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This supplementary material contains design, implementation and evaluation in MDPs, detailed
data-generating processes of the experiment, additional experiment results and all the proofs.

S1 Design, Implementation and Evaluation in MDPs

In this section, we study the optimal design and the subsequent ATE estimation in time-homogeneous
MDPs. We consider an infinte horizon setting where the ATE equals

ATE = lim
H→∞

1

H

H∑
t=1

E1(Rt)︸ ︷︷ ︸
J(1)

− lim
H→∞

1

H

H∑
t=1

E0(Rt)︸ ︷︷ ︸
J(0)

.

Design. Similar to Kallus and Uehara (2022) and Liao et al. (2022), the efficiency bound for the
above ATE estimator is given by

EB3(π
b) =

1

T 2

T∑
t=1

∑
a∈{0,1}

Eπb
[ I(At = a)pa(Ot)∑T

j=1 p
b
j(Ot, a)/T

σ(Ot, a)
]2
, (S1)

where p1(•) (p0(•)) denotes the stationary probability mass/density function of Ot under the new
policy (control), pbj denotes the visitation probability of the observation-action pair (Ot, At) at time
j under the behavior policy, and σ2(Ot, a) is the conditional variance of the temporal difference
error Rt + V a(Ot+1)− V a(Ot)− J(a) given the current observation Ot and that At = a where Va
denotes the relative value function

∑∞
t=1 E1[Rt − J(1)|O1] (Puterman, 2014; Liao et al., 2022).

Compared to those under TMDP in (5), the probability function pa(Ot) and the conditional variance
σ2(Ot, a) in the efficiency bound in (S1) do not vary across time, due to time stationarity. Similar
to TMDPs, it is challenging to find the optimal πb∗ that minimizes (S1) because of the convoluted
dependency of pbt on πb. To address this, we also restrict our attention to an optimal in-class behavior
policy belonging to Πb = {πb : πb

2(A1|H2) = πb
3(A1|H3) = · · · = πb

T (A1|HT ) = 1}.

We derive the form of an asymptotically optimal πb∗ within the class Πb under the β-mixing condition,
and establishes its optimality among all policies under certain constancy conditions. We use λ to
denote the counting or Lebesgue measure, depending on whether the variable of interest is discrete or
continuous.
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E-mail: htzhu@email.unc.edu.
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Algorithm S1 Treatment allocation algorithm for MDPs
Input: The burn-in period m0 for each global policy and the termination time n.

1: Run each global policy for m0 days and obtain {O(i)
t , A

(i)
t , R

(i)
t }2m0

i=1 .
2: while 2m0 < m ≤ n do
3: Obtain V̂ a

i and Ĵi(a) by solving the Bellman equation

Ea[R
(i)
t + V a(O

(i)
t+1)− J(a)|O(i)

t ] = V a(O
(i)
t ),

using the data subset {(O(i)
t , R

(i)
t ) : i < m, 1 ≤ t ≤ T,A

(i)
1 = a}.

4: For a ∈ {0, 1}, set

σ̂2
a∗ =

∑
i<m

∑T
t=1[R

(i)
t + V̂ a

i (O
(i)
t+1)− V̂ a

i (O
(i)
t )− Ĵi(a)]

2I(A(i)
1 = a)∑

i<m I(A(i)
1 = a)

.

5: Assign A(m)
1 according to π̂b∗

1,m−1(a) = σ̂1∗/(σ̂1∗ + σ̂0∗).

6: Set A(m)
2 = · · · = A

(m)
T = A

(m)
1 .

7: end while
Output: {O(i)

t , A
(i)
t , R

(i)
t }ni=1.

Theorem S1. Suppose the β-mixing condition holds such that limt→∞ E supa,ot |p
a(ot|O1) −

pa(ot)| → 0 where pa(•|O1) denotes the probability mass function given O1 following the action a.
Then an asymptotically optimal in-class behavior policy πb∗ satisfies (i) for any a ∈ {0, 1},

πb∗
1 (a|O1) =

σa∗
σ1∗ + σ0∗

where σ2
a∗ =

∫
o

σ2(o, a)pa(o)dλ(o); (S2)

(ii) πb∗
2 (A1|H2) = πb∗

3 (A1|H3) = · · · = πb∗
T (A1|HT ) = 1 almost surely. In other words, for πb∗ that

satisfies (i) and (ii), we have limT T [EB3(π
b∗)− EB3(π

b)] ≤ 0 for any πb ∈ Πb. Additionally, sup-
pose both σ2(o, 1) and σ2(o, 0) are constant as functions of o. Then limT T [EB3(π

b∗)−EB3(π
b)] ≤

0 for any πb.

The optimal policy derived in Theorem S1 has a similar form to the optimal policy for TMDPs.
The initial policy in (S2) also depends on the conditional variance of the temporal difference error.
However, the conditional variance function does not vary across the time t.

Implementation. We summarize the procedure for MDPs in Algorithm S1, which is similar to the
procedure for TMDPs.

Evaluation. Similar to TMDP, we learn the ATE from the collected data by using the following
online estimator,

ÂTE3 =

1∑
a=0

(−1)a+1

T (n− 2m0)

n∑
i=2m0+1

[
V̂ a
i−1(O

(i)
1 ) +

I(A(i)
1 = a)

π̂b∗
1,i−1(a)

[
∑
t

R
(i)
t − V̂ a

i−1(O
(i)
1 )]

]
,

where V̂ a
i denotes the estimated value function using data from the first ith days. The proposed ATE

estimator also takes advantage of the fact that the marginal observation-action probability distribution
function T−1

∑T
j=1 p

b
j(Ot, At) is asymptotically equivalent to π∗

1(At)p
At(Ot). Hence, the resulting

marginal ratio I(At = a)pa(Ot)/T
−1

∑
j p

b
j(Ot, a) can be replaced by I(At = a)/π∗

1(At), or

equivalently I(A1 = a)/π∗
1(A1), independent of Ot. Similar to ÂTE1 and ÂTE2, ÂTE3 can be

updated in an online manner without storing historical data.

