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Abstract

We establish stability of random forests under the mild condition that the squared
response (Y 2) does not have a heavy tail. In particular, our analysis holds for the
practical version of random forests that is implemented in popular packages like
randomForest in R. Empirical results show that stability may persist even beyond
our assumption and hold for heavy-tailed Y 2. Using the stability property, we
prove a non-asymptotic lower bound for the coverage probability of prediction
intervals constructed from the out-of-bag error of random forests. With another
mild condition that is typically satisfied when Y is continuous, we also establish
a complementary upper bound, which can be similarly established for the jack-
knife prediction interval constructed from an arbitrary stable algorithm. We also
discuss the asymptotic coverage probability under assumptions weaker than those
considered in previous literature. Our work implies that random forests, with its
stability property, is an effective machine learning method that can provide not
only satisfactory point prediction but also justified interval prediction at almost no
extra computational cost.

1 Introduction

Random forests (RFs) is a successful machine learning method that serves as a standard approach
to tabular data analysis and has good predictive performance [10, 7]. However, there is a big
gap between the empirical effectiveness of RFs and the limited understanding of its properties.
Most known theoretical results are established for variants of RFs not necessarily used in practice
[5, 25, 22, 14, 30]. For the RF version implemented in packages like randomForest in R [21], little
is known without strong assumptions [6, 26, 35]; RFs is notoriously difficult to analyze as a greedy
algorithm. Here we show an important property for the RF used in practice (as well as for other
variants) under realistic conditions.

1.1 Stability of random forests

The first main contribution of this work establishes the stability condition for the RF.

Theorem 1 (Stability of random forests, informal). For independent and identically distributed (iid)
training data points pXi, Yiq, i P t1, . . . , nu ” rns and a test point pX,Y q, if the squared response
Y 2 does not have a heavy tail, then the RF predictor RFB and any out-of-bag (OOB) predictor RFzi

B
predict similar values, i.e.,

P
´

ˇ

ˇ

ˇ
RFBpXq ´ RF

zi
BpXq

ˇ

ˇ

ˇ
ą εn,B

¯

ď νn,B , (1)
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where RFB results from the aggregation of all B base tree predictors, while RF
zi
B only those with the

point pXi, Yiq excluded in training; εn,B and νn,B are small numbers depending on n and B.

This result is referred to as the stability of the RF because it indicates that no single training point
is extremely important in determining RFB in a probabilistic sense. Theorem 1 relies on a recent
important work that establishes the absolute stability (see below for a precise definition) of general
bagged algorithms with bounded outputs [28]. We take advantage of the fact that the range of the
RF output is conditionally dependent upon the maximal and minimal values of Y in the training set,
and then we show in theory that the stability property of the RF is possible even if Y is marginally
unbounded. To our knowledge, this is the first stability result established for the RF.

The technique used in our analysis requires that Y 2 not have a heavy tail (to make εn,B and νn,B
small). Though arguably already mild, we conjecture that this condition might be further relaxed. As
shown below, numerical evidence suggests that the light-tail assumption may not be necessary for RF
stability, which could hold even when Y follows a heavy-tail distribution like the Cauchy distribution.

1.2 Random-forest prediction intervals

Stability is a crucial property of a learning algorithm. For example, stability has a deep connection
with the generalization error of an algorithm [9, 19, 23]. Moreover, stability also turns out to be
important in distribution-free predictive inference. In particular, an algorithm being stable justifies
the jackknife prediction interval (PI), which otherwise has no coverage guarantee [3].

In this work, we show that stability makes it possible to construct a PI with guaranteed coverage from
the OOB error of the RF. The OOB error is defined as Ri “ |Yi ´ RF

zi
BpXiq|, i P rns. A main reason

why such a PI is appealing is that Ri can be obtained almost without extra effort. For example, a
one-shot training using the R package randomForest gives us an RF predictor RFB and all n OOB
predictions RFzi

BpXiq. So, from the computational point of view, a convenient way to construct a PI
for a test point pX,Y q is of the form “RFBpXq ˘ proper quantile of tRiu” [17, 35].

The second main contribution of this work constructs such PIs and theoretically proves, under mild
conditions, the non-asymptotic lower and upper bounds for the coverage probability.
Theorem 2 (Coverage lower bound, informal). Under the same assumptions as in Theorem 1, and
for α P p0, 1q 1, we have the following lower bound of coverage probability:

P p|Y ´ RFBpXq| ď the rpn ` 1qp1 ´ αqs-th smallest Ri ` εn,Bq ě 1 ´ α ´ Op
?
νn,Bq,

where r¨s is the ceiling function. Big O and other related notations are used in the usual way.
Theorem 3 (Coverage upper bound, informal). If we further assume that Y is continuous, resulting
in distinct prediction errors, then we also have the following upper bound:

P p|Y ´ RFBpXq| ď the rpn ` 1qp1 ´ αqs-th smallest Ri ´ εn,Bq ď 1 ´ α `
1

n ` 1
` Op

?
νn,Bq.

As we detail below, the PIs we provide coverage guarantees for are neither the jackknife-with-stability
interval discussed in [3], nor the jackknife+-after-bootstrap interval established in [18]. In our context,
constructing the former needs n leave-one-out (LOO) predictors (rather than n OOB predictors), i.e.,
n additional RFs with each built on a training set of size n ´ 1. Constructing the latter needs the
explicit information of each RF

zi
Bp¨q rather than the OOB prediction RF

zi
BpXiq for each Xi only. Both

these methods require additional, sometimes extensive, computation given current popular packages.
In contrast, our results are operationally more convenient. After one-shot training, we obtain not only
a point predictor RFBp¨q, but also a valid interval predictor at almost no extra cost. Under reasonable
conditions, our results indicate that by slightly inflating (or deflating) the PI constructed from the
rpn ` 1qp1 ´ αqs-th smallest Ri, the coverage probability is guaranteed not to decrease (or increase)
too much from the desired level of 1 ´ α. In fact, many numerical results, such as those in [17, 35],
suggest that

P p|Y ´ RFBpXq| ď the rpn ` 1qp1 ´ αqs-th smallest Riq « 1 ´ α.

