
Appendix

A Generalised Distributive Property

The Distributive Law is an extremely useful tool for analysis and computation in mathematics and computer
science. Following from the additivity and homogeneity properties of linearity, it states that

∑n
i=1 c · xi =

c ·
∑n

i=1 xi. The Distributive Law is often leveraged to formulate fast algorithms, such as the Fast Fourier
Transform and the Viterbi algorithm [1]. It can also be used to make algorithms more memory-efficient. For
example, if we wish to take the DFT of a shifted signal, we can avoid storing the signal itself. Instead, the
Distributive Law can be utilised to formulate the shifted DFT as a function of the non-shifted DFT: DFT[x(n−
∆)] = e−iωk∆X(ωk).

While the Distributive Law is defined for the group of real numbers under additivity (R,+), we can also define
a more general distributive property for the Abelian group defined by an aggregator (R,

⊙
).

Definition A.1 (Generalised Distributive Property). For a binary operator ψ and set aggregation function
⊙

,
the Generalised Distributive Property is defined:

ψ

c, ⊙
xi∈X

xi

 =
⊙
xi∈X

ψ(c, xi) (7)

In this section, we derive the Generalised Distributive Property for the special case of GenAgg
⊙

=
⊕

θ . That
is, for a given parametrisation θ, we derive an explicit formula for the corresponding function ψ which satisfies
the Generalised Distributive Property. Note that while our solution holds for any function f , it focuses on the
special cases α = 0, β = 0 and α = 1, β = 0.

Lemma A.1. Given a binary operator of the form ψ(a, b) = ϕ−1(ϕ(a) + ϕ(b)) and a parametrisation of
GenAgg θ = ⟨f, α, β⟩ = ⟨f, α, 0⟩, the operator ψ(a, b) satisfies the Generalised Distributive Property over
the (R,⊕θ) abelian group if:

ρ−1

(
nα

n

∑
ρ(c+ xi)

)
= ρ−1

(
nα

n

∑
ρ(xi)

)
+ c (8)

where ρ(x) = f(ϕ−1(x)) (9)

Proof. Substituting GenAgg for the generic aggregation function
⊙

in the definition of the Deneralised Dis-
tributive Property, we get:

f−1

(
nα

n

∑
f(ψ(c, xi))

)
= ψ

(
c, f−1

(
nα

n

∑
f(xi)

))
(10)

We replace the binary operator ψ with its representation as a composition of univariate functions ψ(a, b) =
ϕ−1(ϕ(a) + ϕ(b)) to obtain:

f−1

(
nα

n

∑
f
(
ϕ−1(ϕ(c) + ϕ(xi))

))
= ϕ−1

(
ϕ

(
f−1

(
nα

n

∑
f(xi)

))
+ ϕ(c)

)
(11)

ϕ

(
f−1

(
nα

n

∑
f
(
ϕ−1(ϕ(c) + ϕ(xi))

)))
= ϕ

(
f−1

(
nα

n

∑
f(xi)

))
+ ϕ(c) (12)

To simplify, we apply a change of variables x′ = ϕ(x), c′ = ϕ(c):

ϕ

(
f−1

(
nα

n

∑
f
(
ϕ−1(c′ + x′i)

)))
= ϕ

(
f−1

(
nα

n

∑
f(ϕ−1(x′i))

))
+ c′ (13)

Finally, we further simplify by substituting ρ(x) = f(ϕ−1(x)):

ρ−1

(
nα

n

∑
ρ(c′ + x′i)

)
= ρ−1

(
nα

n

∑
ρ(x′i)

)
+ c′ (14)

Theorem A.2. For GenAgg parametrised by θ = ⟨f, α, β⟩ = ⟨f, α, 0⟩, the binary operator ψ which will
satisfy the Generalised Distributive Property for

⊕
θ is given by ψ(a, b) = f−1(f(a) · f(b)).

