
A Introduction of do calculus.415

Do-calculus consists of three rules that help with identifying causal effects.416

Rule A.1 (Insertion/deletion of observations).

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )GX
(13)

Rule A.2 (Action/observation exchange).

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X,W )GXZ
(14)

Rule A.3 (Insertion/deletion of actions).

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
XZ(W )

(15)

where GX is the graph with all incoming edges to X being removed, GW is the graph with all417

outcoming edges to W being removed, and Z(W ) is the set of Z-nodes that are not ancestors of any418

W -node.419

Intuitively, Rule A.1 states when an observant can be omitted in estimating the interventional420

distribution, Rule A.2 illustrates under what condition, the interventional distribution can be estimated421

using the observational dataset, and Rule A.3 decides when we can ignore an intervention.422

B Proofs423

B.1 Proof of Proposition 2.1424

Proposition B.1. Let Z1 and Z2 be two random variables, C∗ be the ground truth confounder set. If425

C is a superset of or is equivalent to C∗, i.e., C∗ ⊆ C, with c being a realization of C, we have426

P (Z2|do(Z1)) =
∑
c∈C

P (Z2|Z1,C = c)P (C = c) (16)

if no C ∈ C is a descendent of Z.427

Proof.

P (Z2|do(Z1)) = P (Z2|do(Z1),C)P (C|do(Z1))

P (Z2|do(Z1),C)
Rule A.2
====== P (Z2|Z1,C)

P (C|do(Z1))
Rule A.3
====== P (C)

P (Z2|do(Z1)) =
∑
c∈C

P (Z2|Z1,C = c)P (C = c)

428

B.2 Proof of Theorem 4.1429

Theorem B.2. Suppose that the latent variable Z on dataset X given C = c is Gaussian430

N (µc(X),Σc(X)). Specifically,431

P (Z|C = c,X) = (2π)−D/2 det(Σc)−1/2 exp

(
−1

2
(Z− µc)T(Σc)

−1
(Z− µc)

)
,

where Z ∈ RD. If Σc(X) is diagonal for all c, we have432

lc =

D∑
i=1

[E(Zi|doc(Z−i),X)− E(Zi|X)] = 0. (17)

12



Proof. We suppose that433

P (Z|C = c,X) = (2π)−D/2 det(Σc)−1/2 exp

(
−1

2
(Z− µc)T(Σc)

−1
(Z− µc)

)
(18)

where we omit X for simplicity and D is the dimension of Z for any given c. By definition of lc434

(Equation (9)) and proposition 2.1,435

lc =

D∑
i=1

d (E[Zi|doc(Z−i),X]− E[Zi|X]) (19)

=

D∑
i

d(E[Zi|Z−i,X, C = c], E[Zi|X, C = c]) (20)

=

D∑
i

d(E[Zc
i |Zc

−i], E[Zc
i ]) (21)

where we denote Zc = [Z|X, C = c] for simplicity. Notice that Zc ∼ N (µc,Σc) ∈ RD, we436

therefore know that the conditional distribution of any subset vector Zc
k, given the complement vector437

Zc
j , is also a multivariate Gaussian distribution [22]438

Zc
k|Zc

j ∼ N (µc
k|j ,Σ

c
k|j) (22)

where439

µc
k|j = µc

k +Σc
k,j(Σ

c
j,j)

−1(Zc
j − µc

j), Σc
k|j = Σc

k,k − Σc
k,j(Σ

c
j,j)

−1Σc
j,k, (23)

given that Σc
j,j is nonsingular.440

Hence we know that the first expectation in Equation (21) becomes441

E[Zc
i |Zc

−i] = µc
i +Σc

i,−i(Σ
c
−i,−i)

−1(Zc
−i − µc

−i) (24)

assuming that Σc
−i,−i is nonsingular. Since E[Zc

i ] = µc
i , the loss lc can be written as442

lc =

D∑
i

d(µc
i +Σc

i,−i(Σ
c
−i,−i)

−1(Zc
−i − µc

−i), µ
c
i ). (25)

