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Re-Composing458

Supplementary Materials459

In the supplementary materials involving our work, we demonstrate detailed dataset settings, sup-460

plemental insights and analysis, extra experimental details, supplemental experiments, and broader461

impacts, including:462

• A Detailed descriptions for datasets and implementation463

• B Insights of architecture design464

• C Parameter size analysis465

• D Experimental details on larger-scale and hierarchical ViT backbones466

• E Experimental details on ablation studies467

• F Expanded experiments with self-supervised pre-training468

• G Broader impacts469

Due to the limitation that the file “Supplementary Materials.zip” larger than 100MB can-470

not be uploaded on OpenReview, the supplementary materials only upload the code for471

the project. Please refer to the anonymous link https://drive.google.com/file/d/472

1ZblHbYF1Jr0u0GeTLI4uII6GHt3CV3I2/view to obtain the complete code, datasets, and models.473
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A Detailed descriptions for datasets and implementation474

We describe the details of visual adaptation classification tasks in Table 6 (FGVC) and 7 (VTAB-1k),475

including the class number and the train/val/test sets.476

Table 6: Dataset statistics for FGVC. “*” denotes the train/val split of datasets following the dataset
setting of VPT models [6].

Dataset Description Classes Train size Val size Test size
CUB-200-2011 [31] Fine-grained bird species recognition 200 5,394* 600* 5,794
NABirds [32] Fine-grained bird species recognition 555 21,536* 2,393* 24,633
Oxford Flowers [33] Fine-grained flower species recognition 102 1,020 1,020 6,149
Stanford Dogs [34] Fine-grained dog species recognition 120 10,800* 1,200* 8,580
Stanford Cars [35] Fine-grained car classificatio 196 7,329* 815* 8,041

Table 7: Dataset statistics for VTAB-1k [36].

Dataset Description Classes Train size Val size Test size
CIFAR-100

Natural

100

800/1,000 200

10,000
Caltech101 102 6,084
DTD 47 1,880
Flowers102 102 6,149
Pets 37 3,669
SVHN 10 26,032
Sun397 397 21,750

Patch Camelyon

Specialized

2

800/1,000 200

32,768
EuroSAT 10 5,400
Resisc45 45 6,300
Retinopathy 5 42,670

Clevr/count

Structured

8

800/1,000 200

15,000
Clevr/distance 6 15,000
DMLab 6 22,735
KITTI/distance 4 711
dSprites/location 16 73,728
dSprites/orientation 16 73,728
SmallNORB/azimuth 18 12,150
SmallNORB/elevation 9 12,150

Table 8 summarizes the detailed configurations we used for experiments. As mentioned in Section 4.1,477

we utilize grid search to select hyper-parameters such as learning rate, weight decay, batch size, and478

adapter dropout, using the validation set of each task. Note that we also apply dropout to the middle479

features produced by our ARC method, which we term as "adapter dropout". Specifically, during the480

ARC process, we randomly drop partial features before up-projection.481

B Insights of architecture design482

Similar to Fig. 3, we present more visualization results of singular value distribution of adaptation483

matrices Wfull ∈ RD×D learned without the bottleneck operation. As shown in Fig. 4, the singular484

value distribution of adaptation matrices learned on DTD downstream task exhibits a power-law485
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Table 8: The implementation details of configurations such as optimizer and hyper-parameters. We
select the best hyper-parameters for each download task via using grid search.

Optimizer AdamW
Learning Rate {0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001}
Weight Decay {0.05, 0.01, 0.005, 0.001, 0}

Batch Size {256, 128, 32}
Adapter Dropout {0.8, 0.5, 0.1, 0}

Learning Rate Schedule Cosine Decay
Training Epochs 100
Warmup Epochs 10

distribution across various layers in the downstream tasks. This finding provides further support for486

our research motivation.
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(a) Singular value distribution of MHA adapter.
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(b) Singular value distribution of FFN adapter.

Figure 4: Singular value distribution of adaptation matrices without the bottleneck structure. Two
adaptation matrices of both MHA and FFN blocks are fine-tuned on the DTD downstream task. The
X-axis represents the singular values, while the Y-axis represents the count of singular values within
specific ranges.