Proof. From Lemma A.1, the Generalised Distributive Property is satisfied if:

ρ−1

(
nα

n

∑
ρ(c+ xi)

)
= ρ−1

(
nα

n

∑
ρ(xi)

)
+ c (15)

where ρ(x) = f(ϕ−1(x)) (16)

If we select ρ(x) = ex, then we can show that the condition is satisfied by the standard Distributive Law:

log

(
nα

n

∑
ec+xi

)
= log

(
nα

n

∑
exi

)
+ c (17)

e
log

(
nα

n

∑
ec+xi

)
= e

log
(

nα

n

∑
exi

)
+c (18)

nα

n

∑
ecexi = ec · n

α

n

∑
exi (19)

Given that ρ(x) = ex satisfies the Distributive Property for this case, we can use it to solve for ϕ and ϕ−1:

ρ(x) = f(ϕ−1(x)) (20)

ϕ−1(x) = f−1(ρ(x)) (21)

ϕ−1(x) = f−1(ex) (22)

ρ−1(x) = ϕ(f−1(x)) (23)

ϕ(x) = ρ−1(f(x)) (24)
ϕ(x) = log(f(x)) (25)

Finally, substituting ϕ(x) and ϕ−1(x) back into the equation for ψ, we get:

ψ(a, b) = ϕ−1 (ϕ(a) + ϕ(b)) (26)

ψ(a, b) = f−1
(
elog(f(a))+log(f(b))

)
(27)

ψ(a, b) = f−1
(
elog(f(a)) · elog(f(b))

)
(28)

ψ(a, b) = f−1 (f(a) · f(b)) (29)

Theorem A.3. For the special case of GenAgg parametrised by θ = ⟨f, α, β⟩ = ⟨f, 0, 0⟩, the Generalised
Distributive Property for

⊕
θ is also satisfied by the binary operator ψ(a, b) = f−1(f(a) + f(b)).

Proof. From Lemma A.1, the Generalised Distributive Property is satisfied if:

ρ−1

(
nα

n

∑
ρ(c+ xi)

)
= ρ−1

(
nα

n

∑
ρ(xi)

)
+ c (30)

where ρ(x) = f(ϕ−1(x)) (31)

In this proof, we are given that α = 0:

ρ−1

(
1

n

∑
ρ(c+ xi)

)
= ρ−1

(
1

n

∑
ρ(xi)

)
+ c (32)

If we select ρ(x) = x, then we can show that the condition is satisfied:

1

n

∑
(c+ xi) =

(
1

n

∑
xi

)
+ c (33)

1

n

∑
xi +

1

n

∑
c =

(
1

n

∑
xi

)
+ c (34)(

1

n

∑
xi

)
+ c =

(
1

n

∑
xi

)
+ c (35)

Given that ρ(x) = x satisfies the Distributive Property for this case, we can use it to solve for ϕ and ϕ−1:

ρ(x) = f(ϕ−1(x)) (36)

ϕ−1(x) = f−1(ρ(x)) (37)

ϕ−1(x) = f−1(x) (38)

ρ−1(x) = ϕ(f−1(x)) (39)

ϕ(x) = ρ−1(f(x)) (40)
ϕ(x) = f(x) (41)

Finally, substituting ϕ(x) and ϕ−1(x) back into the equation for ψ, we get:

ψ(a, b) = ϕ−1 (ϕ(a) + ϕ(b)) (42)

ψ(a, b) = f−1 (f(a) + f(b)) (43)

B Training Plots

0 2000 4000 6000 8000
Step

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

sum
std
rms
prod-abs

min-mag
min
mean

max-mag
max
log-sum-exp

harm-mean-abs
geom-mean-abs
2-norm

(a) GenAgg

0 2000 4000 6000 8000
Step

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

sum
std
rms
prod-abs

min-mag
min
mean

max-mag
max
log-sum-exp

harm-mean-abs
geom-mean-abs
2-norm

(b) mean

0 2000 4000 6000 8000
Step

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

sum
std
rms
prod-abs

min-mag
min
mean

max-mag
max
log-sum-exp

harm-mean-abs
geom-mean-abs
2-norm

(c) PowerAgg

0 2000 4000 6000 8000
Step

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

sum
std
rms
prod-abs

min-mag
min
mean

max-mag
max
log-sum-exp

harm-mean-abs
geom-mean-abs
2-norm

(d) SoftmaxAgg

Figure 4: Training plots for the Aggregator Regression experiment (see Section 5.1). Each plot represents the
ability of a parametrised aggregator