S2 Additional Experiment Results

In this section, we present details of the data-generating process for Section 5 and additional experi-
ment results.

The proposed treatment allocation methods and the ϵ-greedy method rely on the estimation of value
functions. For our method, we assign the treatment to the first n/4 samples, the control to the
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subsequent n/4 samples, and then sequentially assign the treatment using the π̂b∗ estimated from
the data collected so far. For the ϵ-greedy method, we choose ϵ = 0.05. and randomly assign the
treatment to the first n/2 samples, and then sequentially assign the treatment using the Q-function
from the data collected so far.

Example 5.1 (Continued). In this example, we generate binary state variables as follows,
P(Oi,t+1 = 1) = psI(Ai,t = 1) + (1− ps)I(Ai,t = 0).

Then we generate the reward function via
Ri,t+1 = 10 + 2Ai,t + 0.25Oi,tAi,t × (0.04 + 0.02Oi,t) + (1 + δAi,t)ξi,t,

where ξi,t is generated from the standard normal distribution N(0, 1). We consider n = 50, T ∈
{10, 30, 50}, ps ∈ {0.5, 0.8}, δ ∈ {0, 3, 6, 9} and calculate the mean squared errors (MSEs) of the
estimates of the average treatment effect based on 200 replicates. The true average treatment effect is
calculated by the difference in the empirical average of rewards between the treatment and the control
groups using a sample of 1000 trajectories.

Table 1 gives the means and standard deviations of the MSEs. Figure S1 presents additional boxplots
of the MSEs for the allocation methods when ps = 0.8, T ∈ {10, 30}. The results show that when
δ = 0, the proposed methods behave similarly to the competing methods. However, when the
conditional variance of the reward between the treatment and the control becomes large (δ becomes
large), the proposed methods outperform other methods.

Table 1: Simulation results for Example 5.1 of Monte Carlo averages with standard errors in parentheses of
MSEs for the average treatment effect based on 200 replicates.

T ps δ Greedy Random Half-half NMDP TMDP
10 0.5 0 0.008(0.010) 0.009(0.010) 0.008(0.012) 0.008(0.013) 0.009(0.011)

0.5 3 0.091(0.165) 0.077(0.105) 0.086(0.099) 0.043(0.088) 0.049(0.059)
0.5 6 0.210(0.297) 0.239(0.374) 0.184(0.245) 0.130(0.173) 0.102(0.133)
0.5 9 0.558(0.757) 0.482(0.734) 0.443(0.562) 0.240(0.387) 0.280(0.428)
0.8 0 0.011(0.015) 0.009(0.013) 0.009(0.011) 0.008(0.010) 0.010(0.012)
0.8 3 0.119(0.302) 0.092(0.111) 0.069(0.090) 0.055(0.071) 0.052(0.075)
0.8 6 0.341(0.559) 0.329(0.399) 0.220(0.296) 0.137(0.164) 0.140(0.186)
0.8 9 1.002(1.481) 0.380(0.528) 0.414(0.595) 0.267(0.379) 0.216(0.359)

30 0.5 0 0.003(0.005) 0.003(0.004) 0.003(0.004) 0.002(0.005) 0.003(0.003)
0.5 3 0.031(0.054) 0.018(0.029) 0.017(0.025) 0.018(0.025) 0.017(0.024)
0.5 6 0.092(0.177) 0.072(0.101) 0.057(0.071) 0.058(0.074) 0.052(0.079)
0.5 9 0.139(0.229) 0.158(0.226) 0.156(0.229) 0.094(0.131) 0.102(0.137)
0.8 0 0.004(0.006) 0.004(0.005) 0.003(0.004) 0.004(0.004) 0.003(0.004)
0.8 3 0.029(0.042) 0.034(0.047) 0.026(0.033) 0.018(0.030) 0.015(0.024)
0.8 6 0.077(0.110) 0.097(0.122) 0.066(0.078) 0.039(0.055) 0.049(0.069)
0.8 9 0.295(0.457) 0.189(0.236) 0.146(0.200) 0.093(0.153) 0.115(0.163)

50 0.5 0 0.002(0.003) 0.002(0.002) 0.001(0.002) 0.002(0.002) 0.002(0.002)
0.5 3 0.020(0.032) 0.012(0.016) 0.015(0.026) 0.015(0.019) 0.012(0.015)
0.5 6 0.062(0.091) 0.050(0.076) 0.042(0.069) 0.031(0.050) 0.026(0.041)
0.5 9 0.110(0.163) 0.087(0.119) 0.106(0.147) 0.060(0.086) 0.066(0.093)
0.8 0 0.003(0.005) 0.002(0.003) 0.001(0.002) 0.001(0.002) 0.002(0.002)
0.8 3 0.029(0.047) 0.019(0.024) 0.014(0.019) 0.013(0.016) 0.012(0.017)
0.8 6 0.088(0.137) 0.044(0.062) 0.034(0.052) 0.029(0.037) 0.030(0.036)
0.8 9 0.157(0.280) 0.106(0.138) 0.068(0.087) 0.057(0.074) 0.054(0.074)

Example 5.2 (Continued). In this example, we consider three continuous observation variables and
generate the transition of observation variables and reward functions via
Oi,t+1,1 = 0.5Oi,t,1 + 2ϵi,t,1,

Oi,t+1,2 = 0.25Oi,t,2 + 0.2Ai,t + (2 + δs)ϵi,t,1,

Oi,t+1,3 = 0.6Oi,t,3 + 0.05Oi,t,3Ai,t + 0.5Ai,t + ϵt,1
Ri,t+1 = 10 + 2Ai,t − 0.4Oi,t,3 + 0.2Oi,t,2 + 0.25Oi,t,1Ai,t × (0.04 + 0.02Oi,t,1) + (1 + δAi,t)ξi,t,
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Figure S1: Boxplots of the MSEs of the allocation methods for ps = 0.8 and T ∈ {10, 30} in Example 5.1:
the four panels correspond to δ = 0, 3, 6, and 9, respectively.

