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Abstract

We establish stability of random forests under the mild condition that the squared
response (Y 2) does not have a heavy tail. In particular, our analysis holds for the
practical version of random forests that is implemented in popular packages like
randomForest in R. Empirical results show that stability may persist even beyond
our assumption and hold for heavy-tailed Y2. Using the stability property, we
prove a non-asymptotic lower bound for the coverage probability of prediction
intervals constructed from the out-of-bag error of random forests. With another
mild condition that is typically satisfied when Y is continuous, we also establish
a complementary upper bound, which can be similarly established for the jack-
knife prediction interval constructed from an arbitrary stable algorithm. We also
discuss the asymptotic coverage probability under assumptions weaker than those
considered in previous literature. Our work implies that random forests, with its
stability property, is an effective machine learning method that can provide not
only satisfactory point prediction but also justified interval prediction at almost no
extra computational cost.

1 Introduction

Random forests (RFs) is a successful machine learning method that serves as a standard approach
to tabular data analysis and has good predictive performance [10, [7]. However, there is a big
gap between the empirical effectiveness of RFs and the limited understanding of its properties.
Most known theoretical results are established for variants of RFs not necessarily used in practice
[Sh 1250 22114} 30]. For the RF version implemented in packages like randomForest in R [21]], little
is known without strong assumptions [|6} 26, |35]]; RFs is notoriously difficult to analyze as a greedy
algorithm. Here we show an important property for the RF used in practice (as well as for other
variants) under realistic conditions.

1.1 Stability of random forests

The first main contribution of this work establishes the stability condition for the RF.

Theorem 1 (Stability of random forests, informal). For independent and identically distributed (iid)
training data points (X;,Y;),i € {1,...,n} = [n] and a test point (X,Y), if the squared response

Y2 does not have a heavy tail, then the RF predictor RF g and any out-of-bag (OOB) predictor RF};
predict similar values, i.e.,

P (‘RFB(X) - RF};(X)‘ > 5”73) < Vg, (1)
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where RF g results from the aggregation of all B base tree predictors, while RF}; only those with the
point (X;,Y;) excluded in training; ¢,, g and v, g are small numbers depending on n and B.

This result is referred to as the stability of the RF because it indicates that no single training point
is extremely important in determining RF p in a probabilistic sense. Theorem [I]relies on a recent
important work that establishes the absolute stability (see below for a precise definition) of general
bagged algorithms with bounded outputs [28]. We take advantage of the fact that the range of the
RF output is conditionally dependent upon the maximal and minimal values of Y in the training set,
and then we show in theory that the stability property of the RF is possible even if Y is marginally
unbounded. To our knowledge, this is the first stability result established for the RF.

The technique used in our analysis requires that Y2 not have a heavy tail (to make €n,p and v, B
small). Though arguably already mild, we conjecture that this condition might be further relaxed. As
shown below, numerical evidence suggests that the light-tail assumption may not be necessary for RF
stability, which could hold even when Y follows a heavy-tail distribution like the Cauchy distribution.

1.2 Random-forest prediction intervals

Stability is a crucial property of a learning algorithm. For example, stability has a deep connection
with the generalization error of an algorithm [9} (19, 23]. Moreover, stability also turns out to be
important in distribution-free predictive inference. In particular, an algorithm being stable justifies
the jackknife prediction interval (PI), which otherwise has no coverage guarantee [3]].

In this work, we show that stability makes it possible to construct a PI with guaranteed coverage from

the OOB error of the RF. The OOB error is defined as R; = |Y; — RF;(XZ')L i € [n]. A main reason
why such a PI is appealing is that R; can be obtained almost without extra effort. For example, a
one-shot training using the R package randomForest gives us an RF predictor RF 5 and all n OOB

predictions RF}; (X5). So, from the computational point of view, a convenient way to construct a PI
for a test point (X,Y") is of the form “RF 5(X) =+ proper quantile of {R;}” [17}[33].

The second main contribution of this work constructs such PIs and theoretically proves, under mild
conditions, the non-asymptotic lower and upper bounds for the coverage probability.

Theorem 2 (Coverage lower bound, informal). Under the same assumptions as in Theorem and
Sforae (0,1) [] we have the following lower bound of coverage probability:

P(]Y —RFp(X)| < the [(n + 1)(1 — a)|-th smallest R; + €, ) = 1 — a — O(\/Vn.B),

where [-] is the ceiling function. Big O and other related notations are used in the usual way.

Theorem 3 (Coverage upper bound, informal). If we further assume that 'Y is continuous, resulting
in distinct prediction errors, then we also have the following upper bound:

P(]Y — RFp(X)| <the [(n+ 1)(1 — «)]-th smallest R, — e, p) <1 —a + % +O(\/Vn.B)-
n

As we detail below, the PIs we provide coverage guarantees for are neither the jackknife-with-stability
interval discussed in [3]], nor the jackknife+-after-bootstrap interval established in [18]. In our context,
constructing the former needs n leave-one-out (LOO) predictors (rather than n OOB predictors), i.e.,
n additional RFs with each built on a training set of size n — 1. Constructing the latter needs the

explicit information of each RF\I; (+) rather than the OOB prediction RF\é (X;) for each X; only. Both
these methods require additional, sometimes extensive, computation given current popular packages.
In contrast, our results are operationally more convenient. After one-shot training, we obtain not only
a point predictor RF 5(-), but also a valid interval predictor at almost no extra cost. Under reasonable
conditions, our results indicate that by slightly inflating (or deflating) the PI constructed from the
[(n+ 1)(1 — «)]-th smallest R;, the coverage probability is guaranteed not to decrease (or increase)
too much from the desired level of 1 — «. In fact, many numerical results, such as those in [17} 35],
suggest that

P(|Y — RFp(X)| < the [(n + 1)(1 — «)]-th smallest R;) ~ 1 — cv.

Motivated by this fact, we further establish an asymptotic result of coverage for such PIs.

'When a € (0,1/(n + 1)), we follow the convention that the (n + 1)-th smallest R; is oo.



Theorem 4. (Asymptotic coverage, informal) In addition to the conditions in the above theorems, also
suppose the prediction error |Y — RFg(X)| is continuous, and its cumulative distribution function
(CDF) does not change too drastically for all sufficiently large n. Then

P(]Y — RFg(X)| < the [(n + 1)(1 — «)]-th smallest R;) — 1 — acas n — oo.

In [35], this asymptotic coverage was proved based on stronger assumptions. In particular, the
true model is assumed to be additive such that “Y = fy(X) + noise” with the zero-mean noise
independent of X, and RF (X)) is assumed to converge to fy(X) in probability. We do not require
RF 5 to converge to anything in any sense when n — 0. Technically, we need the family of prediction
error CDFs be uniformly equicontinuous.

Based on our results, the RF seems to be the only one, among existing popular machine learning
algorithms, that can provide both point and interval predictors with justification in such a convenient
way. This makes the RF appealing, especially for tasks where the computational cost is a concern.

It is also worth noting that the upper-bound result is of interest in its own right. It can be generalized
to jackknife PIs that are constructed from any stable algorithm; the result serves as a complement to
the lower bounds established previously [3} [18]].

Summarizing, we

» theoretically prove that the (greedy) RF algorithm is stable when Y2 does not have a heavy
tail;
* numerically show that RF stability may hold beyond the above light-tail assumption;

* construct PIs based on the OOB error with finite-sample coverage guarantees: the lower
bound of coverage does not need any additional assumption beyond stability; the upper
bound needs an additional assumption, which is usually satisfied when Y is continuous;

* provide the upper bound of coverage for jackknife PIs constructed from general stable
algorithms, assuming distinct LOO errors; and

* prove asymptotically exact coverage for RF-based PIs under weaker assumptions than those
previously considered in published work.

2 Concepts of algorithmic stability

Stability stands at the core of this work. There are different types of stability, each of which is used
to assess quantitatively how stable (in some certain sense) an algorithm is with respect to small
variations in training data [9, 28] 4]]. In a recent work [4], robust optimization is used to enhance the
stability of algorithms in classification tasks. In [28], bagging is proved to be an efficient mechanism
to stabilize algorithms in regression tasks. We focus on regression here. As will be made clear,
the technique used in this work relies on the fact that the RF predictor in regression results from
averaging tree predictors. However, the majority vote of tree predictors is used in classification, and
new ideas are needed to analyze the RF stability in this setting. For our purposes, we introduce three
levels of stability from strongest to weakest. The strongest version of stability, introduced in [28]],
does not depend on the data distribution, and may be referred to as “absolute stability.”

Definition 1 (Absolute stability of algorithms). For any dataset consisting of n > 2 training points
D = {(X1,Y1),...,(X,,Y,)} and any test point (X,Y), an algorithm .4 is defined to be (¢, §)-
absolutely-stable if

P

for some €, § > 0, where £ denotes the possible innate randomness in the algorithm (such as the node
splitting procedure in the RF) and can be seen as a random variable uniformly distributed in [0, 1],

f= A(D;¢) is the predictor trained on D, and fi= A(D™% €) is the ith LOO predictor trained

on D", i.e., D without the ith point (X;,Y;). We might refer to the RF as both an algorithm (the
learning procedure) and a predictor (the learned function) for simplicity.

