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1 Pseudo code description

In order to help readers better understand our STAR, we summarize its workflow in Algorithm 1.

2 Pixel count fine-tuning

In the main body of our paper, we discussed the need for fine-tuning the count of past foreground class
and background pixels, enabling them to serve as frequencies for replaying prototypes or repeating
background pixels. In this section, we provide further elaboration on this fine-tuning method. This
method is somewhat intricate and has a minimal impact on the results (as proved in Sec. 3.3), so
we deem it optional. Nevertheless, it is maintained in our default configuration to ensure the logical
integrity.

2.1 The count of foreground class pixels

In the main body of our paper, we discussed how a random sample of a past foreground class
l ∈ Lt−τ , denoted as rl, is replayed ηl times per training epoch at each subsequent step t. The goal of
this strategy is to equalize the count of l pixels in the current single-step training samples with that in
D1:t, which represents the union of all training sets up to the present. As Dt is the current training set,
we need to compensate for the number of l pixels within the set D1:t −Dt. This compensatory count,
however, does not precisely match ηl, which is the count of l pixels in Dt−τ where l is considered
as foreground. The discrepancy arises due to the overlap between training sets at different steps,
and the likelihood that pixels from l might appear as background in the training sets of other steps.
Consequently, fine-tuning of ηl is required.

Assuming l is a foreground class at step t− τ , we redefine ηl as ηt−τ
l within this section. At each

subsequent step t, we will perform fine-tuning on ηt−τ
l , resulting in ηtl .

Fine-tuning in the overlapped setting. In the overlapped setting, overlap exists between the training
sets at different steps. Therefore, a pixel belonging to l, which is treated as a foreground class at step
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Algorithm 1: Pseudo code of STAR
Require: Feature extractor Ψθ, classifiers Φω , number of steps T , number of epochs Nepoch,

training sets for all steps {Dt}Tt=1, foreground classes for all steps {Lt}Tt=1
for t in 1 to T do

if t = 1 then
Randomly initialize θ, ω

else
Initialize θ, {ωl}l∈L1:t−1 with θt−1, {ωt−1

l }l∈L1:t−1

Randomly initialize {ωl}l∈Lt

end
// After initialization, θ and ω are re-denoted as θt and ωt

for nepoch in 1 to Nepoch do
for each batch U in Dt do

Ψθt extract features, achieving f t

if t = 1 then
Feed f t to Φωt , achieving the output pt
// mBCE loss
Compute Lmbce as the multiple binary cross-entropy between pt and the
ground-truth

// parameter update
Compute the gradient for Lmbce, then update θt and ωt

else
Ψθt−1 extract features, producing f t,t−1

Feed f t,t−1 to Φωt−1 , achieving the prediction of old classes, pt,t−1

// prototype replay
Construct Gaussian-distributed random variables {rl}l∈L1:t−1 based on saved

prototypes and statistics
Sample each rl a certain number of times based on the saved occurrence count of
l pixels and concatenate all random samples together

// background repetition
Identify background regions by excluding pixels currently labeled as foreground

class and old-class pixels estimated in pt,t−1

Duplicate background pixels a certain number of times based on the saved
occurrence count of background pixels and concatenate all duplications together

// mBCE loss
Concatenate aforementioned random samples and background duplications with
f t, feed them to Φωt , achieving the output pt

Compute Lmbce as the multiple binary cross-entropy between pt and
corresponding ground-truths

// old-class features maintaining loss
Identify old-class pixels with the help of pt,t−1

Compute Locfm as the mean square error between f t and f t,t−1 in old-class
regions

// similarity-aware discriminative loss
Compute Lsad as the mean of the minimum distance from the feature center of
each current foreground class (computed within the current batch) to all saved
old-class prototypes

// parameter update
Compute the gradient for Lmbce + αLocfm + βLsad, then update θt and ωt

end
end

end
Compute and save the occurrence counts for all current foreground class pixels and

background pixels
Compute and save the prototypes and statistics of pixel-level features for all current

foreground classes
end
return ΨθT and ΦωT
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t− τ , might appear as background at a subsequent step t. However, within the overlapped setting, all
the pixels from class l throughout the entire training set D1:T have already been present as foreground
in Dt−τ , so the l pixels in Dt are duplicated. Therefore, we should subtract the count of such pixels
from ηt−τ

l , ensuring that the total number of l samples input to the classifiers is consistent with that in
D1:t. While it is impossible to determine the exact number of such pixels because they are labeled as
background, we can leverage the prediction of the preceding model, p̃t,t−1

i,j , to approximate it. Hence,
the updated count ηtl can be computed by:

ηtl = ηt−τ
l −

Nt∑
i=1

h×w∑
j=1

1{p̃t,t−1
i,j = l}. (1)

Given that M t−1 has already been trained to distinguish class l, it should ideally yield a reliable
count. Therefore, by incorporating rl for ηtl times at step t, we can compensate for the l pixels within
the set D1:t −Dt.