We assume further that Σc is a diagonal matrix. Therefore Σc
−i,−i = 0 is a zero row vector. Then443

lc =

D∑
i

d(µc
i , µ

c
i ) = 0 (26)

444

C Related Work445

Disentangled Representations The pursuit for disentangled representation can be dated to the surge446

of representation learning and is always closely associated with the generative process in modern447

machine learning, following the intuition that each dimension should encode different features.448

[6] attempts to control the underlying factors by maximizing the mutual information between the449

images and the latent representations. [8] propose a quantitative metric with the information theory.450

They evaluate the disentanglement, completeness, and informativeness by fitting linear models and451

measuring the deviation from the ideal mapping. [9, 11, 5, 18] encourage statistical independence by452

penalizing the Kullback-Leibler divergence (KL) term in the VAE objective. However, the non-causal453

definitions of disentanglement fail to consider the cases where correlated features in the observational454

dataset can be disentangled in the generative process. Such a challenge is well-approached through a455

line of research from the causal perspective.456

Causal Generative Process. Causal methods are widely used for eliminating spurious features457

in various domains and improving understandable modelling behaviours[25, 26, 14]. It is not458

until [23] that it was introduced for a strict characterization of the generative process. [23] first459
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provided a rigorous definition of a causal generative process and the definition of disentangled460

causal representation as the non-existence of causal relationships between two variables, i.e., the461

intervention on one variable does not alter the distribution of the others. The authors further introduce462

interventional robustness as an evaluation metric and show its advantage on multiple benchmarks.463

[21] follow the path of [23] and further propose two evaluation metrics and the Candle dataset.464

The confounded assumption allows for correlation in the latent space without tempering with the465

disentanglement in the data generative. Despite effective evaluation tools, there is still a missing466

piece on how to infer a set of causally disentangled features. Using the proposed evaluation metric467

as regulation, the model implicitly assumes unconfoundedness and it falls back to finding statistical468

independence in the latent space. The problem of unrealistic unconfoundedness assumption is469

identified by [24]. They assume that confounders exist but they are unobservable. They further470

propose an evaluation metric considering the existence of confounders, that causally disentangled471

latent variables have independent support measured by the IOSS score. Similar to the evaluation472

metrics introduced in [23, 21], IOSS is also a necessary condition of the causal disentanglement. More473

importantly, as in previous work focusing on obtaining statistical independence, such a regulation474

suffers from the identifiability issue.475

Weak Supervision for Inductive Bias. The identifiability issue in unsupervised disentangled476

representation learning is first identified in [16]. Specifically, they show from the theory that such a477

learning task is impossible without inductive biases on both the models and the data. Naturally, a478

series of weak-supervised or semi-supervised methods [4, 1, 2] are proposed with a learning objective479

of statistical independence or alignment. In this paper, we take a step further for the confounding480

assumption, assuming that the confounders are observable with proper inductive bias so that the481

latent representation can be better identified. We, similarly, adopt partial labels of the dataset as the482

supervision signal. We treat the labels as a source of possible confounders and allow the learning of483

correlated but causally disentangled latent generative factors to be learned.484

D Experimental Details485

D.1 Experimental Details486

The experiments are conducted on 4 NVIDIA GeForce RTX 2080Ti. In each experiment, we repeat 5487

times with different seeds and report the averaged results. In all experiments, only partial information488

on the ground truth confounder is provided. Specifically, for example, the 3dshape dataset, we first489

make some predefined rules, such as “ 70% cubes are red”. Then we generate 700 red cubes and 300490

cubes in other colors. The generation process naturally divides the dataset into different subgroups,491

and we can thus explicitly control how inductive bias is provided, i.e., the grouping. In the celebA492

dataset, since we do not have access to the ground truth generative factors, so we assume any label493

sets only contain partial information.494

D.2 Ablation study495

We investigate how the choice of C affect the model performance and how to adapt C-Disentanglement496

to the existing method aiming for statistical independence, as shown in appendix D.497

Table 3: Performance under different C on shape
classification on 3dshape dataset, shift sever-
ity=0.5.