487

C Parameter size analysis488

To showcase the parameter-efficiency of our ARC method, we compare its parameter size with other489

popular lightweight adaptation methods (Table 9), including Adapter [7], VPT [6], LoRA [24], and490

SSF [9]. Adapter [7] adds two linear projections to each encoder layer during fine-tuning, resulting in491

the introduction of 2 ·D ·D′ · L learnable parameters, where D′ denotes the hidden dimensionality492

of the linear projections. Furthermore, due to the presence of non-linear activations in Adapter, the493

additional parameters contribute to supernumerary overhead during the inference phase. VPT [6]494

incorporates m prompts into input space, leading to an increase of m ·D parameters for VPT-Shallow495

and m ·D · L parameters for VPT-Deep. In contrast to Adapter, both LoRA [24] and SSF [9] employ496

linear adaptation methods without incorporating non-linear functions. This design choice allows497

them to leverage re-parameterization benefits, thereby mitigating additional computations during498

inference. Specifically, the adaptation matrix of LoRA, which consists of a down-projection and an499

up-projection, introduces 2 · w ·D ·D′ · L learnable parameters, where w denotes the number of500

attention matrices undergoing adaptation. SSF inserts linear scaling and shifting coefficients after501
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o operations, resulting in an addition of 2 · o ·D · L extra parameters. The proposed ARC method502

offers additional parameter compression by sharing symmetric projection matrices across different503

layers. This approach introduces only D ·D′ parameters. Additionally, we learn low-dimensional504

re-scaling coefficients and bias terms for each layer, resulting in a total of (D′ +D) · L additional505

parameters. Overall, the number of parameters in our default ARC is 2 · ((D ·D′) + (D′ +D) · L).506

Table 9: Comparison of the additional parameter size in both fine-tuning and inference stages with
other lightweight adaptation methods.

Stage
Method

Adapter [7] VPT-Shallow [6] VPT-Deep [6] LoRA [24] SSF [9] ARC

Fine-Tuning 2 ·D ·D′ · L m ·D m ·D · L 2 · w ·D ·D′ · L 2 · o ·D · L 2 · (D ·D′ + (D′ +D) · L)
Inference 2 ·D ·D′ · L m ·D m ·D · L 0 0 0

We also compare the parameter size with lightweight adaptation methods on backbones of different507

scales, as shown in Fig. 5. Our ARCs demonstrate parameter efficiency across various model sizes,508

comparable to VPT-Shallow [6]. However, the unique advantage of our approach lies in its ability509

to effectively balance lower overheads and maintain competitive performance. Furthermore, the510

parameter count of our ARC remains stable even as the model scale increases, showcasing the511

scalability of our method with minimal additional resource consumption.512
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Figure 5: The parameter size comparison of lightweight adaptation methods on ViT Backbones of
Different Scales. The X-axis represents different adaptation methods, while the Y-axis represents the
parameter size in Million (M).
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Figure 6: The parameter size comparison with lightweight adaptation methods with a different
number of inserted layers. The X-axis represents different adaptation methods, while the Y-axis
represents the parameter size in Million (M).

Thanks to our adaptation parameter sharing strategy, the ARC method avoids a linear increase in the513

number of learnable parameters as the number of layers grows. We employ ViT-B as the backbone514

and integrate adapters into different layers. As shown in Fig.6, in contrast to other adaptation515

methods, both our ARCs and VPT-Shallow[6] effectively manage parameter growth as the number of516

inserted layers increases, but only our methods achieve promising performance without significant517

cost escalation. This highlights the scalability and effectiveness advantages of our ARCs.518
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D Experimental details on larger-scale and hierarchical ViT backbones519

Table 10, 11 and 12 respectively display the comprehensive results of the comparison conducted in520

