝛽)-dissipative. Then∫
〈𝑞, 𝑏(𝑞, 𝜇)〉 𝜇(𝑑𝑞) =

∬
〈𝑞1,−∇𝑥𝐾 (𝑞1, 𝑞

′
2)〉 + 𝛼〈𝑞2,∇𝑦𝐾 (𝑞′1, 𝑞2)〉 𝜇(𝑑𝑞′)𝜇(𝑑𝑞)

≤
∫

−𝑎𝛼( |𝑞1 |2 + |𝑞2 |2) 𝜇(𝑑𝑞) + 2𝛽,

implying that 𝑏(·, ·) is (𝑎𝛼, 2𝛽)-dissipative on average.

If, on the other hand, the domains X and Y are bounded, observe that by Cauchy-Schwarz����∫ 〈𝑞, 𝑏(𝑞, 𝜇)〉 𝜇(𝑑𝑞)
���� ≤ ∬

|𝑞1 | |∇𝑥𝐾 (𝑞1, 𝑞
′
2) | + 𝛼 |𝑞2 | |∇𝑦𝐾 (𝑞′1, 𝑞2) | 𝜇(𝑑𝑞′)𝜇(𝑑𝑞) ≤ 𝑀,

where 𝑀 = sup𝑞1∈X ,𝑞2∈Y |𝑞1 | |∇𝑥𝐾 (𝑞1, 𝑞
′
2) | + 𝛼 |𝑞2 | |∇𝑦𝐾 (𝑞′1, 𝑞2) |. Also denoting by 𝑅 =

sup𝑞∈X×Y |𝑞 |2, we see that for any 𝛼 > 0, 𝑏(·, ·) is (𝛼, 𝑀 + 𝛼𝑁)-dissipative on average, as∫
〈𝑞, 𝑏(𝑞, 𝜇)〉 𝜇(𝑑𝑞) + 𝛼

∫
|𝑞 |2 𝜇(𝑑𝑞) ≤ 𝑀 + 𝛼𝑁.

Optimistic algorithm fits Assumption 4: Recall the iterates

𝑞𝑖𝑘+1 = 𝑞𝑖𝑘 + 𝛾𝑘+1
(
2𝑏(𝑞𝑖𝑘 , 𝜇𝑘 ) − 𝑏(𝑞

𝑖
𝑘−1, 𝜇𝑘−1)

)
+
√︁

2𝛾𝑘+1 𝜎 Ξ𝑖
𝑘+1,

where Ξ𝑖
𝑘+1 = (𝜉𝑖

𝑘+1, 𝜁
𝑖
𝑘+1). Notice that the bias of this iteration is

𝜀𝑖𝑘+1 = 𝑏(𝑞𝑖𝑘 , 𝜇𝑘 ) − 𝑏(𝑞
𝑖
𝑘−1, 𝜇𝑘−1).

For brevity, let us write ℱ𝑘 B ℱ𝜏𝑘 . We have

𝔼[|𝜀𝑖𝑘+1 |
2 |ℱ𝑘 ] = 𝔼[|𝑞𝑖𝑘+1 − 𝑞

𝑖
𝑘 − 𝛾𝑘+1𝑏(𝑞𝑖𝑘 , 𝜇𝑘 ) −

√︁
2𝛾𝑘+1 𝜎 Ξ𝑖

𝑘+1 |
2 |ℱ𝑘 ]