Fine-tuning in the disjoint setting. In the disjoint setting, the situation diverges as there is no overlap
between different single-step training sets. Given that the current training set does not contain images
with future-class pixels, l pixels that coexist in images with future-class pixels will not be present in
Dt−τ . Consequently, unlike in the overlapped setting, the count of l pixels in D1:t −Dt may surpass
ηt−τ
l in the disjoint setting. This discrepancy necessitates an increase in the replay frequency of rl

beyond ηt−τ
l . Specifically, considering that the training set of each subsequent step t may include l

pixels, we progressively update the count as follows:

ηtl = ηt−1
l +

Nt∑
i=1

h×w∑
j=1

1{p̃t,t−1
i,j = l}, (2)

which is also based on the predictions of the preceding model. Ideally, it approximates ηtl to the count
of l pixels within D1:t (and approximates ηt−1

l to the count within D1:t−1 = D1:t −Dt). Therefore,
at step t, we replay rl per training epoch at a frequency of ηt−1

l , rather than ηtl .

2.2 The count of background pixels

Similar to the count of foreground class pixels, the count of background pixels also requires fine-
tuning. Two main factors necessitate this adjustment: 1) A minor proportion of past background
pixels might belong to the current foreground classes, warranting a subtraction of this proportion.
2) Training sets at different steps may have some overlap, requiring the deduction of duplicated
background pixels. It is noteworthy that these two factors are only pertinent in the overlapped setting.
In the disjoint setting, where past images do not possibly contain current foreground classes and no
overlap exists between the training sets at different steps, no adjustment is needed.

In the main body of our paper, the count of background pixels up to step t− τ is expressed as follows:

ηt−τ
bg =

{ ∑Nt−τ

i=1

∑h×w
j=1 1{ỹt−τ

i,j = 0} if t− τ = 1

ηt−τ−1
bg +

∑Nt−τ

i=1

∑h×w
j=1 1{ỹt−τ

i,j = 0} if t− τ > 1.
(3)

Considering the factors mentioned above, we adjust the formula in the overlapped setting to:

ηt−τ
bg =

{ ∑Nt−τ

i=1

∑h×w
j=1 1{ỹt−τ

i,j = 0} if t− τ = 1

(1− δ|Lt−τ |)ηt−τ−1
bg + (1− ϵ)

∑Nt−τ

i=1

∑h×w
j=1 1{ỹt−τ

i,j = 0} if t− τ > 1,
(4)

where δ and ϵ are two hyper-parameters. δ represents the proportion of previous background pixels
that belong to each current foreground class, which is empirically set to 0.01. ϵ represents the
proportion of background pixels in the current training set that overlap with previous background
pixels, which is empirically set to 0.5. These two adjustments correspond to the two factors described
above. Except for this formula, all other parts of the background repetition are the same as stated in
the main body.
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Table 1: Quantitative comparison on Pascal VOC 2012 between our STAR and previous non-replay
methods (top half) and replay-based methods (bottom half) under the disjoint setting.

Model 19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps)

old new all old new all old new all

MiB [2] 69.6 25.6 67.4 71.8 43.3 64.7 46.2 12.9 37.9
SDR [7] 69.9 37.3 68.4 73.5 47.3 67.2 59.2 12.9 48.1

SSUL [3] 77.4 22.4 74.8 76.4 45.6 69.1 74.0 32.2 64.0
RCIL [9] - - - 75.0 42.8 67.3 66.1 18.2 54.7
RBC [10] 76.4 45.8 75.0 75.1 49.7 69.9 61.7 19.5 51.6
DKD [1] 77.4 43.6 75.8 77.6 54.1 72.0 76.3 39.4 67.5
UCD [8] 75.7 31.8 73.5 67.0 39.3 60.1 50.8 13.3 41.4

Ours 77.9 43.4 76.2 78.4 57.4 73.4 78.1 46.6 70.6

RECALL [5] 65.0 47.1 65.4 69.2 52.9 66.3 67.6 49.2 64.3
SSUL-M(100) [3] 77.6 43.9 76.0 76.5 48.6 69.8 76.5 43.4 68.6
DKD-M(100) [1] 77.6 56.9 76.6 77.7 55.4 72.4 77.3 48.2 70.3