Table 2: Simulation results for Example 5.2 of Monte Carlo averages with standard errors in parentheses of
MSEs for the average treatment effect based on 200 replicates.

T δs δ Greedy Random Half-half NMDP TMDP
10 0 0 0.227(0.678) 0.064(0.161) 0.040(0.101) 0.023(0.031) 0.022(0.031)

3 0.289(0.581) 0.180(0.501) 0.125(0.182) 0.088(0.170) 0.078(0.118)
6 0.612(1.035) 0.451(0.821) 0.329(0.622) 0.188(0.226) 0.225(0.294)
9 0.820(1.219) 0.822(0.982) 0.556(0.792) 0.306(0.423) 0.348(0.513)

1 0 0.117(0.464) 0.101(0.242) 0.050(0.152) 0.026(0.037) 0.032(0.078)
3 0.368(0.802) 0.172(0.365) 0.146(0.263) 0.080(0.118) 0.088(0.136)
6 0.536(0.904) 0.465(0.682) 0.253(0.357) 0.209(0.349) 0.180(0.319)
9 0.846(1.148) 0.832(1.023) 0.553(0.804) 0.342(0.413) 0.412(0.499)

30 0 0 0.015(0.022) 0.013(0.037) 0.006(0.010) 0.006(0.008) 0.006(0.008)
3 0.062(0.096) 0.045(0.059) 0.028(0.042) 0.027(0.036) 0.018(0.021)
6 0.190(0.373) 0.087(0.099) 0.066(0.101) 0.045(0.062) 0.078(0.118)
9 0.280(0.481) 0.207(0.306) 0.137(0.206) 0.108(0.134) 0.093(0.110)

1 0 0.038(0.140) 0.024(0.117) 0.008(0.011) 0.009(0.012) 0.007(0.008)
3 0.057(0.088) 0.050(0.079) 0.022(0.039) 0.022(0.030) 0.026(0.041)
6 0.144(0.405) 0.086(0.125) 0.066(0.087) 0.054(0.091) 0.065(0.093)
9 0.296(0.469) 0.233(0.273) 0.143(0.230) 0.117(0.158) 0.112(0.173)

50 0 0 0.009(0.018) 0.006(0.008) 0.003(0.004) 0.004(0.005) 0.004(0.006)
3 0.037(0.065) 0.027(0.036) 0.018(0.027) 0.016(0.019) 0.014(0.024)
6 0.083(0.139) 0.063(0.086) 0.046(0.065) 0.034(0.043) 0.028(0.032)
9 0.093(0.135) 0.109(0.189) 0.078(0.110) 0.055(0.068) 0.073(0.120)

1 0 0.010(0.025) 0.005(0.008) 0.005(0.006) 0.005(0.008) 0.005(0.008)
3 0.036(0.047) 0.031(0.040) 0.021(0.031) 0.015(0.021) 0.012(0.018)
6 0.091(0.144) 0.062(0.078) 0.043(0.062) 0.035(0.040) 0.033(0.048)
9 0.188(0.319) 0.121(0.164) 0.118(0.165) 0.064(0.079) 0.082(0.125)

where ϵi,t,1, ϵi,t,2, ϵi,t,3 and ξi,t are form N(0, 1). We choose n = 50, T ∈ {10, 30, 50}, δs ∈ {0, 1},
and δ ∈ {0, 3, 6, 9}. The true average treatment effect is also calculated by the difference in the
empirical average of rewards between the treatment and the control groups using a sample of 1000
trajectories.

We present means and standard deviations of the MSEs in Table 2. Figure S2 presents additional
boxplots of the MSEs for δs = 1 and T ∈ {10, 30}. These results show similar patterns to those in
Example 5.1. The proposed methods show superior performance over the other three methods in
almost all scenarios.

Furthermore, we empirically explore the impact of the burn-in period. We set n = 50 and T = 10.
Table 3 reports the Monte Carlo averages of the MSEs with the estimated ATE, along with the
corresponding standard errors in parentheses, with different burn-in periods given by 2m0. As the
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Figure S2: Boxplots of the MSEs of the allocation methods corresponding to δs = 1 and T =∈ {10, 30} in
Example 5.2: the four panels correspond to δ = 0, 3, 6, 9, respectively.

Table 3: Simulation results with different burn-in periods for Example 5.2 of Monte Carlo averages with
standard errors in parentheses of MSEs for the average treatment effect based on 200 replicates.