≤ 3𝔼[|𝑞𝑖𝑘+1 − 𝑞
𝑖
𝑘 |

2 |ℱ𝑘 ] + 3𝛾2
𝑘+1 𝔼[|𝑏(𝑞

𝑖
𝑘 , 𝜇𝑘 ) |

2 |ℱ𝑘 ] + 6𝛾𝑘+1𝜏(1 + 𝛼)𝑑.
Moreover, we have

𝔼[|𝑞𝑖𝑘+1 − 𝑞
𝑖
𝑘 |

2 |ℱ𝑘 ] ≤ 2𝛾2
𝑘+1 𝔼[|2𝑏(𝑞

𝑖
𝑘 , 𝜇𝑘 ) − 𝑏(𝑞

𝑖
𝑘−1, 𝜇𝑘−1) |2 |ℱ𝑘 ] + 2𝛾𝑘+1𝜏(1 + 𝛼)𝑑

= 2𝛾2
𝑘+1 𝔼[|𝑏(𝑞

𝑖
𝑘 , 𝜇𝑘 ) + 𝜀

𝑖
𝑘+1 |

2 |ℱ𝑘 ] + 2𝛾𝑘+1𝜏(1 + 𝛼)𝑑
≤ 4𝛾2

𝑘+1 𝔼[|𝑏(𝑞
𝑖
𝑘 , 𝜇𝑘 ) |

2 |ℱ𝑘 ] + 4𝛾2
𝑘+1 𝔼[|𝜀

𝑖
𝑘+1 |

2 |ℱ𝑘 ] + 2𝛾𝑘+1𝜏(1 + 𝛼)𝑑
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Combining the last two inequalities, we have

𝔼[|𝜀𝑖𝑘+1 |
2 |ℱ𝑘 ] ≤ 3

(
4𝛾2

𝑘+1 𝔼[|𝑏(𝑞
𝑖
𝑘 , 𝜇𝑘 ) |

2 |ℱ𝑘 ] + 4𝛾2
𝑘+1 𝔼[|𝜀

𝑖
𝑘+1 |

2 |ℱ𝑘 ] + 2𝛾𝑘+1𝜏(1 + 𝛼)𝑑
)

+ 3𝛾2
𝑘+1 𝔼[|𝑏(𝑞

𝑖
𝑘 , 𝜇𝑘 ) |

2 |ℱ𝑘 ] + 6𝛾𝑘+1𝜏(1 + 𝛼)𝑑
= 12𝛾2

𝑘+1 𝔼[|𝜀
𝑖
𝑘+1 |

2 |ℱ𝑘 ] + 15𝛾2
𝑘+1 𝔼[|𝑏(𝑞

𝑖
𝑘 , 𝜇𝑘 ) |

2 |ℱ𝑘 ] + 12𝛾𝑘+1𝜏(1 + 𝛼)𝑑

Since 𝛾𝑘+1 → 0, we can assume that 12𝛾2
𝑘+1 ≤ 1/2, which implies

𝔼[|𝜀𝑖𝑘+1 |
2 |ℱ𝑘 ] ≤ 30𝛾2

𝑘+1 𝔼[|𝑏(𝑞
𝑖
𝑘 , 𝜇𝑘 ) |

2 |ℱ𝑘 ] + 24𝛾𝑘+1𝜏(1 + 𝛼)𝑑,

which is exactly what we are after. �

C.4 Kinetic Equations

Proof of Corollary 4. Smoothness of the drift: Let 𝑥, 𝑦 ∈ ℝ𝑑 and 𝜇, 𝜈 ∈ 𝒫2 (ℝ𝑑) and set 𝜋 be an
optimal coupling between 𝜇 and 𝜈 (in𝑊1 sense). Then

|𝑏(𝑥, 𝜇) − 𝑏(𝑦, 𝜈) | ≤ |∇𝑉 (𝑥) − ∇𝑉 (𝑦) | +
����∫ ∇𝑊 (𝑥 − 𝑧) 𝜇(𝑑𝑧) −

∫
∇𝑊 (𝑦 − 𝑧) 𝜈(𝑑𝑧)

����.
By 𝐿-Lipschitzness of ∇𝑉 , the first term is bounded by 𝐿 |𝑥 − 𝑦 |. For the second term, using the
coupling, we can write it as����∬ ∇𝑊 (𝑥 − 𝑧1) − ∇𝑊 (𝑦 − 𝑧2) 𝜋(𝑑𝑧1, 𝑑𝑧2)

���� ≤ ∬
|∇𝑊 (𝑥 − 𝑧1) − ∇𝑊 (𝑦 − 𝑧2) | 𝜋(𝑑𝑧1, 𝑑𝑧2)

≤ 𝐿

∬
|𝑥 − 𝑦 + 𝑧2 − 𝑧1 | 𝜋(𝑑𝑧1, 𝑑𝑧2)

≤ 𝐿

∬
|𝑥 − 𝑦 | + |𝑧2 − 𝑧1 | 𝜋(𝑑𝑧1, 𝑑𝑧2)

≤ 𝐿 |𝑥 − 𝑦 | + 𝐿𝑊1 (𝜇, 𝜈)
≤ 𝐿 |𝑥 − 𝑦 | + 𝐿𝑊2 (𝜇, 𝜈).