Ours-M(50) 77.8 53.7 76.7 78.4 58.6 73.7 77.8 49.0 71.0

3 More experimental results

3.1 Quantitative comparison under the disjoint setting

In Table 1, we present a quantitative comparison between our STAR and previous state-of-the-art
methods [1, 2, 3, 5, 7, 8, 9, 10] under the disjoint setting. Remarkably, without storing any raw
images (Ours), our model surpasses the previous best-performing non-replay-based model, DKD, by
an average improvement of 1.6 mIoU across all three protocols. Even compared with the previous
best-performing replay-based model, DKD-M, our STAR model still slightly exceeds it by a 0.3 mIoU
on average, showing a more surprising performance than under the overlapped setting. Moreover,
when supplied with 50 additional raw images to provide authentic features (Ours-M), our model
exhibits a further improvement in performance, outperforming DKD-M in all three protocols with an
average lead of 0.7 mIoU. Considering that the storage space needed by Ours and Ours-M is only
~0.5% and ~50% respectively of what is needed by DKD-M, the performance is impressive.

3.2 Error Bars

Table 2: Average mIoU across all classes from five runs of our STAR, under the eight Pascal VOC
2012 protocols.

Model overlapped disjoint

19-1 15-5 15-1 10-1 5-3 19-1 15-5 15-1

Ours (time 1) 76.5 74.9 72.9 64.6 64.3 76.4 73.4 70.6
Ours (time 2) 76.5 74.8 72.7 64.9 64.4 75.9 73.4 70.8
Ours (time 3) 76.6 74.5 72.6 64.6 64.5 76.4 73.1 70.5
Ours (time 4) 76.5 74.5 72.5 64.6 64.5 76.3 73.4 70.7
Ours (time 5) 76.5 74.3 72.2 64.7 64.4 76.2 73.5 70.6

Ours 76.5 74.6 72.6 64.7 64.4 76.2 73.4 70.6
(±0.1) (±0.2) (±0.3) (±0.1) (±0.1) (±0.2) (±0.1) (±0.1)

Ours-M (time 1) 76.7 75.8 74.0 66.5 65.7 76.7 73.8 71.0
Ours-M (time 2) 76.8 75.6 73.9 66.6 65.4 76.6 73.8 71.2
Ours-M (time 3) 77.0 75.3 73.9 66.4 65.5 76.7 73.5 70.8
Ours-M (time 4) 76.8 75.3 73.6 66.6 65.5 76.7 73.8 71.0
Ours-M (time 5) 76.7 75.0 73.6 66.5 65.4 76.7 73.7 70.9

Ours-M 76.8 75.4 73.8 66.5 65.5 76.7 73.7 71.0
(±0.1) (±0.3) (±0.2) (±0.1) (±0.1) (±0.1) (±0.1) (±0.2)

In Table 2, we display the results from five separate runs of our STAR under the eight protocols of the
Pascal VOC 2012 dataset [4]. Notably, our model demonstrates robust consistency, with outcomes
of the five runs being tightly clustered. This clearly illustrates that the superior performance of our
model is a result of its intrinsic merits, rather than randomness.
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Table 3: Ablation study results under the disjoint 15-1 protocol of Pascal VOC 2012.

Replay BR OCFM SAD disjoint 15-1 (6 steps)

old new all

✓ ✓ ✓ 77.9 42.1 69.4
✓ ✓ ✓ 77.6 34.0 67.2
✓ ✓ ✓ 20.7 6.8 17.4
✓ ✓ ✓ 75.7 34.6 66.0
✓ ✓ ✓ ✓ 78.1 46.6 70.6

3.3 More ablation study results

Ablation study under the disjoint 15-1 protocol. The results of the ablation study under the
disjoint 15-1 protocol can be found in Table 3. They reveal a similar trend to those under the
overlapped 15-1 protocol. Nonetheless, one important observation is the more marked impact of our
similarity-aware discriminative loss (SAD) within the disjoint 15-1 protocol. In disjoint 15-1, SAD
leads to an enhancement in the overall mIoU by 4.6, and a boost in the mIoU of new classes by 12.0.
Comparatively, the corresponding enhancements within the overlapped 15-1 protocol reached only
1.0 and 2.4. This disparity can be attributed to the fact that the training set may contain future-class
pixels in the overlapped setting. Despite these pixels being labeled as background, they empower
the network to distinguish between current classes and similar future classes. That means, although
the network cannot know what these future classes are, it does understand that they are distinct from
all current classes, thus generating distinctive features. Conversely, the training set in the disjoint
setting lacks any pixels from future classes. As a result, the network, when faced with a class similar
to a previous one, is prone to generate features akin to those of the previous class. This leads to the
inability of the classifiers to distinguish between the two. In such a scenario, our SAD can guide the
network to generate distinct features for these similar old-new class pairs, thereby demonstrating
more pronounced efficacy.