δs δ 2m0 = 4 2m0 = 8 2m0 = 12 2m0 = 16 2m0 = 20 2m0 = 24
0 0 1.754(8.071) 0.123(0.383) 0.151(0.687) 0.061(0.134) 0.099(0.549) 0.023(0.031)

3 1.470(6.832) 1.256(9.471) 0.183(0.342) 0.300(1.560) 0.097(0.141) 0.088(0.170)
6 2.530(7.354) 0.586(1.072) 0.413(0.918) 0.832(3.976) 0.219(0.358) 0.188(0.226)
9 2.057(5.089) 1.773(4.024) 0.913(3.754) 0.685(1.942) 0.402(0.593) 0.306(0.423)

1 0 0.841(4.031) 0.129(0.384) 0.452(3.718) 0.098(0.369) 0.048(0.069) 0.026(0.037)
3 1.476(8.593) 0.375(1.037) 0.207(0.434) 0.154(0.570) 0.093(0.133) 0.080(0.118)
6 3.742(14.735) 0.644(1.558) 0.399(0.687) 0.326(0.942) 0.175(0.243) 0.209(0.349)
9 3.728(10.581) 1.812(5.619) 0.610(0.936) 0.582(0.936) 0.647(3.689) 0.342(0.413)

table indicates, smaller burn-in periods (e.g., 2m0 = 4) result in larger MSEs for the estimated ATE.
This suggests that inaccurate initial estimators of V and σ2 can lead to unstable ATE estimators. To
the contrary, when the burn-in period is moderately large (e.g., 2m0 = 16 or 20), the estimated ATE
becomes more stable, with much smaller MSEs and standard errors. This experiment demonstrates
the necessity and impact of the initial burn-in period.

Example 5.3 (Continued). Similar to Xu et al. (2018), we examine the interactions between drivers
and orders in a 9× 9 spatial grid with a duration of 20 time steps. Drivers are constrained to move
vertically or horizontally by only one grid at each time step, while orders can only be dispatched
to drivers within a Manhattan distance of 2. An order will be canceled if not being assigned to any
driver for a long time. The cancellation time follows a truncated Gaussian distribution with a mean
of 2.5 and a standard deviation of 2, ranging from 0 to 5 on the temporal axis. To generate realistic
traffic patterns that mimic a morning peak and a night peak, we model residential and working areas
separately, and orders’ starting locations are sampled using a two-component Gaussian mixture
distribution. The locations are then truncated to integers within the spatiotemporal grid. Orders’
destinations and drivers’ initial locations are randomly sampled from a discrete uniform distribution
on the grid. The parameters of the mixture of Gaussians are as follows.

π(1) = 1/3, π(1) = 2/3, µ(1) = [3, 3, 2], µ(2) = [6, 6, 15], σ(1) = [2, 2, 3], σ(2) = [2, 2, 3].

The three dimensions correspond to the spatial horizontal and vertical coordinates, and the temporal
coordinate respectively. The true average treatment effect is also calculated by the difference in the
empirical average of revenue between the two policies using a sample of 1000 episodes.

Table 4 gives the simulation results of the Monte Carlo averages with standard errors of MSEs.
Figure S3 presents addition boxplots of MSEs for n = 100 with different numbers of drivers. The
corresponding results show that the proposed treatment allocation methods have better performance
than the other methods in almost all cases.
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Table 4: Simulation results for Example 5.3 of Monte Carlo averages with standard errors in parentheses of
MSEs for the average treatment effect based on 200 replicates.

Drivers n Greedy Random Half-half NMDP TMDP
U(25,30) 30 0.940(1.451) 0.884(1.119) 0.158(0.219) 0.261(0.304) 0.216(0.324)

50 0.741(0.890) 0.548(0.842) 0.178(0.206) 0.159(0.206) 0.188(0.294)
100 0.313(0.463) 0.193(0.281) 0.059(0.071) 0.078(0.103) 0.087(0.126)

25 30 0.954(1.494) 0.856(0.912) 0.246(0.356) 0.220(0.370) 0.221(0.333)
50 0.723(0.902) 0.611(0.766) 0.136(0.198) 0.123(0.212) 0.165(0.223)
100 0.424(0.522) 0.328(0.443) 0.083(0.092) 0.069(0.101) 0.062(0.083)

50 30 1.261(1.788) 1.357(1.825) 0.486(0.674) 0.387(0.509) 0.304(0.451)
50 0.756(1.009) 0.698(0.932) 0.266(0.329) 0.230(0.296) 0.188(0.260)
100 0.438(0.661) 0.520(0.696) 0.123(0.169) 0.111(0.147) 0.111(0.155)

Figure S3: Boxplots of the MSEs of the allocation methods in Example 5.3 with n = 100: the three panels
correspond to drivers generated from U(25, 30) or fixed as 25 and 50, respectively.

Example 5.4 (Continued). In this example, we evaluate the proposed treatment allocation method
on a dispatch simulator based on order-driver historical dataset from a world-leading ride-sharing
platform. The dataset contains historical data in city A and consists of four parts: the driver trajectory
dataset, the trip request dataset, the driver random walk dataset, and driver’s online-offline dataset.
Each part of data consists both temporal spatial information of orders or drivers and numerical
features of them. For example, the trip request data consists the ride start and end time, the pickup
and drop-off locations, whether the request is answered by a driver and the Gross Merchandise
Volume(GMV) of the request.

We apply the proposed method to the simulator used in Tang et al. (2019) to generate the data based
on the historical data, which is a simplified procedure to model the real-world ride-sharing market.
To be specific, we first divide the city into N hexagons and split one day into T time slices. At the
beginning of each episode, the simulator is initialized by setting the distribution of drivers over the
city identical to historical distribution. For each time slice, driver updating and order updating are
two main tasks of the simulator. The driver updating task consists of five parts: Some idle drivers
who are assigned orders will take the order with some probability, which is calculated by a pretrained
light-gbm model given information of driver and the order. Idle drivers who missed orders will
head towards some locations determined by the driver random walk dataset. Reposed drivers take
the repositioning command from platform based on some pretrained repositioning algorithm. Busy
drivers who have already taken orders would go to the appointed locations, pick up the passenger
and head towards the destination. New drivers come into this city or old drivers get offline according
to the online-offline dataset. Above parts will change the position of certain drivers, resulting in
the variation of driver distribution. As for the order updating, there exist two major parts: new
requests are generated according to the request dataset. The unassigned orders and new requests are
transformed into the formal order and dispatched to idle drivers.