Section 4.2 among ViT-Large, ViT-Huge, and Swin-Base models.521

Table 10: This table is extended from Table 3a in Section 4.2 and describes the detailed experimental
results of the performance comparison on VTAB-1k using ViT-Large pre-trained on ImageNet-21k as
the backbone.
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Full fine-tuning 68.6 84.3 58.6 96.3 86.5 87.5 41.4 74.7 82.6 95.9 82.4 74.2 83.8 55.4 55.0 42.2 74.2 56.8 43.0 28.5 29.7 48.1 65.4 303.4
Linear probing 72.2 86.4 63.6 97.4 85.8 38.1 52.5 70.9 76.9 87.3 66.6 45.4 69.1 28.2 28.0 34.7 54.0 10.6 14.2 14.6 21.9 25.8 51.5 0.05

Adapter [7] 75.3 84.2 54.5 97.4 84.3 31.3 52.9 68.6 75.8 85.1 63.4 69.5 73.5 35.4 34.1 30.8 47.1 30.4 23.4 10.8 19.8 29.0 52.9 2.38
Bias [37] 71.0 82.4 51.3 96.3 83.2 59.5 49.9 70.5 72.9 87.9 63.1 71.3 73.8 51.2 50.7 33.5 54.8 65.9 37.3 13.7 22.2 41.2 58.9 0.32

VPT-Shallow [6] 80.6 88.2 67.1 98.0 85.9 78.4 53.0 78.7 79.7 93.5 73.4 73.1 79.9 41.5 52.5 32.3 64.2 48.3 35.3 21.6 28.8 40.6 62.9 0.15
VPT-Deep [6] 84.1 88.9 70.8 98.8 90.0 89.0 55.9 82.5 82.5 96.6 82.6 73.9 83.9 63.7 60.7 46.1 75.7 83.7 47.4 18.9 36.9 54.1 70.8 0.49

LoRA [24] 75.8 89.8 73.6 99.1 90.8 83.2 57.5 81.4 86.0 95.0 83.4 75.5 85.0 78.1 60.5 46.7 81.6 76.7 51.3 28.0 35.4 57.3 72.0 0.74

ARCatt 75.6 89.9 72.2 99.0 90.4 89.0 57.5 81.9 86.1 95.0 85.4 76.0 85.6 75.0 60.1 48.0 80.9 77.0 51.3 27.2 35.6 56.9 72.2 0.13
ARC 76.2 89.6 73.4 99.1 90.3 90.9 56.5 82.3 85.0 95.7 85.9 75.8 85.6 78.6 62.1 46.7 76.7 75.9 53.0 30.2 35.2 57.3 72.5 0.18

Table 11: This table is extended from Table 3b in Section 4.2 and describes the detailed experimental
results of the performance comparison on VTAB-1k using ViT-Huge pre-trained on ImageNet-21k as
the backbone.
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Full fine-tuning 58.7 86.5 55.0 96.5 79.7 87.5 32.5 70.9 83.1 95.5 81.9 73.8 83.6 47.6 53.9 37.8 69.9 53.8 48.6 30.2 25.8 46.0 63.1 630.9
Linear probing 64.3 83.6 65.2 96.2 83.5 39.8 43.0 67.9 78.0 90.5 73.9 73.4 79.0 25.6 24.5 34.8 59.0 9.5 15.6 17.4 22.8 26.1 52.7 0.06

Adapter [7] 69.4 84.4 62.7 97.2 84.2 33.6 45.3 68.1 77.3 86.6 70.8 71.1 76.4 28.6 27.5 29.2 55.2 10.0 15.2 11.9 18.6 24.5 51.5 5.78
Bias [37] 65.7 84.3 59.9 96.6 80.6 60.1 44.9 70.3 79.7 92.8 71.5 71.6 78.9 52.3 50.4 31.2 57.7 65.9 39.7 16.7 20.2 41.7 60.1 0.52

VPT-Shallow [6] 70.6 84.7 64.8 96.4 85.1 75.6 46.2 74.8 79.9 93.7 77.7 73.6 81.2 40.3 60.9 34.9 63.3 61.3 38.9 19.8 24.9 43.0 62.8 0.18
VPT-Deep [6] 76.9 87.2 66.8 97.5 84.8 85.5 46.5 77.9 81.6 96.3 82.5 72.8 83.3 50.4 61.2 43.9 76.6 79.5 50.1 24.7 31.5 52.2 68.2 0.96