F(x) - f‘i(X)‘ > g) <6

Many bagged algorithms, in particular those with bounded predicted values, can achieve absolute
stability with both € and § converging to 0, as long as n and the number of bags B go to infinity.



However, the predicted value of the RF is in general unbounded (for regression tasks considered in
this work), and we are more interested in another type of stability, investigated in [9]], and called
out-of-sample stability [3]]. For simplicity, we name it “stability.” This notion of stability turns out to
be important in validating a jackknife prediction interval.

Definition 2 (Stability of algorithms). For iid training and test data, algorithm A is (&, §)-stable if

Pp x.e (‘f(X) - JH'(X)‘ > 6) <46
for some €, > 0, where D, X, f, f*i are as defined above.

We will establish this type of stability for the derandomized RF defined below, where the data-
generating distribution is involved. To this end, we will use the methods in [28]], which aim to provide
absolute stability for bagged algorithms. Technically, we use such methods to first establish the
“conditional stability” of an algorithm with respect to given data.

Definition 3 (Conditional stability of algorithms). Conditional on D and X, an algorithm A is
defined to be (&, §)-conditionally-stable if

1 n
~ > Pep.x (
n 4

i=1

for some ¢, > 0, where D, X, f, f‘i are as defined above.

f(X)—f_i(X)’ >5‘D7X) <$

Once conditional stability is established for the derandomized RF algorithm, its stability can be
consequently established by invoking

Pp xe(-) =Epx [PE\D7x(‘|D,X)] .

Stability of the derandomized RF provides the most essential ingredient for that of the practical RF,
although the latter involves another type of stability, known as ensemble stability [18]]. Ensemble
stability justifies replacing the LOO predictor with the OOB predictor in (I). We may abuse the term
“stability” in the following when the OOB, rather than the LOO, predictor is used.

3 Stability of random forests

3.1 Basics of random forests

This work mainly considers using the RF to perform regression tasks, where the response ¥ € R
can be unbounded. By construction, the RF predictor with B bags, denoted by RF 5, is a bagged

algorithm with the base algorithm being a tree, and RF 5 = % Zle TREE;, where TREE, is the bth
tree predictor, trained on the bth bag 7, a bootstrapped sample of the training set D. The randomness
in the tree predictor TREE originates from two independent sources: innate randomness £ in the node
splitting process and resampling randomness from the bag . For the ith point, one can define the OOB
RF predictor as RF\é =4 Zle TREE, x I{i ¢ rp}, where I{-} denotes the indicator function, and
B; = Zle I{i ¢ r}. Define p = P(i € r) as the probability that the ith point is included in bag 7.
Then it is clear that B; ~ Binomial(B, 1—p) for all i. We also denote rf and rf\! as the derandomized
versions of RF ; and RF )., respectively. Precisely, rf = E¢ -[TREE] and rf\ — E¢ -[TREE[i ¢ r]. It
is worth noting that, by definition, RF}; # RF; for finite B, while rf\* = rf % as the derandomized
RF results from the aggregation of an infinite number of trees. Since RF predictors are averages over
tree predictors, the predicted values they output, given training set D, are bounded in [Y{y), Y(,,)],
where Y(q) and Y{,,) are the minimum and maximum of {Y1,...,Y,}, respectively. We also let
Z; = |Y;] for all 7, and denote the maximum as Z(n). As aresult, we have that

(' — | < Yoy — Y1) < 2Z(n)- 2)
Remark 1. This is also true for RFg and RF 5 for any finite B. In fact, this is a distinctive feature of

the RF, irrespective of the node splitting rule. Other regression methods do not necessarily have such
a data-dependence bound. This observation helps to establish the conditional stability of the RF.



Remark 2. Practically, when n is large, one might think that the bound is crude. On one hand,
if we look for a bound valid for any finite n > 2, then there is not much room for improvement
for small n. On the other hand, we do expect that the typical stability of the RF can go beyond the
finite-sample guarantee provided by (2) when n is big, which is consistent with the numerical results
shown below. A more informative bound for large n is worth future investigation.

There are several quantities that are useful in establishing the RF stability; they can be calculated
explicitly and are listed below. First, it is well known that

p=Plier)=1—-(1-1/n)" =1-1/e+ O(1/n). 3)
Actually, p is monotonically decreasing for n > 1. Second,
g=—-Cov(l{ier},I{jer}) = (1 —1/n)*" — (1 —2/n)" = O(1/n), (€))
as can be directly checked. Third, the moment generating function of B; is
Efe*] = (p+ (1-p)e)”. )

In the following, we first perform the stability analysis for the derandomized RF (consisting of an
infinite number of trees) and then extend the results to the practical finite-B case.

3.2 Derandomized random forests
The following theorem formalizes the conditional stability property for the derandomized RF, the
proof of which is a direct result of Theorem 8 in [28]], and is omitted here.

Theorem 5 (Conditional stability of derandomized random forests). Conditional on training set D
and test point (X,Y'), for the derandomized random forest predictor rf we have that

ﬁi;]l{‘rf(X)—rf (X)| > £|D, X | <8(D,X) = = <1_p+ (1_p)2>‘ ©)

If §(D, X) > 1, the statement is trivial, and we will focus on the case that 6(D, X') € (0,1). We can
now establish the stability property for the derandomized RF.

Theorem 6 (Stability of derandomized random forests). For iid training and test data and € > 0, the
derandomized random forest predictor rf is stable with

o (0 -tc0] ) < G (e ) = 0

This result follows directly from the conditional stability (6) by averaging over D and X. There
is some freedom in choosing the dependence of € on n. On one hand, in order to make sense of
the word “stability,” we do expect ¢ and v to be small for large n. From (3) and @), it is clear
that the asymptotic behavior of v is dominated by that of ]E[Z(zn)] /(%n), which can be tuned by
manipulating €. For example, a matching convergence rate to O between € and v might be desirable,
and one can then set ¢ = O((E[Z(Qn)]/n)l/g) if the scaling of E[Z{)] = o(n) is known or can be
inferred. On the other hand, we can fix ¢ to further investigate the relation between stability and the
convergence-in-probability property of the RF. By , under the condition that E[Z (Qn)] /n— 0 as

n — o0, one immediately comes to the conclusion that rf\i(X ) — rf(X) converges to 0 in probability.
Actually, a stronger conclusion can be drawn under the same condition.

Corollary 1. For iid training and test data, we have

) E[Z2
Ep x[|rf(X) — rf¥(X)[] < 2\/ [ (n)] <1 fp + a qp)Q). (8)

Further assume that E[Y?] < oo. Then we have

Ep x[|rf(X) — rf¥(X)[] = 0 and rf(X) — rf(X) B 0asn — . ©



Remark 3. The additional assumption that E[Y?] < oo is mild. Many commonly encountered
random variables have a light tail and thus a finite second moment, irrespective of the detailed
information of the distribution in question. Note that the bound (2) itself can be crude, and our result
is expected to be valid even beyond this mild condition.

Remark 4. This result indicates that the difference is diminishing between rf and rf\i, built on n and
n — 1 training data points, respectively. However, there is no indication that the derandomized rf(X)
itself will converge to anything. This idea inspires the proposal of Theorem I T]

The proof of this result, as well as others below, will be deferred to the Appendix. So far, we
have investigated the derandomized version of the RF, which is a limiting case and can be seen
as consisting of an infinite number of trees, averaging out all kinds of possible randomness in the
predictor construction process. In order to make the results more relevant to applied machine learning,
the finite- B analysis for the RF is conducted below.

3.3 Finite-B random forests

We now consider the difference between RF 5 and RF};. We denote & = (&1,...,6p) and r =
(r1,...,7p) as the corresponding sources of randomness in B trees. We also consider conditional
stability first and then move to the stability of RF .

Theorem 7 (Conditional stability of finite-B random forests). Conditional on training set D and test
point (X, Y), for a random forest predictor RF g that consists of B trees, we have for ¢ > 0 that

BN v 228, (1
=~ Peip.x ‘RFB(X) — RFB(X)‘ >e+2/—"n <5> D,X | <35+ g(p,o,B),
=1

where § is short for §(D, X) as defined in (@) and g(p, 8, B) = 2(p + (1 — p)d#)5.
Next, we consider the case of iid data and investigate the RF stability by averaging out the randomness
in data. Note that Z (n) and 9 are random and depend on the data distribution, while we are interested

in a probability bound for |RF (X ) — RFE (X)| greater than a deterministic quantity, which is only
a function of B and n. In this finite-B case, the stability of RF 5 cannot be directly obtained from its
conditional stability as in the derandomized situation.

Theorem 8§ (Stability of finite- B random forests). Assume training points in set D and the test point
(X,Y) are iid, drawn from a fixed distribution. For the random forest predictor RF g consisting of B
trees and trained on D, we have

Pp,xer ([RFE(X) = RFS(X)| > e08) < vp, (10)

where €, g = Z?=1 g, and vy, g = Z?=1 v;. The pair of (e2,v2/)) satisfies the derandomized
RF stability condition with A\ > 1. Moreover, ¢ = €3 = \/2)\]E[Z(2n)]ln(y%)/B, v =

vy + QIP’(Z?n) > AE[Z(,)]), and vs = g(p,v2, B) + 2]P’(Z(2n) > )\]E[Z?n)]).