⊕
to regress over all standard aggregators

⊙
k ∈ A. The plots show the

mean and standard deviation of the correlation between the predicted and ground truth values over 10 trials.

0 2000 4000 6000 8000
Step

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

2-norm
geom-mean-abs
harm-mean-abs
log-sum-exp

max
max-mag
mean

min
min-mag
prod-abs

rms
std
sum

(a) GenAgg

0 2000 4000 6000 8000
Step

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

2-norm
geom-mean-abs
harm-mean-abs
log-sum-exp

max
max-mag
mean

min
min-mag
prod-abs

rms
std
sum

(b) mean

0 2000 4000 6000 8000
Step

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

2-norm
geom-mean-abs
harm-mean-abs
log-sum-exp

max
max-mag
mean

min
min-mag
prod-abs

rms
std
sum

(c) PowerAgg

0 2000 4000 6000 8000
Step

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

2-norm
geom-mean-abs
harm-mean-abs
log-sum-exp

max
max-mag
mean

min
min-mag
prod-abs

rms
std
sum

(d) SoftmaxAgg

Figure 5: Training plots for the GNN Regression experiment (see Section 5.2). Each plot represents the ability
of a GNN using parametrised aggregator

⊕
to regress over all standard aggregators

⊙
k ∈ A. The plots show

the mean and standard deviation of the correlation between the predicted and ground truth values over 10 trials.

C Parametrisations

In this section, we use the augmented f -mean to show that GenAgg is theoretically capable of representing
all of the standard aggregators

⊙
k ∈ A. For each standard aggregator

⊙
k, we prove that there exists a

parametrisation θ such that
⊕

θ =
⊙

k. In a slight abuse of notation, mathematical operations applied to
the input set X (such as an absolute value or a geometric inverse) denote elementwise operations: f(X) =
{f(x1), . . . , f(xn)}.

Theorem C.1. Mean. For θ = ⟨f, α, β⟩ = ⟨x, 0, 0⟩, the augmented f -mean equals the mean
⊕

θ = 1
n

∑
xi.

Proof. ⊕
⟨x,0,0⟩

xi∈X

xi =

n0−1
∑
xi∈X

(xi − 0 · µ)

 (44)

=
1

n

∑
xi∈X

xi (45)

Theorem C.2. Sum. For θ = ⟨f, α, β⟩ = ⟨x, 1, 0⟩, the augmented f -mean equals the sum
⊕

θ =
∑
xi.

Proof. ⊕
⟨x,1,0⟩

xi∈X

xi =

n1−1
∑
xi∈X

(xi − 0 · µ)

 (46)

=
∑
xi∈X

xi (47)

Theorem C.3. Product. For θ = ⟨f, α, β⟩ = ⟨log(|x|), 1, 0⟩, the augmented f -mean equals the product⊕
θ =

∏
|xi|.

Proof. ⊕
⟨log(|x|),1,0⟩

xi∈X

xi = e

(
n1−1 ∑

xi∈X log(|xi−0·µ|)
)

(48)

= e
∑

xi∈X log(|xi|) (49)

=
∏

xi∈X

elog(|xi|) (50)

=
∏

xi∈X

|xi| (51)

Theorem C.4. Max Magnitude. For θ = ⟨f, α, β⟩ = ⟨limp→∞ |x|p, 0, 0⟩, the augmented f -mean equals the
max magnitude

⊕
θ = max(|X |).

Proof.