Putting these together we get

|𝑏(𝑥, 𝜇) − 𝑏(𝑦, 𝜈) | ≤ 2𝐿 ( |𝑥 − 𝑦 | +W2 (𝜇, 𝜈)).

Average dissipativity of the drift: First we show that for 𝑥 ∈ ℝ𝑑 and a probability measure 𝜇, we
have ∬

〈𝑥,∇𝑊 (𝑥 − 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦) ≥ −𝑀𝑊 /2. (C.1)

This holds, since∬
〈𝑥,∇𝑊 (𝑥 − 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦)

=

∬
〈𝑥 − 𝑦 + 𝑦,∇𝑊 (𝑥 − 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦)

=

∬
〈𝑥 − 𝑦,∇𝑊 (𝑥 − 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦) +

∬
〈𝑦,∇𝑊 (𝑥 − 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦)

≥ −𝑀𝑊 +
∬

〈𝑦,∇𝑊 (𝑥 − 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦)

≥ −𝑀𝑊 −
∬

〈𝑥,∇𝑊 (𝑥 − 𝑦)〉 𝜇(𝑑𝑥)𝜇(𝑑𝑦),

where in the penultimate inequality we used the assumption (which implies 〈∇𝑊 (𝑥), 𝑥〉 ≥ −𝑀𝑊 ),
and in the last one, we used the that𝑊 is symmetric (which implies ∇𝑊 (−𝑧) = −∇𝑊 (𝑧)), and used
Fubini’s theorem to exchange integrals. Bringing the last term to the left and dividing by 2 shows
(C.1).
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To show average dissipativity, it suffices to observe

−
∫

〈𝑥, 𝑏(𝑥, 𝜇)〉 𝜇(𝑑𝑥) =
∫

〈𝑥,∇𝑉 (𝑥)〉 𝜇(𝑑𝑥) +
∬

〈𝑥,∇𝑊 (𝑥 − 𝑦)〉 𝜇(𝑑𝑦)𝜇(𝑑𝑥)

≥ 𝛼
∫

|𝑥 |2 𝜇(𝑑𝑥) − 𝛽 − 𝑀𝑊 /2.

Proximal algorithm fits Assumption 4: Note that this implicit algorithm corresponds to the following
proximal step

𝑥𝑖𝑘+1 = arg min
𝑥

{
𝑉 (𝑥) + 1

𝑁

𝑁∑︁
𝑗=1
𝑊 (𝑥 − 𝑥 𝑗

𝑘
) + 1

2𝛾𝑘+1

���𝑥 − (𝑥𝑖𝑘 +
√︁

2𝛾𝑘+1 𝜉
𝑖
𝑘+1)

���2}.
By defining the perturbation as

𝑃𝑖
𝑘+1 = 𝜀𝑖𝑘+1 = ∇𝑉 (𝑥𝑖𝑘+1) − ∇𝑉 (𝑥𝑖𝑘 ) +

1
𝑁

𝑁∑︁
𝑗=1

(∇𝑊 (𝑥𝑖𝑘+1 − 𝑥
𝑗

𝑘
) − ∇𝑊 (𝑥𝑖𝑘 − 𝑥

𝑗

𝑘
)),

we see that the algorithm (Kin-Prox) fits the template (SAA). For brevity, let us write ℱ𝑘 B ℱ𝜏𝑘 .
We only have to show that

𝔼[|𝜀𝑘+1 |2 |ℱ𝑘 ] =
𝑁∑︁
𝑖=1

𝔼[|𝜀𝑖𝑘+1 |
2 |ℱ𝑘 ] = O(𝛾2

𝑘+1 |𝒃(𝑥𝑘 ) |
2 + 𝛾𝑘+1).