Motivated by this fact, we further establish an asymptotic result of coverage for such PIs.
1When α P p0, 1{pn ` 1qq, we follow the convention that the pn ` 1q-th smallest Ri is 8.
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Theorem 4. (Asymptotic coverage, informal) In addition to the conditions in the above theorems, also
suppose the prediction error |Y ´ RFBpXq| is continuous, and its cumulative distribution function
(CDF) does not change too drastically for all sufficiently large n. Then

P p|Y ´ RFBpXq| ď the rpn ` 1qp1 ´ αqs-th smallest Riq Ñ 1 ´ α as n Ñ 8.

In [35], this asymptotic coverage was proved based on stronger assumptions. In particular, the
true model is assumed to be additive such that “Y “ f0pXq ` noise” with the zero-mean noise
independent of X , and RFBpXq is assumed to converge to f0pXq in probability. We do not require
RFB to converge to anything in any sense when n Ñ 8. Technically, we need the family of prediction
error CDFs be uniformly equicontinuous.

Based on our results, the RF seems to be the only one, among existing popular machine learning
algorithms, that can provide both point and interval predictors with justification in such a convenient
way. This makes the RF appealing, especially for tasks where the computational cost is a concern.

It is also worth noting that the upper-bound result is of interest in its own right. It can be generalized
to jackknife PIs that are constructed from any stable algorithm; the result serves as a complement to
the lower bounds established previously [3, 18].

Summarizing, we

• theoretically prove that the (greedy) RF algorithm is stable when Y 2 does not have a heavy
tail;

• numerically show that RF stability may hold beyond the above light-tail assumption;
• construct PIs based on the OOB error with finite-sample coverage guarantees: the lower

bound of coverage does not need any additional assumption beyond stability; the upper
bound needs an additional assumption, which is usually satisfied when Y is continuous;

• provide the upper bound of coverage for jackknife PIs constructed from general stable
algorithms, assuming distinct LOO errors; and

• prove asymptotically exact coverage for RF-based PIs under weaker assumptions than those
previously considered in published work.

2 Concepts of algorithmic stability

Stability stands at the core of this work. There are different types of stability, each of which is used
to assess quantitatively how stable (in some certain sense) an algorithm is with respect to small
variations in training data [9, 28, 4]. In a recent work [4], robust optimization is used to enhance the
stability of algorithms in classification tasks. In [28], bagging is proved to be an efficient mechanism
to stabilize algorithms in regression tasks. We focus on regression here. As will be made clear,
the technique used in this work relies on the fact that the RF predictor in regression results from
averaging tree predictors. However, the majority vote of tree predictors is used in classification, and
new ideas are needed to analyze the RF stability in this setting. For our purposes, we introduce three
levels of stability from strongest to weakest. The strongest version of stability, introduced in [28],
does not depend on the data distribution, and may be referred to as “absolute stability.”
Definition 1 (Absolute stability of algorithms). For any dataset consisting of n ě 2 training points
D “ tpX1, Y1q, . . . , pXn, Ynqu and any test point pX,Y q, an algorithm A is defined to be pε, δq-
absolutely-stable if

1

n

n
ÿ

i“1

Pξ

´
ˇ

ˇ

ˇ
f̂pXq ´ f̂´ipXq

ˇ

ˇ

ˇ
ą ε

¯

ď δ

for some ε, δ ě 0, where ξ denotes the possible innate randomness in the algorithm (such as the node
splitting procedure in the RF) and can be seen as a random variable uniformly distributed in r0, 1s,
f̂ “ ApD; ξq is the predictor trained on D, and f̂´i “ ApD´i; ξq is the ith LOO predictor trained
on D´i, i.e., D without the ith point pXi, Yiq. We might refer to the RF as both an algorithm (the
learning procedure) and a predictor (the learned function) for simplicity.

Many bagged algorithms, in particular those with bounded predicted values, can achieve absolute
stability with both ε and δ converging to 0, as long as n and the number of bags B go to infinity.
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However, the predicted value of the RF is in general unbounded (for regression tasks considered in
this work), and we are more interested in another type of stability, investigated in [9], and called
out-of-sample stability [3]. For simplicity, we name it “stability.” This notion of stability turns out to
be important in validating a jackknife prediction interval.
Definition 2 (Stability of algorithms). For iid training and test data, algorithm A is pε, δq-stable if

PD,X,ξ

´ˇ

ˇ

ˇ
f̂pXq ´ f̂´ipXq

ˇ

ˇ

ˇ
ą ε

¯

ď δ

for some ε, δ ě 0, where D,X, f̂ , f̂´i are as defined above.

We will establish this type of stability for the derandomized RF defined below, where the data-
generating distribution is involved. To this end, we will use the methods in [28], which aim to provide
absolute stability for bagged algorithms. Technically, we use such methods to first establish the
“conditional stability” of an algorithm with respect to given data.
Definition 3 (Conditional stability of algorithms). Conditional on D and X , an algorithm A is
defined to be pε, δq-conditionally-stable if

1

n

n
ÿ

i“1

P ξ|D,X

´
ˇ

ˇ

ˇ
f̂pXq ´ f̂´ipXq

ˇ

ˇ

ˇ
ą ε

ˇ

ˇ

ˇ
D,X

¯

ď δ

for some ε, δ ě 0, where D,X, f̂ , f̂´i are as defined above.

Once conditional stability is established for the derandomized RF algorithm, its stability can be
consequently established by invoking

PD,X,ξp¨q “ ED,X

“

Pξ|D,Xp¨|D,Xq
‰

.

Stability of the derandomized RF provides the most essential ingredient for that of the practical RF,
although the latter involves another type of stability, known as ensemble stability [18]. Ensemble
stability justifies replacing the LOO predictor with the OOB predictor in (1). We may abuse the term
“stability” in the following when the OOB, rather than the LOO, predictor is used.