⊕
⟨limp→∞ |x|p,0,0⟩

xi∈X

xi = lim
p→∞

n0−1
∑
xi∈X

|xi − 0 · µ|p)

 1
p

(52)

= lim
p→∞

1

n
1
p

 ∑
xi∈X

|xi|p)

 1
p

(53)

= lim
p→∞

 ∑
xi∈X

|xi|p
 1

p

(54)

This aggregator is composed of monotonic functions, so if every element xi is substituted with max(|X |), then
the output should increase. Therefore, we can write the following inequality:

lim
p→∞

 ∑
xi∈X

|xi|p
 1

p

≤ lim
p→∞

 ∑
i∈[1..n]

max(|X |)p
 1

p

(55)

lim
p→∞

 ∑
xi∈X

|xi|p
 1

p

≤ lim
p→∞

n
1
p · (max(|X |)p)

1
p (56)

lim
p→∞

 ∑
xi∈X

|xi|p
 1

p

≤ max(|X |) (57)

(58)

Similarly, since sum is monotonic, the value of the output computed over a set
⊕

θ(X) is greater than the
output computed over a single element from that set

⊕
θ({xi}), where xi ∈ X . Furthermore, we know that

max(|X |) is one of the elements of X . So, we can write the following inequality:

lim
p→∞

 ∑
xi∈X

|xi|p
 1

p

≥ lim
p→∞

(max(|X |)p)
1
p (59)

lim
p→∞

 ∑
xi∈X

|xi|p
 1

p

≥ max(|X |) (60)

(61)

Consequently, by the squeeze theorem, we can state:

lim
p→∞

 ∑
xi∈X

|xi|p
 1

p

= max(|X |) (62)

Theorem C.5. Min Magnitude. For θ = ⟨f, α, β⟩ = ⟨limp→∞ |x|−p, 0, 0⟩, the augmented f -mean equals
the min magnitude

⊕
θ = min(|X |).

Proof.

⊕
⟨limp→∞ |x|−p,0,0⟩

xi∈X

xi = lim
p→∞

n0−1
∑
xi∈X

|xi − 0 · µ|−p)

− 1
p

(63)

= lim
p→∞

1

n
− 1

p

 ∑
xi∈X

|xi|−p)

− 1
p

(64)

= lim
p→∞

 ∑
xi∈X

|xi|−p)

− 1
p

(65)

We use the theorem for the parametrisation of max magnitude (Theorem C.4) as a lemma for this proof. By
applying a monotonically decreasing transformation to the inputs and then inverting that transformation on the
output, we can write the min as a function of the max. Since the inputs are restricted to the positive domain
with the absolute value, we select the transformation T (x) = 1

x
:

min(|X |) = 1

max(1
|X|)

(66)

Substituting the parametrisation from Theorem C.4 for max, we get:

min(|X |) = 1

limp→∞

(∑
xi∈X

(
1

|xi|

)p) 1
p

(67)

= lim
p→∞

 ∑
xi∈X

|xi|−p

− 1
p

(68)

Theorem C.6. Max. For θ = ⟨f, α, β⟩ = ⟨limp→∞ epx, 0, 0⟩, the augmented f -mean equals the max:⊕
θ = max(X).

Proof.

⊕
⟨limp→∞ epx,0,0⟩

xi∈X

xi = lim
p→∞

1

p
log

n0−1
∑
xi∈X

ep(xi−0·µ)

 (69)

= lim
p→∞

1

p
log

(
1

n

)
+

1

p
log

 ∑
xi∈X

ep·xi

 (70)

= lim
p→∞

log


 ∑

xi∈X

ep·xi

 1
p

 (71)

(72)

This aggregator is composed of monotonic functions, so if every element xi is substituted with max(X), then
the output should increase. Therefore, we can write the following inequality:

lim
p→∞

log


 ∑

xi∈X

ep·xi

 1
p

 ≤ lim
p→∞

log


 ∑

xi∈X

ep·max(X)

 1
p

 (73)