On a high level, the establishment of this theorem relies on two observations: (i) the stability of the
derandomized RF, so that the difference |rf(X) — rf\!(X)| is controlled, and (ii) the concentration

of measure, so that the differences |RF5(X) — rf(X)| and |RF>§,(X ) — rf\(X)| are controlled. In
order to make full sense of the word “stability,” it is desirable that ¢,, g and v,, g can converge to
0. It is known that E[Y?2] < co suffices to ensure E[Z(Qn)] = o(n) [15}[13], and hence the stability
of the derandomized RF. Now in the finite- B case, we need an additional distributional assumption

to control the tail probability P(Z (2n) > \E[Z (Zn)]) It turns out that for typical light-tailed Y2, such

a tail probability will converge to 0 as n — c0. Technically, we can assume Y2 to be sub-gamma
[8]. Note that bounded and sub-Gaussian random variables are sub-gamma. Hence the sub-gamma
assumption is not strong and can be satisfied by distributions underlying many real datasets.

Definition 4 (Sub-gamma random variables [8]]). A random variable W is said to be sub-
gamma (on the right tail) with parameters (02,¢) where ¢ > 0, if InE[e*(W-EIWD] <

% forall s € (0,1/c).
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Figure 1: Left: Density plots of the log,, absolute difference |RFp(X) — RF;(X )| for 3000

OOB predictors RF}; on 1000 test points. We let B = 1000. The RF stability seems to
persist, even though Y follows the (heavy-tailed) standard Cauchy distribution. Numerically, we set
Uy, g = 0.05 and calculated the maximum of the 0.95 quantile of the 3000 empirical distributions to
have é,, p = 0.237. Right: Density plots of 1000 log;, absolute prediction errors |Y" — RF5(X)|

and of 3000 log,, absolute OOB errors |Y; — RFX;(XZ')\. The similarity between the plots supports
the idea that the OOB errors can be used to construct PIs.

Lemma 1. Suppose Y? is sub-gamma with parameters (o2, c) with ¢ > 0, and E[Z(Qn)] ~alnn
with a < c. For A > c/a, we have lim,,_, P(Z(Qn) > )\E[Z(Zn)]) =0.

Remark 5. We have set ¢ > 0 above. If ¢ = 0, then Y2 is in fact sub-Gaussian, and the tail
probability can be controlled similarly. If Y2 is upper bounded by some constant M2, the stability
analysis is even simpler, and there is no need to consider the tail probability at all, as we can use M?
in place of Z (2n) in the conditional stability of the RF and then take expectation with respect to data.

Example 1. Consider Y? ~ Exp(1), the exponential distribution with scale parameter 1. It
is known that Y? is sub-gamma with (o2,¢) = (1,1) [8], and E[Z(Qn)] = Y0, = H, with
H, € (y+Inn,y+In(n + 1)), where v ~ 0.577 is Euler’s constant. Hence H,, = Inn + o(Inn),
and a straightforward calculation reveals that lim,, _, IP’(Z(%L) > ME[Z fn)]) = 0aslongas A > 1.

From such results, one can see that the vanishing tail probability is not a stringent condition. By
taking this additional assumption, it is indeed possible that both ¢,, g and v,, p converge to 0.

Corollary 2. For the same setting as in Theorem|8| suppose Y? is sub-gamma with parameters

(02, ¢) with ¢ > 0 and E[Z(Qn)] ~ alnn with a < ¢. Let X\ > c/a be a fixed number, and let B

depend on n. Then for e, that satisfies both 5 = w(+/Inn/n) and e = o(1), and B = Q(In” n),

we have lim,,_,o, €, B = lim,, o vy, = 0.

It is worth noting that there are multiple ways to let ¢,, g and v,, g approach 0, as the dependence of
€2, B, and even A on n can all be manipulated. The point is that, theoretically, even the greedy RF
can be stable with vanishing parameters. In practice, however, the stability of RF 5 seems to hold in
broader situations where both the moment and tail assumptions on Y2 can be relaxed.

3.4 Stability in practice and limitations of theory

We created a virtual dataset consisting of n = 4000 points. We let Y be a standard Cauchy random
variable, which is even without a well-defined mean. The feature vector X € R3 is determined as
X =[05Y +sin(Y),Y? —0.2Y3, I{Y > 0} + ¢]7 where ( is a standard normal random variable.
We used 3000 of the points for training and 1000 of them as test points. Using the randomForest
package with default setting (except letting B = 1000), we had an output RF predictor RF 5. We also
aggregated corresponding tree predictors to have 3000 OOB predictors RF};. For each i € [3000],

we calculated the absolute difference |RF5(X) — RF; (X)| on 1000 test points to come up with a



density plot for such a difference, shown in Fig. [Tl We also calculated 1000 absolute prediction errors
|Y" — RF5(X)| that are incurred by RF 5 on test points, and 3000 OOB errors |Y; — RF>3z (X;)|, each

incurred by an OOB predictor RF}BZ on its OOB point (X;, Y;). The computation can be done within
a few minutes on a laptop. The density plots of these two kinds of errors are also shown in Fig. [I]
This example shows that the RF stability can be present beyond the realm guaranteed by the light-tail
assumption. As mentioned above, this is because the bound (Z) can be conservative when n is large.
We hope our results can inspire future study towards a more informative bound. Also, the similarity
between the prediction error and the OOB error in this heavy-tail case indicates that the RF-based PIs
analyzed below can find more applications in practice than justified by the current theory.

4 Random-forest prediction intervals

4.1 Comparison with related methods

With the stability property of the RF, it is possible to construct PIs with finite-sample guaranteed
coverage. Recent years have witnessed the development of distribution-free predictive inference
[L] with the full 33} 27]], split 24} 31} [20], and jackknife+ [3}132] conformal prediction methods
being three milestones. The full conformal method is computationally prohibitive when used in
practice. The split method greatly reduces the computational cost but fails to thoroughly extract the
available information of training data. The jackknife+ (J+) method maximizes the usage of data at a
computational cost in between those of full and split methods. In [18]], jackknife+-after-bootstrap
(J+aB) was proposed for bagged algorithms to achieve the same goal as in J+, while the training
cost can be further reduced. However, the number of bags B is required to be a Binomial random
variable, which might seem unnatural. It turns out that by further imposing the assumption of
ensemble stability (which is essentially the concentration of resampling measure), J+aB can still have
guaranteed coverage with a fixed B. Ensemble stability is defined for bagged algorithms. It measures
how typical a bootstrap sample is, and is different from the algorithmic stability that quantifies the
influence of removing one training point. If algorithmic stability is also imposed, then not only J+aB,
but also jackknife can provide guaranteed coverage, which is otherwise impossible [29, 3]].

Conceptually, the J+ approach and its variants under stability conditions are particularly relevant
to this work. As the stability we establish for the RF contains both ensemble and algorithmic
components, we will generally refer to the J+aB method with both ensemble and algorithmic stability
as J+aBS and the jackknife method with algorithmic stability as JS. Our method might be best
described as “jackknife-after-bootstrap-with-stability (JaBS)” tailored for the RF, which is different
from both JS and J+aBS. Our method requires the least effort of computing as only one output
predictor is needed, while all others require at least n output predictors.

There also exist RF-based PIs [17, 35] that are essentially of the jackknife-after-bootstrap (JaB) type
and almost identical to ours practically when ¢ is small and n equals the size of a typical dataset.
However, without stability, there is, in general, no guarantee for the coverage of such PIs, although the
asymptotic coverage 1 — « can be established based on strong assumptions [35]. We take advantage
of the stability of the RF algorithm to establish the lower bound of coverage in Theorem [9] below. An
upper bound is established in Theorem [I0] with an additional mild assumption. We also propose a
weaker assumption for asymptotic coverage in Theorem [T1]

We compare these relevant methods to ours in Table[T]and Table[2] where the RF is set as the working
algorithm for all methods and (e, v) is a general pair of stability parameters. We define g, o {R;}.
4t AR}, @ oA Ri}, and q;,  {R;} as follows. Given {ay, ..., an},
n.ofai} = ¢ o{ai} = the [(1 — a)(n + 1)]-th smallest value of {a1,...,an},
Gy, o{ai} = the [(1 — a)n]-th smallest value of {a1,...,a,},

@n.otai} = the |a(n + 1)|-th smallest value of {ay,...,an},

where |-| is the floor function. Let RF°© = |Y; — RF5'(X;)| be the LOO error, where RF ' is
trained without the 4th training point, and by definition RF; # RF};.