3 Stability of random forests

3.1 Basics of random forests

This work mainly considers using the RF to perform regression tasks, where the response Y P R
can be unbounded. By construction, the RF predictor with B bags, denoted by RFB , is a bagged
algorithm with the base algorithm being a tree, and RFB “ 1

B

řB
b“1 TREEb, where TREEb is the bth

tree predictor, trained on the bth bag rb, a bootstrapped sample of the training set D. The randomness
in the tree predictor TREE originates from two independent sources: innate randomness ξ in the node
splitting process and resampling randomness from the bag r. For the ith point, one can define the OOB
RF predictor as RFzi

B “ 1
Bi

řB
b“1 TREEb ˆ Iti R rbu, where It¨u denotes the indicator function, and

Bi “
řB

b“1 Iti R rbu. Define p ” Ppi P rq as the probability that the ith point is included in bag r.
Then it is clear that Bi „ BinomialpB, 1´pq for all i. We also denote rf and rfzi as the derandomized
versions of RFB and RF

zi
B , respectively. Precisely, rf “ Eξ,rrTREEs and rfzi

“ Eξ,rrTREE|i R rs. It
is worth noting that, by definition, RFzi

B ‰ RF´i
B for finite B, while rfzi

“ rf´i as the derandomized
RF results from the aggregation of an infinite number of trees. Since RF predictors are averages over
tree predictors, the predicted values they output, given training set D, are bounded in rYp1q, Ypnqs,
where Yp1q and Ypnq are the minimum and maximum of tY1, . . . , Ynu, respectively. We also let
Zi “ |Yi| for all i, and denote the maximum as Zpnq. As a result, we have that

|rfzi
´ rf| ď Ypnq ´ Yp1q ď 2Zpnq. (2)

Remark 1. This is also true for RFzi
B and RFB for any finite B. In fact, this is a distinctive feature of

the RF, irrespective of the node splitting rule. Other regression methods do not necessarily have such
a data-dependence bound. This observation helps to establish the conditional stability of the RF.
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Remark 2. Practically, when n is large, one might think that the bound (2) is crude. On one hand,
if we look for a bound valid for any finite n ě 2, then there is not much room for improvement
for small n. On the other hand, we do expect that the typical stability of the RF can go beyond the
finite-sample guarantee provided by (2) when n is big, which is consistent with the numerical results
shown below. A more informative bound for large n is worth future investigation.

There are several quantities that are useful in establishing the RF stability; they can be calculated
explicitly and are listed below. First, it is well known that

p ” Ppi P rq “ 1 ´ p1 ´ 1{nqn “ 1 ´ 1{e ` Op1{nq. (3)

Actually, p is monotonically decreasing for n ě 1. Second,

q ” ´CovpIti P ru, Itj P ruq “ p1 ´ 1{nq2n ´ p1 ´ 2{nqn “ Op1{nq, (4)

as can be directly checked. Third, the moment generating function of Bi is

E
“

esBi
‰

“ pp ` p1 ´ pqesqB . (5)

In the following, we first perform the stability analysis for the derandomized RF (consisting of an
infinite number of trees) and then extend the results to the practical finite-B case.

3.2 Derandomized random forests

The following theorem formalizes the conditional stability property for the derandomized RF, the
proof of which is a direct result of Theorem 8 in [28], and is omitted here.
Theorem 5 (Conditional stability of derandomized random forests). Conditional on training set D
and test point pX,Y q, for the derandomized random forest predictor rf we have that

1

n

n
ÿ

i“1

I
!

ˇ

ˇ

ˇ
rfpXq ´ rfzi

pXq

ˇ

ˇ

ˇ
ą ε

ˇ

ˇ

ˇ
D,X

)

ď δpD,Xq ”
Z2

pnq

ε2n

ˆ

p

1 ´ p
`

q

p1 ´ pq2

˙

. (6)

If δpD,Xq ě 1, the statement is trivial, and we will focus on the case that δpD,Xq P p0, 1q. We can
now establish the stability property for the derandomized RF.
Theorem 6 (Stability of derandomized random forests). For iid training and test data and ε ą 0, the
derandomized random forest predictor rf is stable with

PD,X

´ˇ

ˇ

ˇ
rfpXq ´ rfzi

pXq

ˇ

ˇ

ˇ
ą ε

¯

ď
ErZ2

pnq
s

ε2n

ˆ

p

1 ´ p
`

q

p1 ´ pq2

˙

” ν. (7)

This result follows directly from the conditional stability (6) by averaging over D and X . There
is some freedom in choosing the dependence of ε on n. On one hand, in order to make sense of
the word “stability,” we do expect ε and ν to be small for large n. From (3) and (4), it is clear
that the asymptotic behavior of ν is dominated by that of ErZ2

pnq
s{pε2nq, which can be tuned by

manipulating ε. For example, a matching convergence rate to 0 between ε and ν might be desirable,
and one can then set ε “ OppErZ2

pnq
s{nq1{3q if the scaling of ErZ2

pnq
s “ opnq is known or can be

inferred. On the other hand, we can fix ε to further investigate the relation between stability and the
convergence-in-probability property of the RF. By (7), under the condition that ErZ2

pnq
s{n Ñ 0 as

n Ñ 8, one immediately comes to the conclusion that rfzi
pXq ´ rfpXq converges to 0 in probability.

Actually, a stronger conclusion can be drawn under the same condition.
Corollary 1. For iid training and test data, we have

ED,X r|rfpXq ´ rfzi
pXq|s ă 2

d

ErZ2
pnq

s

n

ˆ

p

1 ´ p
`

q

p1 ´ pq2

˙

. (8)

Further assume that ErY 2s ă 8. Then we have

ED,X r|rfpXq ´ rfzi
pXq|s Ñ 0 and rfpXq ´ rfzi

pXq
P

Ñ 0 as n Ñ 8. (9)
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Remark 3. The additional assumption that ErY 2s ă 8 is mild. Many commonly encountered
random variables have a light tail and thus a finite second moment, irrespective of the detailed
information of the distribution in question. Note that the bound (2) itself can be crude, and our result
is expected to be valid even beyond this mild condition.

Remark 4. This result indicates that the difference is diminishing between rf and rfzi, built on n and
n ´ 1 training data points, respectively. However, there is no indication that the derandomized rfpXq

itself will converge to anything. This idea inspires the proposal of Theorem 11.

The proof of this result, as well as others below, will be deferred to the Appendix. So far, we
have investigated the derandomized version of the RF, which is a limiting case and can be seen
as consisting of an infinite number of trees, averaging out all kinds of possible randomness in the
predictor construction process. In order to make the results more relevant to applied machine learning,
the finite-B analysis for the RF is conducted below.