≤ lim
p→∞

log

(
n

1
p ·

(
ep·max(X)

) 1
p

)
(74)

≤ log
(
emax(X)

)
(75)

≤ max(X) (76)
(77)

Similarly, since sum is monotonic, the value of the output computed over a set
⊕

θ(X) is greater than the
output computed over a single element from that set

⊕
θ({xi}), where xi ∈ X . Furthermore, we know that

max(X) is one of the elements of X . So, we can write the following inequality:

lim
p→∞

log


 ∑

xi∈X

ep·xi

 1
p

 ≥ lim
p→∞

log

((
ep·max(X)

) 1
p

)
(78)

≥ log
(
emax(X)

)
(79)

≥ max(X) (80)
(81)

Consequently, by the squeeze theorem, we can state:

lim
p→∞

log


 ∑

xi∈X

ep·xi

 1
p

 = max(X) (82)

Theorem C.7. Min. For θ = ⟨f, α, β⟩ = ⟨limp→∞ e−px, 0, 0⟩, the augmented f -mean equals the min:⊕
θ = min(X).

Proof.

⊕
⟨limp→∞ e−px,0,0⟩

xi∈X

xi = lim
p→∞

−1

p
log

n0−1
∑
xi∈X

e−p(xi−0·µ)

 (83)

= lim
p→∞

−1

p
log

(
1

n

)
− 1

p
log

 ∑
xi∈X

e−p·xi

 (84)

= lim
p→∞

log


 ∑

xi∈X

e−p·xi

− 1
p

 (85)

(86)

We use the theorem for the parametrisation of max (Theorem C.6) as a lemma for this proof. By applying a
monotonically decreasing transformation to the inputs and then inverting that transformation on the output, we
can write the min as a function of the max. We select the transformation T (x) = −x:

min(X) = −max(−X) (87)

Substituting the parametrisation from Theorem C.6 for max, we get:

min(X) = lim
p→∞

− log


 ∑

xi∈X

ep·(−xi)

 1
p

 (88)

= lim
p→∞

log


 ∑

xi∈X

e−p·xi

− 1
p

 (89)

Theorem C.8. Harmonic Mean. For θ = ⟨f, α, β⟩ = ⟨ 1
x
, 0, 0⟩, the augmented f -mean equals the harmonic

mean
⊕

θ = n∑ 1
xi

.

Proof.

⊕
⟨x,0,0⟩

xi∈X

xi =

n0−1
∑
xi∈X

(xi − 0 · µ)−1

−1

(90)

=

 1

n

∑
xi∈X

1

xi

−1

(91)

=
n∑

xi∈X
1
xi

(92)

Theorem C.9. Geometric Mean. For θ = ⟨f, α, β⟩ = ⟨log(|x|), 0, 0⟩, the augmented f -mean equals the
geometric mean

⊕
θ = n

√∏
|xi|.

Proof. ⊕
⟨log(|x|),0,0⟩

xi∈X

xi = e

(
n0−1 ∑

xi∈X log(|xi−0·µ|)
)

(93)

= e
1
n

∑
xi∈X log(|xi|) (94)

=
∏

xi∈X

e
1
n

log(|xi|) (95)

=
∏

xi∈X

elog(|xi|
1
n) (96)

=
∏

xi∈X

|xi|
1
n (97)

= n

√ ∏
xi∈X

|xi| (98)

Theorem C.10. Root Mean Square. For θ = ⟨f, α, β⟩ = ⟨x2, 0, 0⟩, the augmented f -mean equals the root

mean square
⊕

θ =
√

1
n

∑
x2i .

Proof.

⊕
⟨x2,0,0⟩

xi∈X

xi =

n0−1
∑
xi∈X

(xi − 0 · µ)2
 1

2

(99)

=

√
1

n

∑
xi∈X

x2i (100)

(101)

Theorem C.11. Euclidean Norm. For θ = ⟨f, α, β⟩ = ⟨x2, 1, 0⟩, the augmented f -mean equals the euclidean
norm

⊕
θ =

√∑
x2i .