LoRA [24] 63.0 89.4 68.1 98.0 87.0 85.2 48.7 77.1 82.2 94.3 83.1 74.2 83.5 68.6 65.0 44.8 76.4 70.8 48.8 30.4 38.3 55.4 69.3 1.21

ARCatt 65.5 89.1 69.9 98.0 87.5 89.1 48.8 78.3 83.4 94.5 84.5 74.4 84.2 73.2 66.6 45.6 76.2 78.3 51.2 32.1 37.6 57.6 70.8 0.17
ARC 67.6 90.2 69.5 98.4 87.9 90.8 49.6 79.1 84.5 94.9 85.1 74.6 84.8 75.2 66.7 46.2 76.4 44.2 51.1 32.2 37.7 53.7 69.6 0.22

Table 12: This table is extended from Table 4 in Section 4.2 and describes the detailed experimental
results of the performance comparison on VTAB-1k using Swin-Base pre-trained on ImageNet-21k
as the backbone.
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Full fine-tuning 72.2 88.0 71.4 98.3 89.5 89.4 45.1 79.1 86.6 96.9 87.7 73.6 86.2 75.7 59.8 54.6 78.6 79.4 53.6 34.6 40.9 59.7 72.4 86.9
Linear probing 61.4 90.2 74.8 95.5 90.2 46.9 55.8 73.5 81.5 90.1 82.1 69.4 80.8 39.1 35.9 40.1 65.0 20.3 26.0 14.3 27.6 33.5 58.2 0.05

MLP-4 [6] 54.9 87.4 71.4 99.5 89.1 39.7 52.5 70.6 80.5 90.9 76.8 74.4 80.7 60.9 38.8 40.2 66.5 9.4 21.1 14.5 28.8 31.2 57.7 4.04
Partial [6] 60.3 88.9 72.6 98.7 89.3 50.5 51.5 73.1 82.8 91.7 80.1 72.3 81.7 34.3 35.5 43.2 77.1 15.8 26.2 19.1 28.4 35.0 58.9 12.65
Bias [37] 73.1 86.8 65.7 97.7 87.5 56.4 52.3 74.2 80.4 91.6 76.1 72.5 80.1 47.3 48.5 34.7 66.3 57.6 36.2 17.2 31.6 42.4 62.1 0.25

VPT-Shallow [6] 78.0 91.3 77.2 99.4 90.4 68.4 54.3 79.9 80.1 93.9 83.0 72.7 82.5 40.8 43.9 34.1 63.2 28.4 44.5 21.5 26.3 37.8 62.9 0.05
VPT-Deep [6] 79.6 90.8 78.0 99.5 91.4 46.5 51.7 76.8 84.9 96.2 85.0 72.0 84.5 67.6 59.4 50.1 74.1 74.4 50.6 25.7 25.7 53.4 67.7 0.22

ARCatt 67.2 89.7 74.7 99.5 89.7 88.5 52.7 80.3 88.1 95.9 85.7 77.2 86.7 76.5 58.5 52.1 82.8 89.4 56.4 27.5 35.1 59.8 73.0 0.16
ARC 62.5 90.0 71.9 99.2 87.8 90.7 51.1 79.0 89.1 95.8 84.5 77.0 86.6 75.4 57.4 53.4 83.1 91.7 55.2 31.6 31.8 59.9 72.6 0.27

E Experimental details on ablation studies522

Table 13, 14, 15 and 16 display the complete results of the ablation studies in Section 4.3.523
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Table 13: This table is extended from Table 5a in Section 4.3 and describes the detailed experimental
content of the performance comparison among different bottleneck dimensionality.
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10 72.2 88.4 71.2 98.7 91.1 89.4 54.7 80.9 84.7 95.6 86.0 75.8 85.6 80.1 65.9 48.8 80.5 75.5 48.3 30.2 38.6 58.5 72.4 0.07
50 72.2 90.1 72.7 99.0 91.0 91.9 54.4 81.6 84.9 95.7 86.7 75.8 85.8 80.7 67.1 48.7 81.6 79.2 51.0 31.4 39.9 60.0 73.4 0.13