We set T = 20 for the order dispatch that would be conducted at each hour and the platform work
time ranges from 4:00 to 24:00, N = 85 for the geographic reason, and n to be 7 days or 10 days.
The true average treatment effect is calculated by the difference in the empirical average of GMV
between the two policies over 100 days.
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S3 Proofs of the main theorems

Proof of Theorem 1. Recall that in NMDPs, for a general behavior policy πb, the efficiency bound is

EB1(π
b) =

T∑
t=1

1

T 2

∑
a∈{0,1}

Eπb
[
σt(Ht, a)

∏
k≤t

I(Ak = a)

πb
k(a|Hk)

]2
︸ ︷︷ ︸

EB(t)
1 ({πb

j}j≤t)

+
1

T 2
Var[V 1

1 (O1)− V 0
1 (O1)].

As commented earlier, the second term is independent of πb. It suffices to search the optimal behavior
policy πb∗ that minimizes the first term, or equivalently,

∑T
t=1 EB(t)

1 ({πb
j}j≤t).

We identify πb∗ in a recursive manner. We start with πb∗
T . Notice that πb∗

T is independent of∑
t<T EB(t)

1 ({πb
j}j≤t), it suffices to identify πb∗

T that minimizes EB(T )
1 (πb). Using the law of

iterated expectations, EB(T )
1 (πb) can be rewritten as

1

T 2

∑
a∈{0,1}

E
[ ∏
k≤T−1

I(Ak = a)

πb
k(a|Ht)2

E
{ I(AT = a)

πb
T (a|HT )2

σ2
T (HT , a)|HT

}]
=

1

T 2

∑
a∈{0,1}

E
[ I(A1 = . . . AT−1 = a)∏

k≤T−1 π
b
k(a|Ht)2

σ2
T (HT , a)

πb
T (a|HT )

]
.

A key observation is that, both the variable inside the square brackets on the second line and πb
T itself

are functions of HT . Therefore, it suffices to identify πb∗
T that minimizes the following conditional

expectation
1

T 2

∑
a∈{0,1}

E
[ I(A1 = . . . AT−1 = a)∏

k≤T−1 π
b
k(a|Ht)2

σ2
T (HT , a)

πb
T (a|HT )

∣∣∣HT

]
.

When HT is given, A1, · · · , AT−1 are fixed as well. As such, we have either A1 = · · · = AT−1 = 0
or A1 = · · · = AT−1 = 1, but not necessarily both. It suffices to set πb∗

T (a|HT ) = 1 whenever
I(A1 = · · · = AT−1 = a) for some value of a. Notice that this is automatically guaranteed when we
set πb∗

T (A1|HT ) = 1.

So far we have specified the form of πb∗
T . We next identify πb∗

T−1. Similarly, πb∗
T−1 is independent of∑

t<T−1 EB(t)
1 ({πb

j}j≤t). It suffices to consider πb∗
T−1 that minimizes EB(T−1)

1 ({πb
j}j≤T−1) +

EB(T )
1 ({πb

j}j≤T−1 ∪ πb∗
T ). Using the law of iterated expectations again, we can show that

EB(T−1)
1 ({πb

j}j≤T−1) + EB(T )
1 ({πb

j}j≤T−1 ∪ πb∗
T ) equals∑

a∈{0,1}

E
[ I(A1 = . . . AT−1 = a)∏

k≤T−1 π
b
k(a|Ht)2

E[σ2
T−1(HT−1, a) + {σ2

T (HT , a)|HT−1, AT−1 = a}]
]

=
∑

a∈{0,1}

E
[ I(A1 = . . . AT−2 = a)∏

k≤T−2 π
b
k(a|Ht)2

E[σ2
T−1(HT−1, a) + {σ2

T (HT , a)|HT−1, AT−1 = a}]
πb
T−1(a|HT−1)

]
.

Notice that the second line is again a function of HT−1. Using similar arguments, we can show
that πb∗

T−1 satisfies πb∗
T−1(A1|HT−1) = 1. Very similarly, we can prove πb∗

T−2(A1|HT−2) = · · · =
πb∗
2 (A1|H2) = 1 in a sequential order.

Finally, we need to identify πb∗
1 that minimizes EB(1)

1 (πb
1) +

∑
1<t≤T EB(t)

1 (πb
1 ∪ {πb∗

j }1<j≤t),
which equals

1

T 2

1∑
a=0

E
[∑T

t=1 E{σ2
t (Ht, a)|A1 = · · · = AT−1 = a,O1}

πb
1(a|O1)

]
.

Notice that the numerator inside the square brackets is equal to σ2
∗(O1, a). It suffices to solve the

following constrained optimization,

min
πb
1

E
[
σ2
∗(O1, 1)

πb
1(1|O1)

+
σ2
∗(O1, 0)

πb
1(0|O1)

]
, s.t. πb

1(1|O1) + πb
1(0|O1) = 1.
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or equivalently,

min
πb
1

E
[
σ2
∗(O1, 1)

πb
1(1|O1)

+
σ2
∗(O1, 0)

πb
1(0|O1)

∣∣∣O1

]
, s.t. πb

1(1|O1) + πb
1(0|O1) = 1,

This leads to

πb
1(a|O1) =

σ∗(O1, a)

σ∗(O1, 0) + σ∗(O1, 1)
.

The proof is hence completed.

Proof of Theorem 2. For any πb
1 and V a

1 , define

ψ(πb
1, V

a
1 , O1) = V a

1 (O1) +
I(A(i)

1 = a)

πb
1(a|O1)

[
∑
t

Rt − V a
1 (O1)].