3.3 Finite-B random forests

We now consider the difference between RFB and RF
zi
B . We denote ξ “ pξ1, . . . , ξBq and r “

pr1, . . . , rBq as the corresponding sources of randomness in B trees. We also consider conditional
stability first and then move to the stability of RFB .
Theorem 7 (Conditional stability of finite-B random forests). Conditional on training set D and test
point pX,Y q, for a random forest predictor RFB that consists of B trees, we have for ε ą 0 that

1

n

n
ÿ

i“1

Pξ,r|D,X

¨

˝

ˇ

ˇ

ˇ
RFBpXq ´ RF

zi
BpXq

ˇ

ˇ

ˇ
ą ε ` 2

d

2Z2
pnq

B
ln

ˆ

1

δ

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D,X

˛

‚ď 3δ ` gpp, δ, Bq,

where δ is short for δpD,Xq as defined in (6) and gpp, δ, Bq “ 2pp ` p1 ´ pqδ
1
B qB .

Next, we consider the case of iid data and investigate the RF stability by averaging out the randomness
in data. Note that Zpnq and δ are random and depend on the data distribution, while we are interested

in a probability bound for |RFBpXq ´ RF
zi
BpXq| greater than a deterministic quantity, which is only

a function of B and n. In this finite-B case, the stability of RFB cannot be directly obtained from its
conditional stability as in the derandomized situation.
Theorem 8 (Stability of finite-B random forests). Assume training points in set D and the test point
pX,Y q are iid, drawn from a fixed distribution. For the random forest predictor RFB consisting of B
trees and trained on D, we have

PD,X,ξ,r

´
ˇ

ˇ

ˇ
RFBpXq ´ RF

zi
BpXq

ˇ

ˇ

ˇ
ą εn,B

¯

ď νn,B , (10)

where εn,B “
ř3

i“1 εi, and νn,B “
ř3

i“1 νi. The pair of pε2, ν2{λq satisfies the derandomized

RF stability condition (7) with λ ą 1. Moreover, ε1 “ ε3 “

b

2λErZ2
pnq

s lnp 1
ν2

q{B, ν1 “

2ν2 ` 2PpZ2
pnq

ą λErZ2
pnq

sq, and ν3 “ gpp, ν2, Bq ` 2PpZ2
pnq

ą λErZ2
pnq

sq.

On a high level, the establishment of this theorem relies on two observations: (i) the stability of the
derandomized RF, so that the difference |rfpXq ´ rfzi

pXq| is controlled, and (ii) the concentration
of measure, so that the differences |RFBpXq ´ rfpXq| and |RF

zi
BpXq ´ rfzi

pXq| are controlled. In
order to make full sense of the word “stability,” it is desirable that εn,B and νn,B can converge to
0. It is known that ErY 2s ă 8 suffices to ensure ErZ2

pnq
s “ opnq [15, 13], and hence the stability

of the derandomized RF. Now in the finite-B case, we need an additional distributional assumption
to control the tail probability PpZ2

pnq
ą λErZ2

pnq
sq. It turns out that for typical light-tailed Y 2, such

a tail probability will converge to 0 as n Ñ 8. Technically, we can assume Y 2 to be sub-gamma
[8]. Note that bounded and sub-Gaussian random variables are sub-gamma. Hence the sub-gamma
assumption is not strong and can be satisfied by distributions underlying many real datasets.
Definition 4 (Sub-gamma random variables [8]). A random variable W is said to be sub-
gamma (on the right tail) with parameters pσ2, cq where c ě 0, if lnErespW´ErW sqs ď
s2σ2

2p1´csq
for all s P p0, 1{cq.
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Figure 1: Left: Density plots of the log10 absolute difference |RFBpXq ´ RF
zi
BpXq| for 3000

OOB predictors RF
zi
B on 1000 test points. We let B “ 1000. The RF stability (10) seems to

persist, even though Y follows the (heavy-tailed) standard Cauchy distribution. Numerically, we set
ν̂n,B “ 0.05 and calculated the maximum of the 0.95 quantile of the 3000 empirical distributions to
have ε̂n,B “ 0.237. Right: Density plots of 1000 log10 absolute prediction errors |Y ´ RFBpXq|

and of 3000 log10 absolute OOB errors |Yi ´ RF
zi
BpXiq|. The similarity between the plots supports

the idea that the OOB errors can be used to construct PIs.

Lemma 1. Suppose Y 2 is sub-gamma with parameters pσ2, cq with c ą 0, and ErZ2
pnq

s „ a lnn

with a ď c. For λ ą c{a, we have limnÑ8 PpZ2
pnq

ą λErZ2
pnq

sq “ 0.

Remark 5. We have set c ą 0 above. If c “ 0, then Y 2 is in fact sub-Gaussian, and the tail
probability can be controlled similarly. If Y 2 is upper bounded by some constant M2, the stability
analysis is even simpler, and there is no need to consider the tail probability at all, as we can use M2

in place of Z2
pnq

in the conditional stability of the RF and then take expectation with respect to data.

Example 1. Consider Y 2 „ Expp1q, the exponential distribution with scale parameter 1. It
is known that Y 2 is sub-gamma with pσ2, cq “ p1, 1q [8], and ErZ2

pnq
s “

řn
i“1

1
i ” Hn with

Hn P pγ ` lnn, γ ` lnpn ` 1qq, where γ « 0.577 is Euler’s constant. Hence Hn “ lnn ` oplnnq,
and a straightforward calculation reveals that limnÑ8 PpZ2

pnq
ą λErZ2

pnq
sq “ 0 as long as λ ą 1.

From such results, one can see that the vanishing tail probability is not a stringent condition. By
taking this additional assumption, it is indeed possible that both εn,B and νn,B converge to 0.

Corollary 2. For the same setting as in Theorem 8, suppose Y 2 is sub-gamma with parameters
pσ2, cq with c ą 0 and ErZ2

pnq
s „ a lnn with a ď c. Let λ ą c{a be a fixed number, and let B

depend on n. Then for ε2 that satisfies both ε2 “ ωp
a

lnn{nq and ε2 “ op1q, and B “ Ωpln2 nq,
we have limnÑ8 εn,B “ limnÑ8 νn,B “ 0.

It is worth noting that there are multiple ways to let εn,B and νn,B approach 0, as the dependence of
ε2, B, and even λ on n can all be manipulated. The point is that, theoretically, even the greedy RF
can be stable with vanishing parameters. In practice, however, the stability of RFB seems to hold in
broader situations where both the moment and tail assumptions on Y 2 can be relaxed.