In Table [T} we list the corresponding PI constructed from each method and the output predictors
of each method. The number of output predictors directly reflects the computational cost. It is



Table 1: Methods to construct prediction intervals using random forests: computational cost

Method Output predictors Prediction interval for future Y’
I+ (3] RF',i € [n] (47, {RF5'(X) = RO}, . {RF5'(X) + REOOY
JraB (18] RFjie[n] [0, (R (X) = Ri}, 0 o{RFS(X) + R}
JS 3] RFp and RF5',i € [n]  RFp(X) 4 ¢no{R[O° + ¢} _
J+aBS [18]  RF}.,i € [n] [ (RFE(X) — Ri} — 2,47 o {RF1(X) + Ri} + €]
JaB RF g RF5(X) £ ¢n.o{R:} (171
RF5(X) £ q;, o { i} [35]
Ours JaBS) RFp RF5(X) + ¢n.o{Ri + £} (Theorem[9)
RFp(X) + ¢n,o{Ri — €} (Theorem |10}
RF5(X) £ gn.a{Ri} (Theorem|[11)

Table 2: Methods to construct prediction intervals using random forests: theoretical coverage

Method Theoretical coverage Additional conditions
J+ 3] >1-2«a None
J+aB [18] >1-2«a Binomial B
IS 3] =1—a—-0HV) Stability (algorithmic)
J+#aBS[18] >1-—a—O0(y/v) Stability (ensemble + algorithmic)
JaB No guarantee [[17]] -
— 1 —a[33] Strong (additive model, consistency of RF predictor)
Ours (JaBS) >1—a—O(/v) Stability (Theorem@)
<1—a+ 25 +0(yv) + Distinct residuals (Theorem )
—-1—a + Uniformly equicontinuous CDF of |[Y — RF(X)|

and vanishing ¢, v (Theorem|[11)

worth noting that acquiring the LOO predictor RF; needs substantial computation. In packages
like randomForest, aggregating tree predictors to obtain the OOB predictor RF}BZ also needs extra
computation. However, the predicted value RF;(XZ-) can be obtained immediately by calling the

predict() function. The fact that the value of RF; (X) on a test point is not needed further reduces
the computational cost of JaB and our method, which only need one output RF predictor, and are
more favorable computationally.

In Table@ we list the coverage of the PI constructed from each method, as well as the additional
conditions (beyond iid data) needed to achieve the coverage. Note that J+ does not require any
additional conditions to achieve the coverage lower bound 1 — 2, but J+aB requires that the number
of trees B be a Binomial random variable. For JS, J+aBS, and our method, stability is needed to
achieve the coverage lower bound 1 — oo — O(4/v). With additional mild assumptions, the coverage
upper bound and asymptotic coverage of our method can be established. However, there is no
guarantee of coverage for JaB without strong assumptions.

In summary, our theoretical work provides a series of coverage guarantees to a computationally
feasible method for constructing PIs based on the RF algorithm. In the following, we will establish
the lower and upper bound of coverage, as well as the asymptotic coverage.

4.2 Non-asymptotic coverage guarantees

Theorem 9 (Coverage lower bound). Suppose the RF predictor RF g satisfies the stability condition
as in Theorem[8| Then we have for a test point (X,Y’) that

P(Y € RFp(X) + qnofRi + enB}) =1 — a — 11 — 2\/v5 — 24/v3. (11)

This result is established by starting from the analysis of an imaginary extended dataset D =
D u {(X,Y)}, where the test point is assumed to be known. We denote (X,Y") as (X,,41, Y 11) for

J— ~\?
convenience. For all points in D, consider the derandomized RF predictor rf  that is built on n data



points without the ith point in D, i € [n.+1]. One can then define the OOB error 7; = |Y; —rf v |. Since

all data are iid, we have that P(7,,11 < gn,o{7:}) = 1 — a, where ¢, o {7;} is the [(1 — a)(n + 1)]-th
1
smallest value of {77, .. rn} Next, notice 7, +1 = | Y41 — f\(nJr )(Xn+1)| = Y1 —rf(Xpnt1)]

by the definitions of ff ( Y and rf. By concentration of measure, rf(X,,.1) can be approximated by

RF5(X,+1), and thus 7, 1 can be roughly replaced with |Y;, 1 — RF5(X,,+1)|, which is desired.
Then by stability of rf, {%;} can be approximated by {r; = |V; — rf''(X;)|}. Although {r;} is still
unavailable in practice, by applying the idea of concentration of measure again, {r;} can be further
approximated by {R;}, which is accessible given D. Eventually, we can bound |Y;, 1 — RF g (X,,41)]
in terms of { R;}. The approximations are accounted for by the stability parameters in Theorem

If we further assume that there are no ties among {7;},7 € [n+1], a typical case when Y is continuous,
then we can also establish the upper bound of coverage.

Theorem 10 (Coverage upper bound). Suppose there are no ties in {7;},i € [n + 1], and the RF
predictor RF g satisfies the stability condition as in Theorem|8| Then

1
P(Y € RFB(X) + qn,a{Ri - En,B}) <l—a+ m + v + 2\/72+ 2@. (12)

The upper bound can be established because if there are no ties among 71, . . ., T, 11, then P(7,41 <
InaiTi}) <1 —a+ - +1 The apparent symmetry between the lower and upper bound originates
from the fact that they both are established by using the RF stability once and the concentration of
measure twice. Note that this idea can be applied to JS intervals for an arbitrary stable algorithm in
exactly the same way, providing a complement to the lower bound for JS intervals established in [3].

Corollary 3 (Coverage upper bound for jackknife-with-stability intervals). Let f be a predzctor
trained on n iid data pomts and f ' be the LOO predictor without the ith point. Suppose f is
stable with P(|f(X) — f~4(X)| > &) < v, and the LOO errors are distinct on the extended

training set that includes an iid test point (X,Y). Then we have P (|Y - f(X)] < Gn,a{ri — 5}) <
1 — a+ —5 + 2\/v, where r; are the LOO errors on the original training set.

4.3 Asymptotic coverage guarantee

As shown above, the stability parameters (&, B, Vs, ) can vanish when n — oo. It is reasonable
to expect that P(Y € RFp(X) + ¢, o {Ri}) — 1 — « in this limit, as is consistent with numerous
empirical observations [[17,135]. However, to achieve this goal, it seems that more assumptions are
unavoidable. In [35], the guaranteed coverage of the JaB method is established by assuming that
RF 5(X) converges to some fo(X) in probability as n — oo, where fj is the true regression function
of an additive model that generates the data. We show that this can be done under weaker conditions.

Theorem 11 (Asymptotic coverage). Denote ), as the CDF of |Y — RFp(X)|. Suppose {Fp,}n>n,
is uniformly equicontinuous for some ng. Then P(Y € RFp(X) + ¢ o{Ri}) > 1 —aasn — ©
when conditions in Theorem[9) Theorem[I0} and Corollary2]are satisfied.

Remark 6. Intuitively, using errors from RFE that are trained on n — 1 points to approximate those
from RF 5, trained on n points, we only need this approximation to be exact asymptotically. There
is no need for RF g itself to converge to anything. This is one major conceptual difference between
our work and [335]], and it is in this sense that our assumption is weaker. Practically, this kind of PI is
recommended as it does not involve (sn B, Vn, B), and has great performance on numerous datasets.

5 Conclusion

In this work, for the first time, we theoretically establish the stability property of the greedy version
of random forests, which is implemented in popular packages. The theoretical guarantee is based on
a light-tail assumption of the marginal distribution of the squared response Y 2. However, numerical
evidence suggests that this stability could persist in much broader situations. Based on the stability
property and some mild conditions, we also establish finite-sample lower and upper bounds of
coverage, as well as the exact coverage asymptotically, for prediction intervals constructed from the
out-of-bag error of random forests, justifying random forests as an appealing method to provide both
point and interval prediction simultaneously.
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A Proof of Corollary I

Let
p q
= (13)
l—p (1-p)p?
Then 6(D, X) = an)n/(szn). Also, by (3) and , 7 is upper bounded as
2n n
1 1-H"-(1-2
SN (s Gt (B
= %)
1 (-2 _(0-3)"-0-2)"
=" =" (=3
1_
< 3/16 (since n = 2 and (1 — 1/n)" is monotonically increasing in n)
1
= 16 < 6.
e
As aresult, for all n > 2, we have n/n < 3.
Then, note that for a non-negative random variable W, it holds that E[W So (W > t)dt. By

and (6)), we have

£

(F(X) — rf\i(X)H —Ep.x _f Pe b x ( (f(X) — rf\i(X)‘ > E‘D,X) ds]

22 (n) )
—Epx J Pe 1p.x (‘rf(X) _ rf\z(x)‘ > 5‘D,X> ds]
0

QZ(W,)
<ED,X J‘ mln{(S(D,X),l}d&
0

\/ (n)”/" 2Z(n) Z(Qn)
J lde + 3 ds
/Z(zn)”]/n en
(note 27,y > 4/ Z /n forn = 2)
<E [24 /Z?n)n/n]

<2 E[Z%n)]n/n (by Jensen’s inequality),

=Ep x

which completes the first part of the corollary. For the second part, we need the following lemma,
which is established in [15} [13].

Lemma 2. For iid random variables W;,i € [n], if E[|W;|] < oo, then lim,, o E[W,,)]/n = 0.

By this lemma, E[Y?] < oo implies ]E[Z(2n)]/n — 0 as n — 0. Since 7 is bounded, it is clear
that |rf(X) — rf\i(X )| converges to 0 in mean, which further implies convergence in probability,
completing the proof.