Proof.

⊕
⟨x2,1,0⟩

xi∈X

xi =

n1−1
∑
xi∈X

(xi − 0 · µ)2
 1

2

(102)

=

√ ∑
xi∈X

x2i (103)

(104)

Theorem C.12. Standard Deviation. For θ = ⟨f, α, β⟩ = ⟨x2, 0, 1⟩, the augmented f -mean equals the
standard deviation

⊕
θ =

√∑
(xi − µ)2.

Proof.

⊕
⟨x2,0,1⟩

xi∈X

xi =

n0−1
∑
xi∈X

(xi − 1 · µ)2
 1

2

(105)

=

√
1

n

∑
xi∈X

(xi − µ)2 (106)

(107)

Theorem C.13. Log-Sum-Exp. For θ = ⟨f, α, β⟩ = ⟨ex, 0, 1⟩, the augmented f -mean equals the log-sum-exp⊕
θ = log(

∑
exi).

Proof.

⊕
⟨ex,1,0⟩

xi∈X

xi = log

n1−1
∑
xi∈X

exi−0·µ

 (108)

= log

 ∑
xi∈X

exi

 (109)

(110)

D Limitations

In our problem statement, we define a set of special cases A which we refer to as “standard aggregators”. Our
regression experiments analyse the representational capacity of various methods by analysing their ability to
regress over the aggregators in A. However, we acknowledge that this set is not exhaustive, so there may exist
special cases not in A which are useful or could provide some additional insight.

Our GNN benchmark experiments also only provide data about the performance of GenAgg in a limited number
of applications. We evaluate on the GNN benchmark datasets suite from [6], which includes MNIST, CIFAR10,
CLUSTER, and PATTERN. These datasets provide a mix of node classification and graph classification tasks
(to complement the regression tasks from our other experiments). We did not include the TSP and CSL datasets
from the same GNN benchmarks suite because TSP is an edge classification task (which would necessitate
significant modification of our GNN), and CSL requires node positional encodings in order to be solvable by
message passing GNNs, which it does not include by default [6]. In our initial testing, we also considered
using the PUBMED, CORA, and CITESEER datasets. However, they are extremely small datasets that often
lead to overfitting. Furthermore, there is something fundamental about the coauthor problem (upon which all
three datasets are based) that fundamentally does not require the same level of complexity to solve—the train
accuracy of all methods, including simple aggregators, approaches 1. Instead of these coauthor datasets, we
opted to use the GNN benchmark dataset, which seemed to present more “difficult” problems. However, for
the sake of transparency, we include our results on the datasets that we decided not to use:

200 400 600 800 1000
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

PUBMED Test Accuracy

GenAgg
PNA
Powermean-Agg

Softmax-Agg
max

mean
sum

200 400 600 800 1000
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

CORA Test Accuracy

GenAgg
PNA
Powermean-Agg

Softmax-Agg
max

mean
sum

200 400 600 800 1000
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

CITESEER Test Accuracy

GenAgg
PNA
Powermean-Agg

Softmax-Agg
max

mean
sum

0 200 400 600 800
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

PUBMED Train Accuracy

GenAgg
PNA
Powermean-Agg

Softmax-Agg
max

mean
sum

0 200 400 600 800
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

CORA Train Accuracy

GenAgg
PNA
Powermean-Agg

Softmax-Agg
max

mean
sum

0 200 400 600 800
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

CITESEER Train Accuracy

GenAgg
PNA
Powermean-Agg

Softmax-Agg
genagg-1
max

mean
sum

Figure 6: Train and Test Accuracy for all baselines on PUBMED, CORA, and CITESEER.