100 71.3 90.0 73.0 99.0 90.7 91.8 55.1 81.6 85.1 96.3 86.1 75.4 85.7 80.8 67.2 49.0 79.3 74.8 50.1 34.0 39.1 59.3 73.1 0.21
200 70.5 89.3 72.9 99.1 89.8 91.9 54.9 81.2 84.9 95.3 84.0 75.7 85.0 80.0 67.8 48.9 76.8 50.8 51.3 34.4 39.1 56.1 71.4 0.36

Table 14: This table is extended from Table 5b in Section 4.3 and describes the detailed experimental
content of the performance comparison among different adapter positioning.
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Before MHA 70.1 90.5 70.5 98.8 90.8 88.6 53.6 80.4 84.6 95.5 86.6 75.5 85.6 79.0 65.6 48.6 81.3 75.1 48.7 29.1 39.6 58.4 72.2 0.08
After MHA 67.0 88.9 69.8 98.8 90.8 82.2 52.3 78.5 84.1 94.6 85.1 75.4 84.8 77.4 60.1 44.3 77.1 61.2 45.7 23.0 35.6 53.0 69.1 0.08
Before FFN 70.8 89.4 71.0 99.0 89.9 86.9 53.9 80.1 85.5 94.7 84.9 75.6 85.2 77.3 63.6 46.5 77.5 70.3 48.4 27.6 37.3 56.0 71.1 0.08
After FFN 66.7 88.2 69.6 98.6 90.2 82.5 52.9 78.4 83.6 94.8 85.3 75.5 84.8 77.9 63.1 44.1 76.7 57.9 47.0 22.6 33.9 52.9 69.0 0.08

Before MHA & FFN 72.2 90.1 72.7 99.0 91.0 91.9 54.4 81.6 84.9 95.7 86.7 75.8 85.8 80.7 67.1 48.7 81.6 79.2 51.0 31.4 39.9 60.0 73.4 0.13
After MHA & FFN 70.5 89.9 71.3 99.0 91.4 86.9 53.5 80.4 84.7 94.9 86.4 76.0 85.5 80.3 62.8 46.8 80.9 66.9 49.6 28.4 36.4 56.5 71.4 0.13

Table 15: This table is extended from Table 5c in Section 4.3 and describes the detailed experimental
content of the performance comparison among different parameter sharing strategy.
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non-intra + non-inter 70.1 91.1 71.5 99.2 90.6 91.9 54.6 81.3 84.8 95.5 86.4 75.4 85.5 81.1 66.1 50.1 78.6 80.3 51.5 35.8 40.6 60.5 73.4 0.98
intra + inter* 72.9 89.8 72.1 98.8 91.0 90.7 54.6 81.4 85.8 95.5 86.3 75.6 85.8 80.3 66.5 48.8 79.6 77.0 50.7 30.9 39.0 59.1 72.9 0.10
intra + inter 72.2 90.1 72.7 99.0 91.0 91.9 54.4 81.6 84.9 95.7 86.7 75.8 85.8 80.7 67.1 48.7 81.6 79.2 51.0 31.4 39.9 60.0 73.4 0.13

non-intra + inter 72.9 89.5 72.9 98.8 90.6 90.2 55.8 81.5 86.2 95.5 86.2 75.9 86.0 81.1 67.1 48.3 81.0 78.5 50.6 31.5 41.9 60.0 73.4 0.21