Remark 7. We can actually have a slightly tighter bound in (6)), and thus in Theorem [6] and
Corollary [T A closer look at the method in [28]] indicates that the key point is to bound the
conditional variance of TREE, E¢ .| p x[(rf — TREE)?]. Note that rf = p x E¢ ,|p x[TREE[i €

]+ (1 —p) x Eep.x[TREE|i ¢ 7] = p x rf* + (1 — p) x rf"", but |rf* — rf\’| is also bounded by

27 (), and we have |rf(X) — 9 (X)] < 2p x Z(n)- By , p converges to a constant as n — 0.
Hence this tighter bound does not provide any qualitative difference as n increases, and we ignore
this minor improvement in this work.
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B Proof of Theorem[7land discussion

By the triangle inequality and the union bound, we have for some ¢ > 0 that

% 3 Perioix (RF5(X) = RF5(X0)| > e + 2D, X )
i=1
iZ et (RF5(X) = f(X)] > 1D, X)
5 B (100 - 0] = fp.x)

" ¥(X) - REG0)| >
+n;P£,r|D,X(’rf (X) = RF3(X) >tD,X)
E1—‘1"—1124‘1—‘3. (14)

In 75, rf and rf\" are derandomized predictors, and by @, we have
T < 6.

Of course, this result is nontrivial when ¢ € (0, 1). Note that rf is the RF with an infinite number of
trees, where each tree is characterized by a pair of independent random variables (¢, r), while RF g
consists of a finite number of B trees. Since the value of RF 5(X) is bounded in [fZ(n), Z(n)], I
can be bounded by Hoeffding’s inequality as

Bt?
Tl < 2eXp <_2Z2> .
(n)

The analysis of the first two terms 73 and 7% is similar to that in [28]], but the bound for 75 to be
developed is specific to the RF predictor, and is nontrivially different from the case in [28] where the

number of bags for each LOO predictor is fixed to B. In our setting, RFE (X) € [~ Zn), Z(n)] is the
aggregation of B; trees where the th training point is not included. Hence by Hoeffding’s inequality
and (3), we have

Bt2 2 2 B
EEBlDX[QGXp< 2Z2 )‘D X]—?(p—i—(l—p)e t/(2Z(n)))

zl (n)

Now, we choose ¢ such that (0,1) 3 6 = exp (—BtQ/(QZ(Qn))), which then yields ¢t =

272

2 In (), and thus

\B
T <2(p+(1-p)t) =g(p.6.B). (1s)

Combining these results together completes the proof.

Discussion. Note that g(p, §, B) is monotonically decreasing in B, because
dln[g(p,d, B)/2] 1 B(1 —p)§"E 1né
) =1 1— /BY _ Y
0B n(p+( p)o ) +(1—p)o/B B2
(1—p)6YB In§
p+(1—p)s? B
s1B Ind
=(1-p|1- —V 1 a8 ®
p+(1—p)s¥B] B
_ _§yB
_l-p p(A-077) o
B p+(1—p)l/B
<0(s0<d<l).

<plnl+ (1—p)lnét/B — (by Jensen’s inequality)
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Moreover, since g > 0 and monotonically decreasing in B, it has a limit when p and ¢ are fixed and
B — oo:

lim In[g(p,d, B)/2] = lim Bln [p + ( 51/3]
B—o B—w
T oInd/B
Jim, Binfp+ |

lim Bln

B—w

. né Ind
E}l_l)anln[p-F (1+B) +0(B):|
1+ln(51 p M
o\ B
1—-p B
= lim lnl<1+ln6 0<ln§)> ]
B—w B

=1Ins*P. (16)

Hence we have that limp ., g(p, 6, B) = 26 ~P. This result implies that if B is allowed to increase
in a way that is independent of n, then under the conditions of Theorem [7] we have

\i Z(n) -
BlgnwEZPMDX ‘RFB RFB(X)‘>5+2 = 1<6)DX < 501P.

We will come back to this analysis in the proof of Corollary [2]below where B grows with n, but it
still holds that In §(n) = o(B(n)).

C Proofs of Theorem [§, Lemma|I}, and Corollary [2; and discussion

C.1 Proof of Theorem [§]
Similar to the proof for conditional stability, we have for some €2 = ¢,61 = €3 =t > 0 that
Pp x.er (‘RFB(X) - RF};;(X)‘ >c+ Qt)
<Pp xer (IRFp(X) —rf(X)]| > t)
+Ppx (|rf(X) = ¥ (X)| > ¢)
+Pp xem ()rf\i(X) - RF};;(X)‘ > t)
=T+ Ty + Ty

We first consider the T3 term, which can be bounded when the stability condition (7)) for rf is applied.
Thus

T} < v =wy/A (17)

Then, taking expectation with respect to data distribution for 7 and T3 in (I4) yields

Bt?
T <E|2
' l exp( 22@))]7

B

In order to obtain more informative bounds than the above ones, we introduce the following lemma.

and

Lemma 3. Let W be a random variable with finite mean, and suppose that h is a generic monotoni-
cally increasing function of W and is bounded in [0, 1]. Then we have for some A\ > 1 that

E[h(W)] < h(AE[W]) + P(W > XE[W]).
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Proof. This can be established by noting that
E[h(W)] = E[h(W)I{W < AE[W]}] + E[A(W)I{W > AE[W]}]
< h(AE[W]) + P(W > AE[W]).

The first term on the right-hand side results from A being monotonically increasing, and the second
term from h being upper bounded by 1. O

Applying this lemma to the upper bounds of 77 and T4 above yields

T <20 [~ Db ) 4+ op (22 > AE[Z2 ]) =v
1= 2)E[Z2,] (n) (ml) =71

and
B
T, <2 (p +(1- p)e—t2/(2A]E[Z<2n)])) + 2P (Z(Qn) > )\IE[Z(Qn)]) = v3.

Now we choose ¢ such that v, = exp (—Bt2 / (2)\]E[Z(2n)])> to complete the proof of Theorem

Remark 8. Unlike the conditional stability case, an additional tail probability term is introduced
in the upper bounds for both 77 and T%. This is because when Z (QH) is unbounded and no detailed

information of the data-generating distribution is provided, there seems no universal way to control
terms like E[exp(—1/Z (Qn) )]. We tackle this problem by introducing the tail probability. As shown

below, it is not difficult to control this term for typical data distributions.

C.2 Proof of Lemmal[l]
Suppose Z7 is sub-gamma on the right tail with parameters (02, ¢), then it is known that ]E[Z(Qn)]

is at most on the order of O(ln n) by the maximal inequality for sub-gamma random variables [[8].
More precisely, we have

E[Z(zn)] <V202lnn +clun.

When ¢ = 0, this reduces to the maximal inequality for sub-Gaussian random variables. When ¢ > 0,
the leading term of the bound is O(In n), meaning that the tail probability decays in an exponential,
rather than Gaussian, way. The parameter c also sets an upper bound quantitatively, and for large n,
we must have E[Z7 )] ~ alnn witha < c.

Since data are iid, the tail probability for the order statistic Z (2n) can be rewritten as

P (an) > /\E[Z(Qn)]> —1- [1 _Pp (Zf > AE[an)])] < nP (Z% > )\E[Z(Qn)]) .
Moreover, we have the concentration inequality that for every ¢ > 0 [§]],
P (Z12 > V202t + ot + E[Zf]) <e.
Setting AE[Z? )] = V202t + ct + E[Z]], and noticing ¢ = 22 1nn 4 o(Inn) for large n, we obtain

for A > £ that

a1
a 1)
lim P (Z?n) > \E [Z?L]) < lim ne=Emn _ jim <) =0,

n—0o0 n—0o0 n—0o0

completing the proof.

C.3 Proof of Corollary2]

Consider each pair of (¢;, ;) defined above. First, the (e, 12/\) pair satisfies the stability condition
of the derandomized RF. Hence for (g2, v2) to converge to 0, we require

ga(n) — 0asn — o,
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and

nez(n )

where 7(n) is defined in (13). It is clear that e5(n) = o(1) is required. Since 7n(n) converges to a
positive constant, and E[Z ) ] ~ alnn with a < ¢ by the sub-gamma assumption |’ we thus have

i =6 (5.

So if v5(n) — 0 as n — oo, we must also have

g2(n) —w( hlﬂ“)

Second, consider the (£1, 1) pair. In vy, the additional tail probability term converges to 0 by the
sub-gamma assumption, as proved in Lemmal(I] so 14 converges to 0. For 1, by definition,

2
ey = |22 ]y (1 g () [luny, (nck
B vy B Inn ’
Since ¢, satisfies both €5 = o(1) and £5 = w(+/Inn/n), letting B = Q(In®n) suffices for ¢, to
converge to 0.

va(n) = — 0asn — o0,

Last, consider the (g3, v3) pair. Since €3 = €1, hence €3 converges to 0. In v3, the tail probability

1
term is proved to converge to 0 above, and it remains to show (p + (1 — p)vy* )& converges to 0. In
, we have seen in the conditional stability case that g(p, §, B) — 26'7P as B — oo, as long as

Iné = o(B). Similarly, when B(n) = Q(In® n), then In v, = o(B), and we have

lim B(n)In (p<n> +(1- p(n))w(n)ﬁ)

n—0o0

-t o 0o (55
= lim B(n ln(p — p(n)) (1+ln§(275’;))>

— lim B(n)In (1 + gzll)n’ﬁ("))
_ lim B (1 (1/e + O( 1/n))1nu2(n)>

+
n—o0

B(n)

1/e
= hmB ln 1+1ny (n))

n— B(n)
1 B(n)
= lim In ( HVZ )
n—o0

In yl/e e
lim (p(n) + (1 — p(n))va(n )B<"> B — 1im (1 + ) = lim 1/21/e(n) =0,

which indicates

n—o0 n—0o0 n—0oo0

and the proof is completed.