3.4 Stability in practice and limitations of theory

We created a virtual dataset consisting of n “ 4000 points. We let Y be a standard Cauchy random
variable, which is even without a well-defined mean. The feature vector X P R3 is determined as
X “ r0.5Y ` sinpY q, Y 2 ´ 0.2Y 3, ItY ą 0u ` ζsT where ζ is a standard normal random variable.
We used 3000 of the points for training and 1000 of them as test points. Using the randomForest
package with default setting (except letting B “ 1000), we had an output RF predictor RFB . We also
aggregated corresponding tree predictors to have 3000 OOB predictors RFzi

B . For each i P r3000s,
we calculated the absolute difference |RFBpXq ´ RF

zi
BpXq| on 1000 test points to come up with a
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density plot for such a difference, shown in Fig. 1. We also calculated 1000 absolute prediction errors
|Y ´ RFBpXq| that are incurred by RFB on test points, and 3000 OOB errors |Yi ´ RF

zi
BpXiq|, each

incurred by an OOB predictor RFzi
B on its OOB point pXi, Yiq. The computation can be done within

a few minutes on a laptop. The density plots of these two kinds of errors are also shown in Fig. 1.
This example shows that the RF stability can be present beyond the realm guaranteed by the light-tail
assumption. As mentioned above, this is because the bound (2) can be conservative when n is large.
We hope our results can inspire future study towards a more informative bound. Also, the similarity
between the prediction error and the OOB error in this heavy-tail case indicates that the RF-based PIs
analyzed below can find more applications in practice than justified by the current theory.

4 Random-forest prediction intervals

4.1 Comparison with related methods

With the stability property of the RF, it is possible to construct PIs with finite-sample guaranteed
coverage. Recent years have witnessed the development of distribution-free predictive inference
[1] with the full [33, 27], split [24, 31, 20], and jackknife+ [3, 32] conformal prediction methods
being three milestones. The full conformal method is computationally prohibitive when used in
practice. The split method greatly reduces the computational cost but fails to thoroughly extract the
available information of training data. The jackknife+ (J+) method maximizes the usage of data at a
computational cost in between those of full and split methods. In [18], jackknife+-after-bootstrap
(J+aB) was proposed for bagged algorithms to achieve the same goal as in J+, while the training
cost can be further reduced. However, the number of bags B is required to be a Binomial random
variable, which might seem unnatural. It turns out that by further imposing the assumption of
ensemble stability (which is essentially the concentration of resampling measure), J+aB can still have
guaranteed coverage with a fixed B. Ensemble stability is defined for bagged algorithms. It measures
how typical a bootstrap sample is, and is different from the algorithmic stability that quantifies the
influence of removing one training point. If algorithmic stability is also imposed, then not only J+aB,
but also jackknife can provide guaranteed coverage, which is otherwise impossible [29, 3].

Conceptually, the J+ approach and its variants under stability conditions are particularly relevant
to this work. As the stability we establish for the RF contains both ensemble and algorithmic
components, we will generally refer to the J+aB method with both ensemble and algorithmic stability
as J+aBS and the jackknife method with algorithmic stability as JS. Our method might be best
described as “jackknife-after-bootstrap-with-stability (JaBS)” tailored for the RF, which is different
from both JS and J+aBS. Our method requires the least effort of computing as only one output
predictor is needed, while all others require at least n output predictors.

There also exist RF-based PIs [17, 35] that are essentially of the jackknife-after-bootstrap (JaB) type
and almost identical to ours practically when ε is small and n equals the size of a typical dataset.
However, without stability, there is, in general, no guarantee for the coverage of such PIs, although the
asymptotic coverage 1 ´ α can be established based on strong assumptions [35]. We take advantage
of the stability of the RF algorithm to establish the lower bound of coverage in Theorem 9 below. An
upper bound is established in Theorem 10 with an additional mild assumption. We also propose a
weaker assumption for asymptotic coverage in Theorem 11.

We compare these relevant methods to ours in Table 1 and Table 2, where the RF is set as the working
algorithm for all methods and pε, νq is a general pair of stability parameters. We define qn,αtRiu,
q`
n,αtRiu, q´

n,αtRiu, and q1
n,αtRiu as follows. Given ta1, . . . , anu,

qn,αtaiu “ q`
n,αtaiu ” the rp1 ´ αqpn ` 1qs-th smallest value of ta1, . . . , anu,

q1
n,αtaiu ” the rp1 ´ αqns-th smallest value of ta1, . . . , anu,

q´
n,αtaiu ” the tαpn ` 1qu-th smallest value of ta1, . . . , anu,

where t¨u is the floor function. Let RLOO
i “ |Yi ´ RF´i

B pXiq| be the LOO error, where RF´i
B is

trained without the ith training point, and by definition RF´i
B ‰ RF

zi
B .

In Table 1, we list the corresponding PI constructed from each method and the output predictors
of each method. The number of output predictors directly reflects the computational cost. It is
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Table 1: Methods to construct prediction intervals using random forests: computational cost
Method Output predictors Prediction interval for future Y

J+ [3] RF´i
B , i P rns rq´

n,αtRF´i
B pXq ´ RLOO

i u, q`
n,αtRF´i

B pXq ` RLOO
i us

J+aB [18] RF
zi
B , i P rns rq´

n,αtRF
zi
BpXq ´ Riu, q

`
n,αtRF

zi
BpXq ` Rius

JS [3] RFB and RF´i
B , i P rns RFBpXq ˘ qn,αtRLOO

i ` εu

J+aBS [18] RF
zi
B , i P rns rq´

n,αtRF
zi
BpXq ´ Riu ´ ε, q`

n,αtRF
zi
BpXq ` Riu ` εs

JaB RFB RFBpXq ˘ qn,αtRiu [17]
RFBpXq ˘ q1

n,αtRiu [35]
Ours (JaBS) RFB RFBpXq ˘ qn,αtRi ` εu (Theorem 9)

RFBpXq ˘ qn,αtRi ´ εu (Theorem 10)
RFBpXq ˘ qn,αtRiu (Theorem 11)

Table 2: Methods to construct prediction intervals using random forests: theoretical coverage
Method Theoretical coverage Additional conditions