Table 4: Ablation study results for pixel count fine-tuning.

Replay BR OCFM SAD PCF overlapped 15-1 (6 steps) disjoint 15-1 (6 steps)

old new all old new all

✓ ✓ ✓ ✓ 79.5 50.7 72.6 78.1 46.6 70.6
✓ ✓ ✓ ✓ ✓ 79.5 50.6 72.6 78.1 46.6 70.6

Table 5: Ablation study results between different knowledge distillations.

Replay BR KD OCFM SAD overlapped 15-1 (6 steps) disjoint 15-1 (6 steps)

old new all old new all

✓ ✓ ✓ ✓ 78.9 45.9 71.0 76.5 35.3 66.7
✓ ✓ ✓ ✓ 79.5 50.6 72.6 78.1 46.6 70.6

Table 6: Ablation study results between different discriminative losses.

Replay BR OCFM MD SAD overlapped 15-1 (6 steps) disjoint 15-1 (6 steps)

old new all old new all

✓ ✓ ✓ ✓ 79.6 48.5 72.2 76.2 35.9 66.6
✓ ✓ ✓ ✓ 79.5 50.6 72.6 78.1 46.6 70.6

Ablation study on pixel count fine-tuning and component designs. In this part, we present an
ablation study to validate the pixel count fine-tuning (PCF), along with the designs of the old-class
features maintaining loss (OCFM) and the similarity-aware discriminative loss (SAD). In all of these
experiments, our prototype replay strategy (Replay) and background repetition strategy (BR) are
consistently implemented. (1) Table 4 displays the results of STAR with or without PCF. PCF only
marginally influences the quantity of replayed or repeated samples and does not fundamentally impact
their diversity. Thus, as we discussed in Sec. 2, it is an optional choice that exhibits minimal effect
on the outcomes, revealing no difference in mIoU up to the first decimal place across both protocols.
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(2) In Table 5, we compare the performance of our model equipped with OCFM to a model that
incorporates a knowledge distillation that constrains feature changes across the entire spatial region
(KD) [6]. It is clear from the results that our model with OCFM surpasses the KD model by 1.6 and
3.9 mIoU on the two protocols, respectively. These findings underscore the beneficial impact of the
targeted nature of OCFM, which specifically limits alterations to old-class features. In contrast, KD
restricts feature changes across all areas, potentially compromising the adaptability in learning new
classes. (3) In Table 6, we examine the effects of SAD, which penalizes the distance between only the
most similar old-new class pairs, and a discriminative loss that penalizes the average distance among
all old and new class pairs (MD). The results highlight the superiority of SAD as it outperforms
MD by 0.4 mIoU and 4.0 mIoU on the two protocols, respectively. In contrast to MD, SAD is more
focused and directs differentiation effort where it is most required, thereby enhancing efficiency.

3.4 Qualitative results in steps

Figure 1: Qualitative results for the overlapped 15-1 protocol on Pascal VOC 2012. train , sheep ,

and potted plant belong to the new classes.

Figure 2: Qualitative results for the overlapped 100-10 protocol on ADE20K. trade name ,
microwave , tray , and hood belong to the new classes.

Fig. 1 and Fig. 2 depict the visualized predictions of STAR for the same image after each step,
corresponding to the overlapped 15-1 protocol on the Pascal VOC 2012 dataset and the overlapped
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100-10 protocol on the ADE20K dataset, respectively. As observed from these figures, STAR
effectively learns to distinguish new classes during each incremental step while simultaneously
retaining the ability to identify old classes, demonstrating no sign of forgetting.

3.5 Limitations and future works

Although our model demonstrates impressive performance, we acknowledge certain limitations: (1)
We utilize Gaussian distributions to model replay samples. This empirically driven choice, however,
was not subject to a detailed analysis. Despite the broad applicability of the Gaussian distribution, it
might not be the most fitting selection for representing the distribution of class feature vectors. This
issue invites further investigation in future research. (2) We preserve merely a single representation
as the prototype for each old foreground class. While it is the feature center that embodies the most
typical characteristics, and the added noise provides some variability, it may still lack sufficient
diversity. We envision that future research could extend the number of preserved representations, each
incorporating different yet typically representative characteristics, thereby enriching the diversity
of replay samples. Although this could potentially increase storage consumption, it would still be
substantially more efficient than storing raw images.
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