ZStrictly speaking, it is possible for a sub-gamma random variable to have the scaling of E[Z (2n)] in between
v/Inn and In n, but the point is that the heavier the tail (i.e., the faster growth of E[Z (Qn)]), the more difficult to
achieve stability in theory. So we focus on the most heavy-tail case that E[Z(Qn)] scales as Inn.
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C.4 Discussion: beyond the sub-gamma assumption

There is some subtlety in choosing the dependence of €2, B, and A on n. We consider the case that A
is a fixed number above. However, if we make A also depend on n, then the assumption that Y2is
sub-gamma can be removed. To see this, consider lim,,_,o, A(n) = 0. Then by Markov’s inequality,

: 1
lim P(Z7,) > A(n)E[Z],]) < lim —— =0.

n—o0 n—00 )\(n)

So in this case, E[Z (Qn)] can have a faster growth rate in n and the sub-gamma assumption of Y2 is
not needed to control the tail probability. Consider E[Z (Zn)] = w(Inn), so that Y2 has a heavier tail
than sub-gamma. Requiring v5(n) to converge to 0 then results in

ea(n) = w (\/AMELZE, )/n)

but £2(n) also has to converge to 0, i.e., e2(n) = o(1). This introduces another constraint on ]E[Z(zn)]
that E[Z fn)] = o(n/A(n)). A straightforward analysis shows that

B(n) = QA(n)E[Z],)]1n(1/v2(n)))

suffices to guarantee the convergence of 1, €3, and v3.

Summing up, we find that by allowing lim,, .., A(n) = o0, one can generalize the results in Corollary
to the case that Y2 follows a distribution beyond sub-gamma. The scaling of E[Z7, ] is an indicator

of the tail behavior of the underlying distribution of Y2, and E[Z (QH)] that satisfies both

]E[Z(Zn)] = w(lnn) and E[Z(Qn)] = o(n/A(n))

represents a wide class of distributions with tails heavier than sub-gamma for proper dependence of
A(n) on n.

Example 2. Consider some random variable Y ? with E[Z?n)] = O(n'/*), and pick A\(n) = ©(n'/4),
g9 = O(n~Y%), and B = Q(n1nn). Then consequently
)\]E[Z%n)]n

—1/6
v= e =6,

2)\E[Z2 ] 1
g1 =¢€3 = \/B(n) In (I/2> = 0(77,71/4),

vy = 2u + 2]P’(Z(2n) > )\E[Z(Qn)]) =0 Y% + O~V = o(n~Y),

vy =2(p+ (1 —pwF)P + 2P(Z7,) > AE[Z0,)]) = ©(n~ V) + O(n~1/*) = ©(n=1/(6)).
Hence e, g and v,, g converge to 0 for a heavy-tailed Y * beyond sub-gamma.

In Table[3] we summarize the limiting stability parameters that can be achieved based on our theory,
with properly chosen €2, B, and A. This result shows the wide applicability of the RF stability.
Sub-Gaussian is a subset of sub-gamma random variables with ¢ = 0, and the analysis is similar. For
bounded Y2, there is even no need to introduce the tail probability term because |Y| < M implies
Z{,) < M?,and T{ and T7 are naturally bounded as

(n
Bt?
T] < 2exp (— ) ,

2M?2
and 5
T <2 (p +(1 —p)e*tz/(2M2)) ,

respectively. Both of the upper bounds are deterministic, and the analysis is greatly simplified. All

we need to do is replace AE[Z (271)] with M2 and drop the tail probability term in Theorem
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Table 3: Summary of random forest stability conditions

Scaling of E[Z (Qn)] Value of A Stability parameters
O(1) (bounded Y2) Unnecessary €, 5 — 0, V5 — 0
O(v/Inn) (sub-Gaussian Y2) Constant én,8 = 0, v, 5 >0
O(Inn) (sub-gamma Y'2) Constant eng —0,vp5 —0
Between w(lnn) and o(n/A(n)) A — o én,8 = 0, v =0

Corollary 4. Assume training points in set D and the test point (X,Y) are iid, and |Y'| < M. For
the RF predictor RF g consisting of B trees and trained on D, we have

Po,x.er ([RFE(X) = RFS(X)| > e08) < Vs, (18)

where €, p = Zle €, and vy g = Zle v;. The pair of (€3, 1) satisfies the derandomized RF
stability condition
M2

Pp x ((rf(X) - rf\i(X)] > 52) <5 (ﬁp + (l_qp)Q> = vy,

where g1 = €3 = 4 /2M? ln(i)/B, v1 = 2, and v = g(p, v, B).

Based on our theory, for a random variable Y2 with E[Z (2”)] = O(n), there is no hope to get both
vp.B and €, p to converge to 0. But as we show in Fig. E], there are hints that the RF stability
persists beyond our theory. This is because (2)) is used to provide the worst-case deviation bound
between rf and rf ‘. If a more informative bound can be found to replace H , and the dependence of
such a bound on n is o(E[Z (Qn)]), then it is possible to find vanishing stability parameters even for
strongly heavy-tailed random variables theoretically. Such an improved bound may also help boost
the convergence rates of ¢, p and v, g. It might be a future research direction to look for a better
bound.

C.5 More examples of RF stability

We consider the RF stability on four real datasets, publicly available at UCI Machine Learning
Repository [2]. We name them as Concrete [34], Airfoil [11], Bioconcentration [16], and
Naval [12]. For each dataset, we investigate three aspects:

Marginal distribution of Y.  As shown in Fig. 2| (left column), all the density plots of Y seem to
have a light tail. In fact, the response in many real datasets is bounded or narrowly distributed within
a given interval, which has to do with the physical constraints. For example, the strength of some
material is determined by the underlying chemical bond strength, and cannot be arbitrarily large.

Difference between the RF predictor and OOB predictors. To this end, we randomly split every
dataset into two parts with equal size n. One is for training and the other for testing. Based on n

training points, we have an RF predictor RF g, as well as n OOB predictors RF};. We fix B = 1000
in all cases. For each of these predictors, we compute its error on n test points, and in Fig. [2]

(middle column) we plot the density of the absolute difference |RF 5(X) — RF};(X )| for all n OOB
predictors. Also, we calculate the 0.95 quantile of each empirical distribution of the difference, say,
€0.95,i,% € [n]. We let é, p = max; £y.95,; as an estimate of ¢,, g given v, g = 0.05.

Comparison between prediction error and OOB error. For the RF predictor, we calculate its
prediction error on n test points to come up with a density plot of such prediction errors. For each
OOB predictor, we calculate its corresponding OOB error, and we have a density plot based on n
such OOB errors. In Fig. ] (right column), we plot both of prediction and OOB error. The similarity
between them, especially on the right tail, provides much credence to the idea of constructing PIs
using the OOB error.

We train the RFs using default parameters except that the number of trees is fixed to be B = 1000 in
all cases. The training can be done within a few minutes on a laptop.
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Figure 2: Left column: Density plots of Y. Middle column:

Density plots of |[RF 5(X) — RF }:(X)].

Right column: Density plots of |[Y — RFg(X)| and |Y; — RF};(Xi)\. Row 1: Concrete dataset.
Numerically, we find é,, p ~ 0.62, 7, p = 0.05 for n = 515. Row 2: Airfoil dataset with &, p ~
0.25, 0, p = 0.05 forn = 751. Row 3: Bioconcentration dataset with &, p = 0.05,7,, g ~ 0.05
for n = 389. Row 4: Naval dataset with £,, g ~ 0.00016, ©,, p = 0.05 for n = 5967.
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D Proof of Theorem

Recall that each of €,, g and v,, g can be written as the sum of three terms:
En,B = €1 t €2+ €3, VB =11+ Vo + Vs,
and we have established in the proof of Theorem [§]that
P(|rf(X) — RFp(X)| > &1) < 11,
P (\rf(X) —rf(X)| > 52) < v,
P (IRFE(X) = rf(X)| > 23) < v,

Now assume the test point (X,Y) = (X, 41, Yn+1) is accessible to us, and define n+1 derandomized
RF predictors as follows:

~\i ~\i
rf =rf ((XlaY1)>~--7(Xiflai/ifl%(X’iJrh)/;Jrl)w"7(Xn+17yn+1>)7

meaning that ﬁc\l is trained on n pairs of data points without (X;,Y;). Furthermore, define for
i € [n+ 1] that

~ ~\i

Fo= |V, — o (X)),

Lemmad4. Fora e (1/(n+1),1), let 7;,i € [n + 1] be defined above. Then
IF)(7~’n+1 < Qn,a{?i}) =1-aq,

where g, o{Ti} denotes the [(1 — a)(n + 1)|-th smallest value of {71, ..., Tn}. If we further assume
there are no ties among 7;, then we also have

1
P~n <no¢~i <1_ E——
(Fa1 < gnalF)) <1-at ——

Proof. This proof is provided for completeness. For the first part, note that all 7*; are exchangeable.
Hence the rank of each 7; is uniformly distributed on [n + 1], and

n+1—[(1-a)(n+1)]
n+1
_ % (mote n +1 = [(n+1)(1 —a)] + [(n + 1)a])
_aln1)
n+1

]P)(?n-&-l > QTL,Oz{rFi}) <

For the second part, if there are no ties among all {7;}, then we have

1
n+1

PP <7q)) =P (7~’n+1 is the smallest among {7; ?jll) =

b

and for each ¢ € [n — 1], we have

1
n+1

P (P < Ppt1 < T(i1)) = P (Fns1 is the (i + 1)-th smallest among {7;}77)")