Notice that A(i)
1 is generated according to π̂b∗

1,i−1. As such, ψ(π̂b∗
1,i−1, V̂

a
1,i−1, O

(i)
1 ) is unbiased to the

oracle value and ÂTE1 is unbiased to ATE1. This allows us to represent

ÂTE1−ATE1 =
1

(n− 2m0)T

∑
a∈{0,1}

(−1)a+1
n∑

i=2m0+1

[
ψ(π̂b∗

1,i−1, V̂
a
1,i−1, O

(i)
1 )−Eψ(π̂b∗

1 , V
a
1 , O

(i)
1 )

]
.

Let Di denote the data up to the i-th day. A key observation is that, ÂTE1 − ATE1 corresponds to a
sum of martingale differences with respect to the filtration {Di}i. These martingale differences are
uncorrelated. As such,

E(ÂTE1 − ATE1)
2

=
1

(n− 2m0)2T 2
E
{ n∑

i=2m0+1

∑
a∈{0,1}

(−1)a+1
[
ψ(π̂b∗

1,i−1, V̂
a
1,i−1, O

(i)
1 )− Eψ(π̂b∗

1 , V
a
1 , O

(i)
1 )

]}2

=
1

(n− 2m0)2T 2

n∑
i=2m0+1

E
{ ∑

a∈{0,1}

(−1)a+1
[
ψ(π̂b∗

1,i−1, V̂
a
1,i−1, O

(i)
1 )− Eψ(π̂b∗

1 , V
a
1 , O

(i)
1 )

]}2

With some calculations, we can decompose the variable inside the curly brackets into the sum of
ψ1,i + ψ2,i + ψ3,i where ψ1,i = V 1

1 (O
(i)
1 )− V 0

1 (O
(i)
1 )− ATE1,

ψ2,i =
∑

a∈{0,1}

(−1)a+1 I(A
(i)
1 = a)

π̂b∗
1 (a|O1)

[
∑
t

Rt − V a
1 (O1)],

ψ3,i =
∑

a∈{0,1}

(−1)a+1
[
1− I(A(i)

1 = a)

π̂b∗
1 (a|O(i)

1 )

][
V̂ a
1,i−1(O

(i)
1 )− V a(O

(i)
1 )

]
.

It is straightforward to show that ψ1,i, ψ2,i and ψ3,i are uncorrelated. Hence,

E(ÂTE1 − ATE1)
2 =

1

(n− 2m0)2T 2

n∑
i=2m0+1

[Eψ2
1,i + Eψ2

2,i + Eψ2
3,i]

=
EB1(π̂

b∗)

n− 2m0
+

1

(n− 2m0)2T 2

n∑
i=2m0+1

Eψ2
3,i. (S3)

To establish Theorem 2, we need to first upper bound the difference between EB1(π̂
b∗) and the

minimal efficiency bound EB1(π
b∗). Under the conditions that maxa,o σ

2
∗(o, a) ≤ T 2R2

max, we
obtain

|EB1(π̂
b∗)− EB1(π

b∗)| ≤ 1

(n− 2m0)T 2

∑
a∈{0,1}

n∑
i=2m0+1

E
∣∣∣ σ2

∗(O
(i)
1 , a)

π̂b∗
1,i−1(a|O

(i)
1 )

− σ2
∗(O

(i)
1 , a)

πb∗
1 (a|O(i)

1 )

∣∣∣
≤ 2R2

max

n− 2m0

n∑
i=2m0+1

E
∣∣∣ 1

π̂b∗
1,i−1(a|O

(i)
1 )

− 1

πb∗
1 (a|O(i)

1 )

∣∣∣. (S4)
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Under the conditions on the estimated behavior policy π̂b∗
1,i−1, it follows from Cauchy-Schwarz

inequality that

E
∣∣∣ 1

π̂b∗
1,i(a|O1)

− 1

πb∗
1 (a|O1)

∣∣∣ ≤ {
E
[ 1

π̂b∗
1,i(a|O1)

− 1

πb∗
1 (a|O1)

]2}1/2

=
√
Ci−α1 .

Notice that

1

n− 2m0

n∑
i=2m0+1

(i− 1)−α1 ≤ 1

n− 2m0

n−2m0∑
i=1

i−α1 ≤ 1

n− 2m0

[
1 +

∫ n−2m0−1

1

x−α1dx
]

≤ (n− 2m0)
−1 +

1

1− α1
(n− 2m0)

−α1 ≤ 2− α1

1− α1
(n− 2m0)

−α1 .

(S5)

By (S4), it yields the following upper bound for (n− 2m0)
−1[EB1(π̂

b∗)− EB1(π
b∗)]:

2(2− α1)
√
CR2

max

(1− α1)(n− 2m0)1+α1
. (S6)

It remains to upper bound the second term in (S3). Under the condition that min1,i π̂
b∗
i ≥ ϵ, we

obtain that

Eψ2
3,i ≤ 2

1∑
a=0

E
{[
V̂ a
1,i−1(O

(i)
1 )− V a(O

(i)
1 )

]2
E
[(

1− I(A(i)
1 = a)

π̂b∗
1 (a|O(i)

1 )

)2

|Di−1, O
(i)
1

]}
≤ 2ϵ−1

1∑
a=0

E
[
V̂ a
1,i−1(O

(i)
1 )− V a(O

(i)
1 )

]2
≤ 2Cϵ−1i−2α2T 2.

Similar to (S5), we can show that the second term in (S3) is of the order of magnitude O(Cϵ−1(n−
2m0)

−1−2α2). Plugging this and (S6) into (S3) yields the desired results.

Proof of Proposition 1. We give a counterexample that the optimal behavior policy πb∗ does not
belong to the set Πb.