J+ [3] ě 1 ´ 2α None
J+aB [18] ě 1 ´ 2α Binomial B
JS [3] ě 1 ´ α ´ Op

?
νq Stability (algorithmic)

J+aBS [18] ě 1 ´ α ´ Op
?
νq Stability (ensemble + algorithmic)

JaB No guarantee [17] -
Ñ 1 ´ α [35] Strong (additive model, consistency of RF predictor)

Ours (JaBS) ě 1 ´ α ´ Op
?
νq Stability (Theorem 9)

ď 1 ´ α ` 1
n`1 ` Op

?
νq ` Distinct residuals (Theorem 10)

Ñ 1 ´ α ` Uniformly equicontinuous CDF of |Y ´ RFBpXq|

and vanishing ε, ν (Theorem 11)

worth noting that acquiring the LOO predictor RF´i
B needs substantial computation. In packages

like randomForest, aggregating tree predictors to obtain the OOB predictor RFzi
B also needs extra

computation. However, the predicted value RF
zi
BpXiq can be obtained immediately by calling the

predictpq function. The fact that the value of RFzi
BpXq on a test point is not needed further reduces

the computational cost of JaB and our method, which only need one output RF predictor, and are
more favorable computationally.

In Table 2, we list the coverage of the PI constructed from each method, as well as the additional
conditions (beyond iid data) needed to achieve the coverage. Note that J+ does not require any
additional conditions to achieve the coverage lower bound 1 ´ 2α, but J+aB requires that the number
of trees B be a Binomial random variable. For JS, J+aBS, and our method, stability is needed to
achieve the coverage lower bound 1 ´ α ´ Op

?
νq. With additional mild assumptions, the coverage

upper bound and asymptotic coverage of our method can be established. However, there is no
guarantee of coverage for JaB without strong assumptions.

In summary, our theoretical work provides a series of coverage guarantees to a computationally
feasible method for constructing PIs based on the RF algorithm. In the following, we will establish
the lower and upper bound of coverage, as well as the asymptotic coverage.

4.2 Non-asymptotic coverage guarantees

Theorem 9 (Coverage lower bound). Suppose the RF predictor RFB satisfies the stability condition
as in Theorem 8. Then we have for a test point pX,Y q that

PpY P RFBpXq ˘ qn,αtRi ` εn,Buq ě 1 ´ α ´ ν1 ´ 2
?
ν2 ´ 2

?
ν3. (11)

This result is established by starting from the analysis of an imaginary extended dataset D “

D Y tpX,Y qu, where the test point is assumed to be known. We denote pX,Y q as pXn`1, Yn`1q for

convenience. For all points in D, consider the derandomized RF predictor rrf
zi

that is built on n data
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points without the ith point in D, i P rn`1s. One can then define the OOB error rri ” |Yi´rrf
zi

|. Since
all data are iid, we have that Pprrn`1 ď qn,αtrriuq ě 1´α, where qn,αtrriu is the rp1´αqpn` 1qs-th

smallest value of trr1, . . . , rrnu. Next, notice rrn`1 “ |Yn`1 ´ rrf
zpn`1q

pXn`1q| “ |Yn`1 ´ rfpXn`1q|

by the definitions of rrf
zpn`1q

and rf. By concentration of measure, rfpXn`1q can be approximated by
RFBpXn`1q, and thus rrn`1 can be roughly replaced with |Yn`1 ´ RFBpXn`1q|, which is desired.
Then by stability of rf, trriu can be approximated by tri ” |Yi ´ rfzi

pXiq|u. Although triu is still
unavailable in practice, by applying the idea of concentration of measure again, triu can be further
approximated by tRiu, which is accessible given D. Eventually, we can bound |Yn`1 ´RFBpXn`1q|

in terms of tRiu. The approximations are accounted for by the stability parameters in Theorem 8.

If we further assume that there are no ties among trriu, i P rn`1s, a typical case when Y is continuous,
then we can also establish the upper bound of coverage.
Theorem 10 (Coverage upper bound). Suppose there are no ties in trriu, i P rn ` 1s, and the RF
predictor RFB satisfies the stability condition as in Theorem 8. Then

PpY P RFBpXq ˘ qn,αtRi ´ εn,Buq ď 1 ´ α `
1

n ` 1
` ν1 ` 2

?
ν2 ` 2

?
ν3. (12)

The upper bound can be established because if there are no ties among rr1, . . . , rrn`1, then Pprrn`1 ď

qn,αtrriuq ď 1 ´ α ` 1
n`1 . The apparent symmetry between the lower and upper bound originates

from the fact that they both are established by using the RF stability once and the concentration of
measure twice. Note that this idea can be applied to JS intervals for an arbitrary stable algorithm in
exactly the same way, providing a complement to the lower bound for JS intervals established in [3].

Corollary 3 (Coverage upper bound for jackknife-with-stability intervals). Let f̂ be a predictor
trained on n iid data points and f̂´i be the LOO predictor without the ith point. Suppose f̂ is
stable with Pp|f̂pXq ´ f̂´ipXq| ą εq ď ν, and the LOO errors are distinct on the extended

training set that includes an iid test point pX,Y q. Then we have P
´

|Y ´ f̂pXq| ď qn,αtri ´ εu

¯

ď

1 ´ α ` 1
n`1 ` 2

?
ν, where ri are the LOO errors on the original training set.

4.3 Asymptotic coverage guarantee

As shown above, the stability parameters pεn,B , νn,Bq can vanish when n Ñ 8. It is reasonable
to expect that PpY P RFBpXq ˘ qn,αtRiuq Ñ 1 ´ α in this limit, as is consistent with numerous
empirical observations [17, 35]. However, to achieve this goal, it seems that more assumptions are
unavoidable. In [35], the guaranteed coverage of the JaB method is established by assuming that
RFBpXq converges to some f0pXq in probability as n Ñ 8, where f0 is the true regression function
of an additive model that generates the data. We show that this can be done under weaker conditions.
Theorem 11 (Asymptotic coverage). Denote Fn as the CDF of |Y ´ RFBpXq|. Suppose tFnuněn0

is uniformly equicontinuous for some n0. Then PpY P RFBpXq ˘ qn,αtRiuq Ñ 1 ´ α as n Ñ 8

when conditions in Theorem 9, Theorem 10, and Corollary 2 are satisfied.