As a result,

P (Fat1 < @nafTi}) =P (Fos1 < Fj(1—a) (1))

=P (Fos1 < F(1-a)(mr1)])
[(1—a)(n+1)]-1
=P (?n-&-l < 77(1)) + Z P (?(l) < ?n+1 < 7’:(744_1))

RS .
n+1 ’
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By the definition of the ceiling function, we have
lI-a)n+)<[l-a)n+D)]<Q—-a)(n+1)+1
Therefore, we conclude that if there are no ties between {7;}, then

1—a< ]P)(Fn+1 < Qn,a{/?z}) <l-oa+ R
n

which completes the proof. O

By the first part of the above lemma and the definition of 7,1, we know that

n+1 ~
P (Yo =7V )l < i) 210

~\(n+1
But rf\( M is just rf, so we have

IP)(|Y—n+1 - rf(Xn+1)| < Qn,a{ﬁl}) = 1—a.
Of course, 7; are unknown, and we eventually will need to replace them with R;, but before that, we
use r; instead. Before proceeding, a useful lemma that connects {7}, {r;}, and { R;} is given below.

Lemma 5 Suppose there are n pairs of real numbers (a;, b;),i € {1,...,n}. Letagy < ... < ay)
and b1y < ... < be,y. Foranye € R, if by > agyy + € for some j and k, then there are at
least j — k + 1 pairs of (a;,b;) such that b; > a; + €. In particular, if k = [(n + 1)(1 — )] and
j=[n+1)(1—-a)]witha =a—0yand by =0, thenj —k +1= (n+1)d,.

Remark 9. It might be more convenient to state the lemma as that if ¢, o {b;} > qn.os{a;} + ¢ with
o' = a — d,, then there are at least (n + 1)J,, pairs of (a;, b;) such that b; > a; + .

Proof. This result was directly obtained in [3] “by definition of quantiles,” while a more complete
proof might be helpful. Without loss of generality, we take ¢ = 0. (Otherwise, we consider {a}, b;}
instead, where a} = a; + £.) We first define three sets as follows.

Sa={i:a; <agy},
Sp={i:b; = by},
Sc={i:a; <b;}.
It is obvious that for any ¢ € S4 N Sp, we have a; < agy < b(k) < b;. Hence i € Sc. That is,
SanSg < Se.
As a consequence, |S4 N Sp| < |S¢|, where | - | denotes the cardinality of a set. Then, note that
Sa=(8anSp)u(SanSy),
where S% is the complement of Sp, and
|SA| = |SA N SB‘ + |SA N SCB‘
Therefore, we have
1Sc| = [Sa n S| = [Sal = |[San Sp[ = [Sa| =SBl =7 —(k—-1)=j—k+1

|
Now consider j = [(n + 1)(1 — /)] and k = [(n + 1)(1 — «)] with &/ = o — J,,. Note for any
Be(0,1)thatn+1=[(n+1)(1—pB)]+ [(n+1)8]. Then we have

j—k+1l=[n+1)A-a)]-[(n+1)1 —-a)]+1

[
=|(n+Da|—|(n+1)d|+1
=|(n+1)(a +d.)] = |[(n+1)]| +1
>|(n+ D]+ |[(n+1)da] — |[(n+ 1)/ +1
=|(n+1)da] +1
= (n+ 1)da,

completing the proof. [

We are now ready to prove Theorem [9} Basically, we use the stability property once and the
concentration of measure twice to establish probabilistic deviation bounds for [rf(X) — rf\(X)|,
rf(X) — RF3(X)|, and |rf¥(X) — RF};(X)L respectively.
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D.1 Using the stability property to control |rf(X) — rf\ (X)|
Following the same idea as in [3], we consider the event

Al = “Qn,a{Fi} > dn,ao {ri} + 52”7
where g = o — /2. We then have that
1—a<P(|Yot1 — rf(Xnt1)| < gnoffi}and 4)) + P (|Yn41 — f(Xnt1)| < @no {7} and A7)
< P(A ) + P (TnJrl < dn,ay {Tz} + 52) )

where Af is the complement of A;. Now, we calculate P(A4;). By Lemma event A; implies that
there are at least (n + 1),/ pairs of (75, 7;) such that 7; > r; + €, and thus

P(Al) <P <Z ]I{’/N’Z >1r; + 62} = (Tl + 1)@)
i=1
- E[}" {7 > r +ea}]
N (n+ 1)/

CnE[{7 > +e}]
- T 1)\/172 (by iid data)

nlP (7; > r; + £2)

(n+ 1)y
p (|Yi )| > Y= (X + 52)
(n+1)/v2

b (1% =7 (x> 1= 7 0] 4 )

(n+ 1)y
nP (| Yoer =i )| > [Yogs —
(n+ 1)y

(

(

(

(by Markov’s inequality)

(by definitions of er\z’ rf, rf\i)

~\(i,n+1)
(Xn+1)| + E2)

(by iid data)

nP ([Yos1 = (X41)| > [Yars = 9 (Xa) 4 22)
(n+ D

nP ([Yisr — rf(Xpi1) — Yn+1+rf\i(Xn+1)|>52)
(n+ Dyin

nP ( |rf(Xnt1) rf\( n+1)|>€2>

(n+ 1)y
(by stability of rf)

(by definitions of rf ", rf, rf\%)

N

(because |a| — |b] < |a —b])

MCER
< s

As a consequence, we have

P(|Ynt1 — f(Xnt1)| S qnao{ri} +e2) 21 —a—P(4) 21 —a—/va=1— 0z — 2,/1s.

That is to say, we have a reduced lower bound of coverage using an e,-inflated interval constructed
from {r;}. However, {r;} is unknown, and we want to further approximate r; by R;.

D.2 Using the concentration of measure to control |rf\'(X) — RF}; (X)]

To this end, we similarly define another event:

A; = “Qn,ag{ri} > Qn,ag{Ri} + 53777
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where a3 = a — 4/v3, and we have

l—ag — 24/
<P (Vi1 — F(Xni1)| < Gno{ri} + 2 and A]) + P (|Yn+1 — Hf(Xni1)] < Gnay {7} + €2 and A;c)
SP(A) + P (Y1 — f(Xnt1)| < qnas{Ri} + 62 +€3),

where A;C is the complement of A;. Applying Lemma again yields

P(A) <P (i I{r; > R; +e3} = (n+ 1)\/73>

i=1
E[Y"  I{r; > R; +e3}]
(n+ Dy

nlP(r; > R; + €3)
(n+1)/vs
P (m —fV(X)| > Y — RFE (X)) + 53)
(n+1)yvs
nP (m —rfY(X,;) — Vi + RFY (X)) > 53)
(n+ s
nP (\rf\i(Xi) —RFY (X)) > 63)
(n+ Dy
nP (\rf\i(X) —RFY(X)| > 53)
N (n+ 1)y/s

(by concentration of measure)

(by Markov’s inequality)

N

(by iid data)

N

(because |a| — |b] < |a —b])

(because X; and X are iid, and rf\ and RF}; do not depend on X;)
nvs
(n+ 1)y
< \/V3.

So we have
P(|Yog1 — f(Xnt1)| S qnag{Ri} +e2+63) =1 — s —2y/va —P(A4A)) =2 1 — ag — 2/va — 24/vs.

<

D.3 Using the concentration of measure to control |rf(X) — RF5(X)|

Finally, we need to replace rf(X,,11) by RF5(X,,+1). Note that for ¢t > 0,
P(Y —RFp(X)| >t+¢e1) =P(|Y — rf(X) + rf(X) — RFp(X)| >t + 1)
<P(Y —rf(X)] >t)+ P(Jrf(X) — RFp(X)| > &1)
<P(|Y = rf(X)] > t) + 11,
which implies
P(Y —RFg(X)| <t+4+e1) 2P(|Y —rf(X)| <t) —11.
Lett = gy a,{R:i} + €2 + €3, and we arrive at
P(‘Y — RFB(X)| < qn,QS{Ri} + &9+ €3 —|—€1) = P(|Y — rf(X)| < qn,(XS{Ri} + &9 + 63) — 1
21—043—2\/7—2\/%—V1,

which completes the proof of Theorem@ Moreover, for 14 € (0,1), we have ,/v1 > v1. So

+ /3 +
22 < 2Tty ) = 6 VIV IV o 0 )5 = VB

Hence we eventually have

IP)(|YV - RFB(X)| < Qn,a{Ri} + 8n,B) <l-a- 2\/5\/1/71,37

which leads to the informal version of the theorem.
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E Proof of Theorem

E.1 Using the stability property to control |rf(X) — rf\i(X )|

Since we have assumed {7;},% € [n + 1] have no ties, by the second part of Lemma4] we have for
the test point (X,Y) = (X,,+1, Yo 11) that