Choice of C Acc - T ↑ IRS ↑
C = ∅ 79.2 0.82
C = C∗ 88.2 0.89
partial C∗ 84.5 0.87

Table 4: Adapt cdVAE to existing methods.
The IOSS and Reconstruction loss are measured
based on image generation task and the perfor-
mance drop is measured on shape classification
on the target domain under shift severity=0.5.

Methods IOSS ↓ Recon ↓ Acc-T ↑
IOSS 0.14 0.12 81.8
cdVAE + IOSS 0.12 0.08 84.5

498

C-Disentanglement improves the learning of ground truth generative factors under a reasonable499

choice of label set. To understand how the choice of C affects the performance, we repeat the shape500

classification task with different choices of C under 50% shift severity. When with C, we assume501

the generative process is unconfounded, and cdVAE degrades to the vanilla VAE model. With502

partial C, we partition the data according to only 2 values of the shifting variables instead of 4.503
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With full C, we provide the full confounders. As shown in Table 3, even partial information of the504

confounders improves the model performance in OOD generalization and obtains more robust latent505

representations.506

Adapting C-Disentanglement to existing works further improve their performance. We compare507

the performance between regulation through IOSS[24] and cdVAE + IOSS in image generation and508

classification tasks on 3dshape dataset. In the cdVAE + IOSS, we apply additional regularization509

terms based on the Z. The results show that C-Disentanglement framework could further improve the510

performance with desired level of inductive bias given.511

D.3 Pseudo-code512

Algorithm 1 Train a VAE such that the latent representation is causally disentangled
Input: Number of labels NC , training data X with labels c, ratio of each categories/confounders
P (C = c) in the training set, dimension of latent space D

1: for x ∈ X do
2: for c ∈ C do
3: Define Zc = [Z|x,C = c], and obtain from encoder Zc ∼ N (µc(x),Σc(x)) for each c,

assuming Σc(x) to be diagonal matrix:

Θc
enc(x) = [µc, diag(Σc)] ∈ R2d, µc ∈ Rd, diag(Σc) ∈ Rd (27)

4: Sample from Zc ∼ N (µc(x),Σc(x)):

Zc = µc + (Σc)
1
2 ϵc, ϵc ∼ N (0, I) (28)

5: Parametrize πc ∼ N (µπc(x), σπc(x)) ∈ R with neural network.
6: Regulate the covariance matrix to be identity matrix with KL divergence

Dc
KL =

1

2

[
log

1

detΣc
−D + tr(Σc)

]
(29)

7: end for
8: Normalize ΠC = (πc1 , ..., πcNC ) such that ∥ΠC∥2 = 1.
9: Compute classification loss between ΠC with label c:

Lcls = H(ΠC , c) (30)

10: Let Z(x) =
∑

c∈C πcZc(x), and obtain the reconstructed sample from decoder: x′ =
Θdec(Z(x)). Compute reconstruction loss for Z(x):

Lrec = mse(x′, x) (31)

11: Compute total loss
Ltotal(x) = Lrec + Lcls +

∑
c∈C

Dc
KL (32)

and update encoders and decoders.
12: end for

D.4 Additional Experimental Results513

The classification accuracy on both the source and the target distribution with variance is given in the514

table below.515
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Table 5: Compare cdVAE with β-Vae, CAUSAL-REP on classification under distribution shift.
T represents accuracy on the target data, S represents the performance on the target domain
when the classifier trained on the source data is directly tested on the target data.

shift = 0.4 shift = 0.5 severity = 0.6
Methods Acc-S Acc-T Acc-S Acc-T Acc-S Acc-T
CAUSAL-REP 94.1±0.04 82.1±0.08 94.3±0.03 81.9±0.07 94.3±0.02 81.8±0.11
β-VAE 93.4±0.07 80.7±0.12 93.6±0.05 80.7±0.03 93.4±0.04 80.3±0.09
cdVAE 94.6±0.02 84.5±0.05 94.6±0.04 84.4±0.05 94.5±0.03 84.4±0.04
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