Remark 6. Intuitively, using errors from RF
zi
B that are trained on n ´ 1 points to approximate those

from RFB , trained on n points, we only need this approximation to be exact asymptotically. There
is no need for RFB itself to converge to anything. This is one major conceptual difference between
our work and [35], and it is in this sense that our assumption is weaker. Practically, this kind of PI is
recommended as it does not involve pεn,B , νn,Bq, and has great performance on numerous datasets.

5 Conclusion

In this work, for the first time, we theoretically establish the stability property of the greedy version
of random forests, which is implemented in popular packages. The theoretical guarantee is based on
a light-tail assumption of the marginal distribution of the squared response Y 2. However, numerical
evidence suggests that this stability could persist in much broader situations. Based on the stability
property and some mild conditions, we also establish finite-sample lower and upper bounds of
coverage, as well as the exact coverage asymptotically, for prediction intervals constructed from the
out-of-bag error of random forests, justifying random forests as an appealing method to provide both
point and interval prediction simultaneously.

10



Acknowledgments and Disclosure of Funding

Much of the work was completed while Yan Wang was a PhD student in the Department of Statistics
at Iowa State University. This research was supported in part by the US National Science Foundation
under grant HDR:TRIPODS 19-34884.

References
[1] Anastasios N Angelopoulos, Stephen Bates, et al. Conformal prediction: A gentle introduction.

Foundations and Trends® in Machine Learning, 16(4):494–591, 2023.

[2] Arthur Asuncion and David Newman. UCI Machine Learning Repository, 2007.

[3] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Predictive
inference with the jackknife+. The Annals of Statistics, 49(1):486–507, 2021.

[4] Dimitris Bertsimas, Jack Dunn, and Ivan Paskov. Stable classification. The Journal of Machine
Learning Research, 23(1):13401–13453, 2022.

[5] Gérard Biau. Analysis of a random forests model. The Journal of Machine Learning Research,
13(1):1063–1095, 2012.

[6] Gérard Biau, Luc Devroye, and Gäbor Lugosi. Consistency of random forests and other
averaging classifiers. The Journal of Machine Learning Research, 9(9):2015–2033, 2008.

[7] Gérard Biau and Erwan Scornet. A random forest guided tour. Test, 25:197–227, 2016.

[8] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.

[9] Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine
Learning Research, 2:499–526, 2002.

[10] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[11] Thomas F Brooks, D Stuart Pope, and Michael A Marcolini. Airfoil Self-Noise and Prediction.
National Aeronautics and Space Administration, Office of Management, 1989.

[12] Andrea Coraddu, Luca Oneto, Aessandro Ghio, Stefano Savio, Davide Anguita, and Massimo
Figari. Machine learning approaches for improving condition-based maintenance of naval
propulsion plants. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of
Engineering for the Maritime Environment, 230(1):136–153, 2016.

[13] José R Correa and Matías Romero. On the asymptotic behavior of the expectation of the
maximum of iid random variables. Operations Research Letters, 49(5):785–786, 2021.

[14] Misha Denil, David Matheson, and Nando De Freitas. Narrowing the gap: Random forests
in theory and in practice. In International Conference on Machine Learning, pages 665–673.
PMLR, 2014.

[15] Peter J Downey. Distribution-free bounds on the expectation of the maximum with scheduling
applications. Operations Research Letters, 9(3):189–201, 1990.

[16] Francesca Grisoni, Viviana Consonni, Marco Vighi, Sara Villa, and Roberto Todeschini. Inves-
tigating the mechanisms of bioconcentration through QSAR classification trees. Environment
International, 88:198–205, 2016.

[17] Ulf Johansson, Henrik Boström, Tuve Löfström, and Henrik Linusson. Regression conformal
prediction with random forests. Machine Learning, 97:155–176, 2014.

[18] Byol Kim, Chen Xu, and Rina Barber. Predictive inference is free with the jackknife+-after-
bootstrap. Advances in Neural Information Processing Systems, 33:4138–4149, 2020.

[19] Aryeh Kontorovich. Concentration in unbounded metric spaces and algorithmic stability. In
International Conference on Machine Learning, pages 28–36. PMLR, 2014.

11



[20] Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman.
Distribution-free predictive inference for regression. Journal of the American Statistical Associ-
ation, 113(523):1094–1111, 2018.

[21] Andy Liaw and Matthew Wiener. Classification and regression by randomForest. R News,
2(3):18–22, 2002.

[22] Yi Lin and Yongho Jeon. Random forests and adaptive nearest neighbors. Journal of the
American Statistical Association, 101(474):578–590, 2006.

[23] Andreas Maurer and Massimiliano Pontil. Concentration inequalities under sub-Gaussian and
sub-exponential conditions. Advances in Neural Information Processing Systems, 34:7588–7597,
2021.

[24] Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive
confidence machines for regression. In European Conference on Machine Learning, pages
345–356. Springer, 2002.

[25] Erwan Scornet. Random forests and kernel methods. IEEE Transactions on Information Theory,
62(3):1485–1500, 2016.

[26] Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. Consistency of random forests. The
Annals of Statistics, 43(4):1716–1741, 2015.

[27] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine
Learning Research, 9(3), 2008.

[28] Jake A Soloff, Rina Foygel Barber, and Rebecca Willett. Bagging provides assumption-free
stability. arXiv preprint arXiv:2301.12600, 2023.

[29] Lukas Steinberger and Hannes Leeb. Conditional predictive inference for stable algorithms.
The Annals of Statistics, 51(1):290–311, 2023.

[30] Cheng Tang, Damien Garreau, and Ulrike von Luxburg. When do random forests fail? Advances
in Neural Information Processing Systems, 31, 2018.

[31] Vladimir Vovk. Conditional validity of inductive conformal predictors. In Asian Conference on
Machine Learning, pages 475–490. PMLR, 2012.

[32] Vladimir Vovk. Cross-conformal predictors. Annals of Mathematics and Artificial Intelligence,
74(1):9–28, 2015.

[33] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic Learning in a Random
World. Springer Science & Business Media, 2005.

[34] I-C Yeh. Modeling of strength of high-performance concrete using artificial neural networks.
Cement and Concrete Research, 28(12):1797–1808, 1998.