P (|Yn+1 rf

Now consider the event that

\(n+1) ~ ~ ~
(K1) < qn,a{n}) ~ P (ot S guali)) S1-at

Ay = “Gnyar{ri} — €2 < qnalTs}”,
where ap = a + /2. We denote A5, as the complement of A,,. Note that in this case the ancillary
quantity « is greater than ¢, while in the proof of Theorem[9] 5 is less than . We then have
P(Trt+1 < Gnoasi{ri} —€2) =P (Trny1 < Gnoas{ri} —e2and Ay,) + P (Frt1 < @noan{ri} — €2 and AY)
(Pny1 < qn,as {7’1} goand A,) + ]P)(Ai)
(Frs1 < na{i}) + P(A7)

1
1— —— + P(A%).
a+n+1+ (4%)

<P
<P

N

Next, we bound IP(AC) By Lemmal 5| event A, implies there are at least (n + 1),/v; pairs of (r;,7;)
such that r; > 7; + &5, and thus

P(AS) <P <i Hr;>7 +e} = (n+ 1)\/172)

i=1

< E [Z?:l H{T‘l > 7+ 62}]

~

(by Markov’s inequality)

(n+1)yv2
E ]I . ~.
_ B > Tt el i data)
(n+1)\/v2
~nP(r; > T+ e2)
a1y,
P (D/l — rf\i(Xi)| > |}/1 — ﬁ:\l(Xl)| + 62)
N (n YN
~\(nt1, i
b (1% =700 > 1= 7] ) .
= TESIND (by definitions of rf ", rf, rf\%)
~\(in+1) ~\(nt1)
P ([ =700 5 W =7 (K 4 )
- by iid dat
(n+ s (by iid data)
nP ([Yasr = 1 (Xe)| > [Yasr = H(Xi)| +22) Y
= (by definitions of rf ', rf, rf\%)
(n+1)yv2
nlP (| n+1l — I’f\ n+1) — Yo+ rf(Xn+1)| > 62) b ; ,
< — b < |a—
CESIN (because |a| — [b] < |a — b))
nP <|rf 1) — (X )| > 52)
- (n+ 1)\/72
"2 (by stability of rf)
(n+1)y/v2 Y Y
< Ve
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Hence we have
~ 1 1
P(Tn_q_l < q7,,,a2{1"7;} — 62) <l—-a+ m +4/g=1—ay+ m + 24/15.

Note that this proof also works for a general stable algorithm, as stated in Corollary

E.2 Using the concentration of measure to control |rf\'(X) — RFE (X))

We further define an event
A; = “‘In,as{Ri} — €3 < (n,a, {ri}”,

where a3 = as + ,/v3. We denote A;f as the complement of A/,. Again, we increase rather than
decrease as in this case, as opposed to in the proof of the lower bound. We then have

]P)(Fn-&-l < Qn,oz3 {Rl} — &2 — 63)

=P (?n+1 < ¢,z {Ri} — €2 — €3 and A;) +P (’7n+1 < Gn,as{Ri} — €2 —e3 and A;f)

A\

S P (Fus1 < Gnyas {Ri} — 2 — £3 and A,) + P(A)
<SP (TPn41 < Gnag{ri} —e2) + P(A;f)

1 /
<1—0g+—— + 20 + P(AS),
oy PR A

By Lemma A.¢ implies there exist at least (n + 1)./w pairs of (R;, r;) such that R; > r; + 3,
and thus

n

P(A°) <P <Z I{R; > 7 +e3} = (n+ 1)@)

i=1
E_ IR > ri + es}]
(n+1)y/vs

_ ”P((fl >1)T \/;3 %) (by iid data)

nP (1Y = RES(X0)| > 1Y; = (X)) + &)
(n+1)y/v3

nP (|y;- —RFY(X;) — Vi + rf (X)) > 53)
(n+1)y/vs

nP (I (X) = RFS(X0)] > e5)

(n+1)y/vs3

nP (|rf\i(X) —RFY(X)] > 53) _ _
= (because X; and X are iid, and rf\* and RF}; do not depend on X;)
(n+1)y/v3

(by concentration of measure)

(by Markov’s inequality)

N

(because |a| — [b] < |a — b|)

< nrs
= (n+ 1)1/V3
< 4/V3.

‘We then have

~ 1
IP’(rn_H < Qn,a3{Ri} — &9 — 63) <l—az+ m + 24/v9 + 24/13.
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E.3 Using the concentration of measure to control |rf(X) — RF5(X)|

We write Ry, 11 = |Y,,+1 — RF5(X,+1)|. Then

P(Rnt1 < qnas{Ri} —€1 — €2 —€3)
=P (Rn+1 — Tnt1 + Tnt1 < @nas {Ri} — €1 — €2 —€3)
SP(Rpy1 —Tng1 < —€1) + P(Trns1 < Gnyag {Ri} — €2 — €3)

1
< ]P(|Rn+1 — 7’:n+1| > 61) +1—az3+ m + 24/v9 + 24/v3
1
= P(||Yn+1 — RFB(Xn+1)| — D/n-&-l — I’f(Xn_,_l)H > 51) +1—ag+ m + 2+/v9 + 2\/73
1
<P(rf(X) = RFp(X)| >e1)+ 1 —as + 1 + 24/V9 4+ 24/v5 (because ||a| — |b|| < |a — b])

1 .
<l—as+ nrl + v1 + 24/v3 + 24/v3, (by concentration of measure)
n

which completes the proof. Again, for v; € (0, 1), the upper bound is 1 — a3 + 2= + O(,/Vn.B)-

n+1
The proof of Theorem [ bears some resemblance to that of Theorem [I0] because of the symmetry

consideration. For example, “rf(X) is close to rf\"(X)” also means “rf''(X) is close to rf(X)>
Hence the probabilistic deviation bounds established above apply in two directions, and the upper
bound can be proved. Still, we use the stability property once and the concentration of measure twice.

F Proof of Theorem 11

We start from P(|Y — RFp(X)| < ¢n,o{Ri} + €n,5). Denote R = |Y — RFp(X)|, and let its
CDF be F,,, where we explicitly use n to denote the size of the training set. Then we can rewrite
P(JY — RFp(X)| < qn,o{Ri} +en,p) as
P(‘Y - RFB(X>| < Qn,a{Ri} + En,B) = E[Fn(Qn,a{Ri} + 5n,B)]>

where the expectation is with respect to ¢y, {R;}, which is random. By the assumption, when
n = ng, the family {F},(¢)}>n, is uniformly equicontinuous, which means that for any v > 0, there
exists some § > 0 that is independent of ¢ and n, such that |F},(¢') — F,,(¢)| < v forall |t/ —¢| <6
and n = ng. Then we have for n > ng and v > 0 that

Fn(Qn,a{Rz} + 6n,B) - Fn(Qn,a{Ri})
= Fn(Qn,a{Ri} + €7L,B) - Fn(Qn,a{Ri} + 5) + Fn(Qn,a{Ri} + 6) - Fn(Qn,a{Ri})
< sup [F(t+ en,B) — Fn(t 4+ 0)] +sup [F(t + 6) — F,(t)]

< sup[Fn(t+en) — Eu(t +0)] + v.
t

However, F,, (t) as a CDF is monotonically increasing, and for any ¢, F,,(t + &, 5) — Fp.(t +0) <0
as long as €, g < 0. By Corollary |z|, lim, . en,B = 0. So there exists some n; such that when
n = ni1, we have €, g < . Hence we conclude that for any v > 0, for all n = max{ng,n1}

0 < Fo(gn,afRi} + €n,B) — Fu(gn,o{Ri}) <vas.,
implying that

Ji_rfolo{Fn(Qn,a{Ri} +en,B) = Falgno{Ri})} = Oas.
As F, is bounded, then by the bounded dominance theorem, we have
nlLHOlO]E[Fn(Qn,a{Ri}+5n,B)_Fn(Qn,a{Ri})] = E[JE%O{Fn(Qn,a{Ri}+5n,B)_Fn(Qn7a{Ri})}] =0.

Under the conditions of Corollary [2} both ¢, 5 and v, g go to 0 as n — o0, and the lower bound (TT)
implies that

1-a< linrriioréfE[Fn(qnya{Ri} +éenB)]
= lim inf E[Fy (gn,0{Ri} + €n.B) = Fu(dna{Ri}) + Fu(dn,a{Ri})]
= lim E[Fu(gn.a{Ri} +en8) = Ful@no{Ri})] + lim inf E[F, (gn,o {Ri})]
= lim inf B[ F: (gn,0{ Ri})]-
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Similarly, the upper bound (I2)) implies that
1— o> limsupE[F,(¢n,a{R:i} +€n,B)]
n—o0

= lim SupE[Fn(qn,a{Ri} + En,B) - Fn(qn,a{Rz}) + Fn(Qn,a{Rz})]

n—00

= nh_r)%o E[Fn(qna{Rz} + En,B) - Fn(qn,a{Rz})] + llflﬂ_)sog-pE[Fn(qn,a{Rz})]
= lim sup E[F, (¢n,o{Ri})]-

Combining these results, we have

1—a<lim ioIolf E[F,(gn,a{R:})] <lmsupE[F,(¢no{Ri})] <1— .
n— n—00
Thus,
lim P(R < gno{Ri}) = lirréC E[F, (¢gno{Ri})] =1 — a,

n—o0

completing the proof.
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