In these small datasets, the primary problem across all models is overfitting. GenAgg performs on-par with the
best baseline, but it does not exhibit a performance boost as it does in the other datasets. To determine if the
lack of improvement is due to the overfitting or the dataset itself, we run an additional experiment that explicitly
examines the effect of overfitting by artificially reducing the amount of training data (Figure 7):

GenAgg Best Baseline Median Baseline

100% 0.915 0.872 0.841

10% 0.958 0.903 0.846

1% 0.978 0.846 0.832

(a) Train Accuracy

GenAgg Best Baseline Median Baseline

100% 0.926 0.897 0.866

10% 0.905 0.854 0.829

1% 0.903 0.832 0.830

(b) Test Accuracy

Figure 7: Train and test accuracy of GenAgg vs all baselines on various subsets of the PATTERN
dataset. We train on the PATTERN dataset (100% of the data), and versions with 10% and 1% of
the original datapoints.

This experiment highlights a difference between the small coauthor datasets and the reduced PATTERN dataset
(Figure 7). In the coauthor datasets the train accuracies approach 1, whereas in the reduced PATTERN dataset
the baselines do not surpass a certain level of performance. This indicates that the mathematical relationships
in the PATTERN dataset are fundamentally more difficult to represent. It is in these more complex problems
that GenAgg provides the most benefit.

E Training Details

In our implementation of GenAgg, we implement f and f−1 as MLPs with hidden sizes of [1, 2, 2, 4] and
[4, 2, 2, 1] using Mish activation, BatchNorm, and Kaiming Normal weight initialisation. To run the GNN
benchmark experiments, we use a 4-layer GraphConv model with a hidden size of 64, using Mish activation
between layers. MLPs are used as pre- and post- processors in order to map to and from the hidden dimension
of the GNN. The preprocessor is implemented with a one layer MLP, and the postprocessor is implemented
with a 4-layer MLP using Mish activation. In tasks which require graph-level predictions, we prepend a global
mean pooling layer to the postprocessor.

We run all of our experiments on an NVIDIA GeForce GTX 1080 Ti GPU. In all experiments, we use the Adam
optimiser with a learning rate of 10−3. In the regression experiments we train for 10, 000 epochs with a batch
size of 1024, and in the GNN benchmark experiment we train for 1, 000 epochs with a batch size of 32. Our
results report the mean (and standard deviation, as the shaded region in the training plots) over 10 trials.

F Runtime

As GenAgg requires running forward passes of small neural networks in addition to performing a sum, it incurs
an additional runtime cost. We report the runtime overhead of each method in the figure below:

0.0000 0.0005 0.0010 0.0015 0.0020
Forward Pass Time (s)

sum

Powermean-Agg

Softmax-Agg

GenAgg [1,4,1]

GenAgg [1,2,2,4]

PNA

Figure 8: Forward pass times for each aggregation method. GenAgg [1, 2, 2, 4] and GenAgg [1, 4, 1]
denote two different layer architectures for f . The data in this figure represents the time for a single
forward pass over the MNIST GNN Benchmark dataset with a batch size of 1024 (approximately
578k edges), using an NVIDIA GeForce GTX 1080 Ti GPU. The reported time is only for the
aggregation component, not the GNN as a whole.

While the the absolute runtime of GenAgg is relatively fast, it is still significantly slower than sum. Conse-
quently, it is possible that the runtime of our implementation can preclude its use in time-critical applications.
However, note that this figure only represents the runtime for our specific implementation—GenAgg can be
implemented with any invertible function f . Using a symbolic parametrisation of invertible functions can sig-
nificantly speed up computations (at the cost of representational complexity). Alternatively, it is likely that an
implementation in JAX with compiled networks f and f−1 can achieve a speed boost with the same architec-
ture.

	Introduction
	Problem Statement
	Method
	Generalised f-Mean
	Augmented f-Mean
	Implementation
	Generalised Distributive Property

	Related Work
	Mathematical Approaches
	Deep Learning Approaches

	Experiments
	Aggregator Regression
	GNN Regression
	GNN Benchmark

	Discussion
	Conclusion
	Acknowledgements
	Generalised Distributive Property
	Training Plots
	Parametrisations
	Limitations
	Training Details
	Runtime