We have ��𝜀𝑖𝑘+1
��2 =

�����∇𝑉 (𝑥𝑖𝑘+1) − ∇𝑉 (𝑥𝑖𝑘 ) +
1
𝑁

𝑁∑︁
𝑗=1

(∇𝑊 (𝑥𝑖𝑘+1 − 𝑥
𝑗

𝑘
) − ∇𝑊 (𝑥𝑖𝑘 − 𝑥

𝑗

𝑘
))
�����2

≤ 2
��∇𝑉 (𝑥𝑖𝑘+1) − ∇𝑉 (𝑥𝑖𝑘 )

��2 + 2
𝑁

𝑁∑︁
𝑗=1

���∇𝑊 (𝑥𝑖𝑘+1 − 𝑥
𝑗

𝑘
) − ∇𝑊 (𝑥𝑖𝑘 − 𝑥

𝑗

𝑘
)
���2

≤ 2𝐿2��𝑥𝑖𝑘+1 − 𝑥
𝑖
𝑘

��2 + 2𝐿2

𝑁

𝑁∑︁
𝑗=1

��𝑥𝑖𝑘+1 − 𝑥
𝑖
𝑘

��2
= 4𝐿2��𝑥𝑖𝑘+1 − 𝑥

𝑖
𝑘

��2.
For brevity, let

𝑓 (𝑥) = ∇𝑉 (𝑥) + 1
𝑁

𝑁∑︁
𝑗=1

∇𝑊 (𝑥 − 𝑥 𝑗
𝑘
),

noticing that 𝜀𝑖
𝑘+1 = 𝑓 (𝑥𝑖

𝑘+1) − 𝑓 (𝑥𝑖
𝑘
). By the update rule (Kin-Prox)

𝔼[|𝑥𝑖𝑘+1 − 𝑥
𝑖
𝑘 |

2 |ℱ𝑘 ] ≤ 2𝛾2
𝑘+1 𝔼[| 𝑓 (𝑥

𝑖
𝑘+1) |

2 |ℱ𝑘 ] + 4𝛾𝑘+1𝑑.

Moreover, we have that | 𝑓 (𝑥𝑖
𝑘+1) |

2 ≤ 2| 𝑓 (𝑥𝑖
𝑘+1) − 𝑓 (𝑥𝑖

𝑘
) |2 + 2| 𝑓 (𝑥𝑖

𝑘
) |2. Since 𝛾𝑘+1 → 0, we can

assume that 16𝐿2𝛾2
𝑘+1 <

1
2 . All in all, this gives

𝔼[|𝜀𝑖𝑘+1 |
2 |ℱ𝑘 ] ≤ 4𝐿2 𝔼[|𝑥𝑖𝑘+1 − 𝑥

𝑖
𝑘 |

2 |ℱ𝑘 ]
≤ 8𝐿2𝛾2

𝑘+1 𝔼[| 𝑓 (𝑥
𝑖
𝑘+1) |

2 |ℱ𝑘 ] + 16𝐿2𝛾𝑘+1𝑑

≤ 16𝐿2𝛾2
𝑘+1 𝔼[| 𝑓 (𝑥

𝑖
𝑘+1) − 𝑓 (𝑥𝑖𝑘 ) |

2 |ℱ𝑘 ] + 16𝐿2𝛾2
𝑘+1 | 𝑓 (𝑥

𝑖
𝑘 ) |

2 + 16𝐿2𝛾𝑘+1𝑑

≤ 16𝐿2𝛾2
𝑘+1 𝔼[|𝜀

𝑖
𝑘+1 |

2 |ℱ𝑘 ] + 16𝐿2𝛾2
𝑘+1 | 𝑓 (𝑥

𝑖
𝑘 ) |

2 + 16𝐿2𝛾𝑘+1𝑑

≤ 1
2
𝔼[|𝜀𝑖𝑘+1 |

2 |ℱ𝑘 ] + 16𝐿2𝛾2
𝑘+1 | 𝑓 (𝑥

𝑖
𝑘 ) |

2 + 16𝐿2𝛾𝑘+1𝑑.

This implies that
𝔼[|𝜀𝑖𝑘+1 |

2 |ℱ𝑘 ] ≤ 32𝐿2𝛾2
𝑘+1 | 𝑓 (𝑥

𝑖
𝑘 ) |

2 + 32𝐿2𝛾𝑘+1𝑑.

Summing over 𝑖 and observing that
∑| 𝑓 (𝑥𝑖

𝑘
) |2 = |𝒃(𝑥𝑘 ) |2 concludes the proof. �
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