Table 16: This table is extended from Table 5d in Section 4.3 and describes the detailed experimental
content of the performance comparison among different adapter insertion.
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1 ∼ 6 & sequential 69.0 88.1 70.2 98.4 90.0 89.8 52.3 79.7 84.1 94.5 85.4 75.5 84.9 80.2 67.3 46.4 78.8 74.4 48.1 29.1 37.6 57.7 71.5 0.126
7 ∼ 12 & sequential 57.9 88.2 68.4 98.3 89.2 70.3 52.1 74.9 82.2 94.3 84.3 76.4 84.3 77.0 58.1 45.4 75.3 74.0 42.7 21.0 34.9 53.6 67.9 0.126
1 ∼ 12 & sequential 72.2 90.1 72.7 99.0 91.0 91.9 54.4 81.6 84.9 95.7 86.7 75.8 85.8 80.7 67.1 48.7 81.6 79.2 51.0 31.4 39.9 60.0 73.4 0.133

1 ∼ 12 & parallel 70.7 90.9 71.5 98.9 91.1 86.1 53.8 80.4 83.5 95.1 85.6 75.4 84.9 76.6 64.1 45.9 76.9 62.0 46.0 25.3 37.2 54.3 70.4 0.133

F Expanded experiments with self-supervised pre-training524

In addition to the models pre-trained with supervised objectives in Section 4, we also conduct525

experiments with self-supervised pre-training approaches: MAE [2] and Moco V3 [23]. Specifically,526

We utilize MAE [2] and Moco V3 [23] self-supervised pre-trained ViT-B as the backbone and527

evaluate the performance of our ARC on VTAB-1k. The results of MAE and Moco V3 self-528

supervised models are presented in Table 17 and Table 18, respectively. We observe that our ARC529

still exhibits competitive performance on two self-supervised ViTs. In addition, our ARC method530

outperforms other adaptation methods: Adapter[7] and LoRA [24] on the majority of downstream531

tasks. Surprisingly, the ARCatt with smaller learnable parameters even surpasses the ARC across532

different self-supervised pre-trained models. A possible explanation could be that ARCatt contains533

fewer parameters, which allows it to effectively prevent overfitting.534
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Table 17: Performance comparison on VTAB-1k using MAE self-supervised pre-trained ViT-Base as
backbone.
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Full fine tuning 24.6 84.2 56.9 72.7 74.4 86.6 15.8 59.3 81.8 94.0 72.3 70.6 79.7 67.0 59.8 45.2 75.3 72.5 47.5 30.2 33.0 53.8 61.3 85.80
Linear 8.7 41.5 20.6 19.2 11.3 22.3 8.6 18.9 76.5 68.6 16.6 53.2 53.7 33.6 32.5 23.0 51.1 13.0 9.9 8.5 17.9 23.7 28.2 0.04

Bias [37] 22.4 82.6 49.7 66.2 67.7 69.0 24.3 54.6 78.7 91.4 60.0 72.6 75.7 65.9 51.0 35.0 69.1 70.8 37.6 21.5 30.7 47.7 56.1 0.14
Adapter [7] 35.1 85.0 56.5 66.6 71.3 45.0 24.8 54.9 76.9 87.1 63.5 73.3 75.2 43.8 49.5 31.2 61.7 59.3 23.3 13.6 29.6 39.0 52.5 0.76

VPT-Shallow [6] 21.9 76.2 54.7 58.0 41.3 16.1 15.1 40.0 74.0 69.5 58.9 72.7 68.8 40.3 44.7 27.9 60.5 11.8 11.0 12.4 16.3 28.1 41.2 0.04
VPT-Deep [6] 8.2 55.2 58.0 39.3 45.2 19.4 21.9 35.3 77.9 91.0 45.4 73.6 72.0 39.0 40.9 30.6 53.9 21.0 12.1 11.0 14.9 27.9 39.9 0.06

LoRA [24] 31.8 88.4 59.9 81.7 85.3 90.3 23.7 65.9 84.2 92.5 76.2 75.4 82.1 85.9 64.1 49.4 82.8 83.9 51.8 34.6 41.3 61.7 67.5 0.30

ARCatt 34.8 89.3 62.0 85.9 84.4 91.1 24.8 67.4 85.8 93.5 81.3 75.6 84.1 84.0 63.5 51.2 83.0 89.1 54.0 34.2 43.0 62.7 69.0 0.09
ARC 31.3 89.3 61.2 85.9 83.1 91.6 24.4 66.7 86.0 94.0 80.4 74.8 83.8 85.8 64.6 50.5 82.8 82.8 53.5 36.3 39.7 62.0 68.3 0.13