We design a two-stage TMDP {Ot, A1, Rt}2t=1 with binary observations. Assume O1 = R1 = 0
almost surely. The distribution of O2 depends on A1. In particular, let P(O2 = 1|A1 = 1) = 0.5
and P(O2 = 1|A1 = 0) = p for some 0 < p < 1. In addition, let R2 = O2 + e2 for some
error term e2 such that E(e2|A2, O2) = 0. It is immediate to see that σ2

2 corresponds to the
conditional variance of e2 given (O2, A2). Meanwhile, we have V a

2 (o2) = o2 for any a and
o2. Since O1 is degenerate, we write σ1(O1, A1) as σ1(A1). It is straightforward to show that
σ1(1) = Var(O2|A1 = 1) = 0.5, σ1(0) = Var(O2|A1 = 0) =

√
p(1− p).

Equation (S12) provides the closed-form expressions for the marginal probability mass functions
pb1 and pb2 under πb∗, provided that there exists πb∗ such that the induced marginal probability mass
functions match these distribution functions. In particular, according to (S12),

pb1(a) =
σ1(a)

0.5 +
√
p(1− p)

and pb2(o, a) =
pa2(o)σ2(o, a)∑

a′,o′ p
a′
2 (o′)σ2(o′, a′)

, (S7)

where pb1 is a function of the initial action only, due to the degeneracy of the initial observation. By
direct calculations, we obtain that p12(1) = 0.5, p02(1) = p.

We next establish the existence of πb∗ such that the induced pb1 and pb2 equal (S7). This proves that
πb∗ is indeed a minimizer of EB2. Meanwhile, we show that any minimizer of EB2 does not belong
to Πb. This would complete the proof.

The identification of πb∗
1 is straightforward as O1 is degenerate. We can simply set πb∗

1 to pb1. It
remains to specify πb∗

2 . By definition,

pb2(o2, a2) =
∑

a1∈{0,1}

πb∗
1 (a1)P(O2 = o2|A1)π

b∗
2 (a2|a1, o2)

=
∑

a1∈{0,1}

pb1(a1)P(O2 = o2|A1)π
b∗
2 (a2|a1, o2).
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By summing over a2 on both sides, we obtain the constraints that

pb2(o2, 1) + pb2(o2, 0) =
∑

a1∈{0,1}

pb1(a1)P(O2 = o2|A1),

for any o2, or equivalently,

pb2(0, 1) + pb2(0, 0) = 0.5
1

1 + 2
√
p(1− p)

+ (1− p)
2
√
p(1− p)

1 + 2
√
p(1− p)

,

pb2(1, 1) + pb2(1, 0) = 0.5
1

1 + 2
√
p(1− p)

+ p
2
√
p(1− p)

1 + 2
√
p(1− p)

.

(S8)

Notice that at this stage, we have not specified σ2 yet. For a given 0 < p < 1, p2 can be any strictly
positive probability mass function by adjusting the values of σ2. A extreme case is given by p = 1/2.
In this case, O2 is independent of A1 and we can set σ2 to a constant to ensure (S8) holds. Then the
optimal πb∗

2 (a2|a1, o2) = 0.5 regardless of the values of a1, a2 and o2. Apparently, πb∗ /∈ Πb in this
case.

We consider a more complicated case where p > 0.5. As commented earlier, pb2 can be any strictly
positive probability mass function by adjusting the values of σ2. Toward that end, we set σ2 to
be such that pb2(1, 1) = 0.25, pb2(0, 1) = 0.5 − 0.5p, and the values of pb2(1, 0), p

b
2(0, 0) can be

calculated according to (S8). When p > 0.5, the second term on the right-hand-side (RHS) of the
second line is larger than 0.5. As such, pb2(1, 0) is well-defined. Similarly, we can show that pb2(0, 0)
is well-defined.

It remains to specify πb∗
2 to satisfy the following two equations:

pb2(1, 1) = 0.25 = 0.5
1

1 + 2
√
p(1− p)

πb∗
2 (1|1, 1) + p

2
√
p(1− p)

1 + 2
√
p(1− p)

πb∗
2 (1|0, 1), (S9)

pb2(0, 1) = 0.5− 0.5p = 0.5
1

1 + 2
√
p(1− p)

πb∗
2 (1|1, 0) + (1− p)

2
√
p(1− p)

1 + 2
√
p(1− p)

πb∗
2 (1|0, 0).(S10)

When these two equations are satisfied, the constraints on pb2(1, 0) and pb2(0, 0) are automatically
satisfied due to (S8).

Consider the first equation (S9). When p > 0.5, the weight 0.5/(1 + 2
√
p(1− p)) is smaller than

0.25 whereas the weight 2p
√
p(1− p)/(1 + 2

√
p(1− p)) is larger than 0.25. So there must exist

πb∗
2 (1|1, 1) and πb∗

2 (1|0, 1) that satisfy this equation. Meanwhile, when πb∗
2 sets A2 = A1, i.e.,

πb∗
2 (1|1, 1) = 1 and πb∗

2 (1|0, 1) = 0, the RHS is strictly smaller than 0.25. This shows that any
πb ∈ Πb will not satisfy (S9).

As for the second equation, similarly, the weight 2(1 − p)
√
p(1− p)/(1 + 2

√
p(1− p)) is larger

than 0.5− 0.5p. Hence, there must exist πb∗
2 (1|1, 0) and πb∗

2 (1|0, 0) that satisfy this equation. The
proof is hence completed.

Proof of Theorem 3. We first prove the in-class asymptotic optimality under the β-mixing condition.
In other words, we aim to show that πb∗ asymptotically minimizes

min
πb∈Πb

1

T

T∑
t=1

[
E
{ I(At = 1)p1t (Ot)

2

pbt(Ot, 1)2
σ2
t (Ot, 1)

}
+ E

{ I(At = 0)p0t (Ot)
2

pbt(Ot, 0)2
σ2
t (Ot, 0)

}]
.

By definition, pbt(ot, a) =
∫
πb
1(a|o1)pat (ot|o1)p(o1)do1. Under the β- mixing condition, pbt(ot, a)

converges to πb
1(a)p

a
t (ot) uniformly in a and ot, where πb

1(a) = Eπb
1(a|O1). The above minimization

problem is asymptotically equivalent to

min
πb
1

1

T

T∑
t=1

[
E
{ I(A1 = 1)

πb
1(1)

2
E1σ2

t (Ot, 1)
}
+ E

{ I(A1 = 0)

πb
1(0)

2
E0σ2

t (Ot, 0)
}]
,
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Similar to the proof of Theorem 1, under the constraint that πb
1(1) + πb

1(0) = 1, the minimum can be
achieved by setting

πb∗
1 (a) =

σa∗
σ1∗ + σ0∗

, σ2
a∗ =

1

T 2

T∑
t=1

Ea
[
σ2
t (Ot, a)

]
.

This proves the first part of Theorem 3.

We next establish the second part. We aim to identify πb that minimizes

1

T
min
πb

T∑
t=1

[
E
{ I(At = 1)p1t (Ot)

2

pbt(Ot, At)2
σ2
t (Ot, 1)

}
+ E

{ I(At = 0)p0t (Ot)
2

pbt(Ot, At)2
σ2
t (Ot, 0)

}]
. (S11)

Direct calculations lead to

E
{ I(At = a)pat (Ot)

2

pbt(Ot, At)2
σ2
t (Ot, a)

}
=

∑
o

pat (o)
2

pbt(o, a)
2
σ2
t (o, 1)p

b
t(o, a) =

∑
o

pat (o)
2σ2

t (o, a)

pbt(o, a)

Directly searching the optimal πb is challenging due to the intricate dependence of pbt on πb. Instead
of searching the optimal πb that minimize (S11), we enlarge the search space to consider a sequence
of unrestricted density functions {pbt}t (e.g., pbt is no longer required to be a πb-induced probability
density/mass function) that minimize

1

T

T∑
t=1

∑
o

[p1t (o)2σ2
t (o, 1)

pbt(o, 1)
+
p0t (o)

2σ2
t (o, 0)

pbt(o, 0)

]
, s.t.

∑
o

[pbt(o, 1) + pbt(o, 0)] = 1.

Similar to the proof of Theorem 1, the minimal value can be achieved by setting

pbt(o, a) =
pat (o)σt(o, a)∑

o′ [p
1
t (o

′)σt(o′, 1) + p0t (o
′)σt(o′, 0)]

. (S12)

Under the constancy assumption, we have σt(o, a) = ca for some any t and o. It follows that

pbt(o, a) =
pat (o)c

a∑
o′ [p

1
t (o

′)c1 + p0t (o
′)c0]

=
pat (o)c

a

c1 + c0
. (S13)

Notice that πb∗
1 (a) = ca/(c1 + c0). Using similar arguments in the proof of first part, under the

β-mixing condition, we can show that the induced pbt is asymptotically equivalent to (S13). This
implies that the proposed πb∗ is asymptotically optimal among all behavior policies. The proof is
hence completed.

Proof of Theorem 4. The proof of Theorem 4 is very similar to that of Theorem 2. We begin by
defining the estimating function

ϕ(πb
1, V

a
1 , O

(i)
1 ) = V a

1 (O
(i)
1 ) +

I(A(i)
1 = a)

πb
1(a)

T∑
t=1

[R
(i)
t − V a

1 (O
(i)
1 )],

which leads to

ÂTE2 − ATE2 =
∑

a∈{0,1}

(−1)a+1

T (n− 2m0)

n∑
i=2m0+1

[
ϕ(π̂b∗

1,i−1, V̂
a
1,i−1, Ô

(i)
1 )− Eϕ(π̂b∗

1 , V
a
1 , O

(i)
1 ))

]
.

The variable inside the curly brackets can be similarly decomposed into the sum of three uncorrelated
variables ϕ1,i + ϕ2,i + ϕ3,i where ϕ1,i = V 1

1 (O
(i)
1 )− V 0

1 (O
(i)
1 )− ATE2,

ϕ2,i =
∑

a∈{0,1}

(−1)a+1 I(A
(i)
1 = a)

π̂b∗
1 (a)

[
∑
t

Rt − V a
1 (O1)],

ϕ3,i =
∑

a∈{0,1}

(−1)a+1
[
1− I(A(i)

1 = a)

π̂b∗
1 (a)

][
V̂ a
1,i−1(O

(i)
1 )− V a(O

(i)
1 )

]
.
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It follows from the martingale structure that

E(ÂTE2 − ATE2)
2 =

1

(n− 2m0)2T 2

n∑
i=2m0+1

[Eϕ21,i + Eϕ22,i + Eϕ23,i]

=
EB2(π̂

b∗)

n− 2m0
+

1

(n− 2m0)2T 2

n∑
i=2m0+1

Eϕ23,i. (S14)

Similar to the derivation of (S4), the difference of EB2(π̂
b∗) and the optimal EB2(π

b∗) can be upper
bounded by

|EB2(π̂
b∗)− EB2(π

b∗)| ≤ 1

(n− 2m0)T 2

∑
a∈{0,1}

n∑
i=2m0+1

E
∣∣∣σ2

∗(O
(i)
1 , a)

π̂b∗
1,i−1(a)

− σ2
∗(O

(i)
1 , a)

πb∗
1 (a)

∣∣∣
= O(R2

max

√
C(n− 2m0)

−α1). (S15)

Meanwhile, we can similarly show that the second term of (S14) is of the order O(Cϵ−1(n −
2m0)

−1−2α2). The proof is hence completed.
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