Table 18: Performance comparison on VTAB-1k using Moco V3 self-supervised pre-trained ViT-Base
as backbone.
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Full fine tuning 57.6 91.0 64.6 91.5 79.9 89.8 29.1 72.0 85.1 96.4 83.1 74.3 84.7 55.1 56.9 44.7 77.9 63.8 49.0 31.5 36.9 52.0 66.2 85.69
Linear 62.9 85.1 68.8 87.0 85.8 41.8 40.9 67.5 80.3 93.6 77.9 72.6 81.1 42.3 34.8 36.4 59.2 10.1 22.7 12.6 24.7 30.3 54.7 0.04

Bias [37] 65.5 89.2 62.9 88.9 80.5 82.7 40.5 72.9 80.9 95.2 77.7 70.8 81.1 71.4 59.4 39.8 77.4 70.2 49.0 17.5 42.8 53.4 66.4 0.14
Adapter [7] 73.0 88.2 69.3 90.7 87.4 69.9 40.9 74.2 82.4 93.4 80.5 74.3 82.7 55.6 56.1 39.1 73.9 60.5 40.2 19.0 37.1 47.7 64.8 0.98

VPT-Shallow [6] 68.3 86.8 69.7 90.0 59.7 56.9 39.9 67.3 81.7 94.7 78.9 73.8 82.3 34.3 56.8 40.6 49.1 40.4 31.8 13.1 34.4 37.6 57.9 0.05
VPT-Deep [6] 70.1 88.3 65.9 88.4 85.6 57.8 35.7 70.3 83.1 93.9 81.2 74.0 83.0 48.5 55.8 37.2 64.6 52.3 26.5 19.4 34.8 42.4 61.2 0.05

LoRA [24] 58.8 90.8 66.0 91.8 88.1 87.6 40.6 74.8 86.4 95.3 83.4 75.5 85.1 83.0 64.6 51.3 81.9 83.2 47.5 32.4 47.3 61.4 71.3 0.30

ARCatt 59.3 90.9 67.7 93.6 89.2 90.5 40.3 75.9 87.1 94.8 85.4 75.5 85.7 84.0 64.9 52.5 83.1 88.2 53.4 33.0 46.2 63.2 72.6 0.09
ARC 60.0 91.3 67.9 92.8 89.3 91.4 40.9 76.2 87.5 95.6 86.1 75.6 86.2 83.0 64.2 50.2 80.6 85.0 53.0 34.6 47.4 62.3 72.4 0.13

G Broader impacts535

Efficient usability. Unlike previous approaches, our method incorporates a parameter sharing536

scheme across different layers of the model, resulting in a significant reduction in the number of537

parameters that need to be fine-tuned. This approach allows us to maintain competitive performance538

while achieving parameter efficiency. By maximizing the utilization of large-scale pre-trained models,539

our ARC methods offer enhanced usability and practicality in various applications.540

Environmental-friendly consumption. In addition to the reduction in computational overheads,541

another significant benefit of our method is the positive impact on carbon emissions reduction and542

environmental protection. By optimizing the computational efficiency of the model, we minimize543

the energy consumption required during the training and deployment of the model. This reduction544

in energy consumption leads to a decrease in carbon emissions, contributing to environmental545

sustainability. Our method not only delivers improved performance and efficiency but also aligns546

with the larger goal of mitigating the environmental impact of AI technologies.547

Ethical Considerations. Our model focuses on utilizing the representation and generalization548

capacity obtained from large-scale pre-trained datasets and models. However, it is crucial to acknowl-549

edge that if the pre-training datasets contain bias or illegal information, there is a risk of inheriting550

such issues into our model.551

In order to address this concern, it becomes imperative to explore research directions that aim552

to identify and prevent privacy leakage and correct model bias. This involves developing robust553

mechanisms to detect and mitigate bias in training data, as well as implementing privacy-preserving554

techniques to safeguard sensitive information.555
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