[35] Haozhe Zhang, Joshua Zimmerman, Dan Nettleton, and Daniel J Nordman. Random forest
prediction intervals. The American Statistician, 74(4):392–406, 2020.

12



A Proof of Corollary 1

Let

η ”
p

1 ´ p
`

q

p1 ´ pq2
. (13)

Then δpD,Xq “ Z2
pnq

η{pε2nq. Also, by (3) and (4), η is upper bounded as

η “
1

1 ´ p
´ 1 `

`

1 ´ 1
n

˘2n
´

`

1 ´ 2
n

˘n

`

1 ´ 1
n

˘2n

“
1

`

1 ´ 1
n

˘n ´

`

1 ´ 2
n

˘n

`

1 ´ 1
n

˘2n “

`

1 ´ 1
n

˘n
´

`

1 ´ 2
n

˘n

`

1 ´ 1
n

˘2n

ď

1
e ´ 0

1{16
(since n ě 2 and p1 ´ 1{nqn is monotonically increasing in n)

“
16

e
ă 6.

As a result, for all n ě 2, we have η{n ă 3.

Then, note that for a non-negative random variable W , it holds that ErW s “
ş8

0
PpW ą tqdt. By (2)

and (6), we have

E
”
ˇ

ˇ

ˇ
rfpXq ´ rfzi

pXq

ˇ

ˇ

ˇ

ı

“ ED,X

„
ż 8

0

Pξ,r|D,X

´
ˇ

ˇ

ˇ
rfpXq ´ rfzi

pXq

ˇ

ˇ

ˇ
ą ε

ˇ

ˇ

ˇ
D,X

¯

dε

ȷ

“ ED,X

«

ż 2Zpnq

0

Pξ,r|D,X

´
ˇ

ˇ

ˇ
rfpXq ´ rfzi

pXq

ˇ

ˇ

ˇ
ą ε

ˇ

ˇ

ˇ
D,X

¯

dε

ff

ď ED,X

«

ż 2Zpnq

0

mintδpD,Xq, 1udε

ff

“ ED,X

»

–

ż

b

Z2
pnq

η{n

0

1dε `

ż 2Zpnq

b

Z2
pnq

η{n

Z2
pnq

η

ε2n
dε

fi

fl

(note 2Zpnq ą

b

Z2
pnq

η{n for n ě 2)

ă E
”

2
b

Z2
pnq

η{n
ı

ď 2
b

ErZ2
pnq

sη{n (by Jensen’s inequality),

which completes the first part of the corollary. For the second part, we need the following lemma,
which is established in [15, 13].

Lemma 2. For iid random variables Wi, i P rns, if Er|Wi|s ă 8, then limnÑ8 ErWpnqs{n “ 0.

By this lemma, ErY 2s ă 8 implies ErZ2
pnq

s{n Ñ 0 as n Ñ 8. Since η is bounded, it is clear

that |rfpXq ´ rfzi
pXq| converges to 0 in mean, which further implies convergence in probability,

completing the proof.

Remark 7. We can actually have a slightly tighter bound in (6), and thus in Theorem 6 and
Corollary 1. A closer look at the method in [28] indicates that the key point is to bound the
conditional variance of TREE, Eξ,r|D,X rprf ´ TREEq2s. Note that rf “ p ˆ Eξ,r|D,X rTREE|i P

rs ` p1 ´ pq ˆ Eξ,r|D,X rTREE|i R rs ” p ˆ rfi ` p1 ´ pq ˆ rfzi, but |rfi ´ rfzi
| is also bounded by

2Zpnq, and we have |rfpXq ´ rfzi
pXq| ď 2p ˆ Zpnq. By (3), p converges to a constant as n Ñ 8.

Hence this tighter bound does not provide any qualitative difference as n increases, and we ignore
this minor improvement in this work.
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B Proof of Theorem 7 and discussion

By the triangle inequality and the union bound, we have for some t ą 0 that

1

n

n
ÿ

i“1

Pξ,r|D,X

´
ˇ

ˇ

ˇ
RFBpXq ´ RF

zi
BpXq

ˇ

ˇ

ˇ
ą ε ` 2t

ˇ

ˇ

ˇ
D,X

¯

ď
1

n

n
ÿ

i“1

Pξ,r|D,X p|RFBpXq ´ rfpXq| ą t|D,Xq

`
1

n

n
ÿ

i“1

Pξ,r|D,X

´
ˇ

ˇ

ˇ
rfpXq ´ rfzi

pXq

ˇ

ˇ

ˇ
ą ε

ˇ

ˇ

ˇ
D,X

¯

`
1

n

n
ÿ

i“1

Pξ,r|D,X

´
ˇ

ˇ

ˇ
rfzi

pXq ´ RF
zi
BpXq

ˇ

ˇ

ˇ
ą t

ˇ

ˇ

ˇ
D,X

¯

” T1 ` T2 ` T3. (14)

In T2, rf and rfzi are derandomized predictors, and by (6), we have

T2 ď δ.

Of course, this result is nontrivial when δ P p0, 1q. Note that rf is the RF with an infinite number of
trees, where each tree is characterized by a pair of independent random variables pξ, rq, while RFB

consists of a finite number of B trees. Since the value of RFBpXq is bounded in
“

´Zpnq, Zpnq

‰

, T1

can be bounded by Hoeffding’s inequality as

T1 ď 2 exp

˜

´
Bt2

2Z2
pnq

¸

.

The analysis of the first two terms T1 and T2 is similar to that in [28], but the bound for T3 to be
developed is specific to the RF predictor, and is nontrivially different from the case in [28] where the
number of bags for each LOO predictor is fixed to B. In our setting, RFzi

BpXq P r´Zpnq, Zpnqs is the
aggregation of Bi trees where the ith training point is not included. Hence by Hoeffding’s inequality
and (5), we have

T3 ď
1

n

n
ÿ

i“1

EBi|D,X

«

2 exp

˜

´
Bit

2

2Z2
pnq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

D,X

ff

“ 2
´

p ` p1 ´ pqe´t2{p2Z2
pnqq

¯B

.

Now, we choose t such that p0, 1q Q δ “ exp
´

´Bt2{p2Z2
pnq

q

¯

, which then yields t “
b

2Z2
pnq

B ln
`

1
δ

˘

, and thus

T3 ď 2
´

p ` p1 ´ pqδ
1
B

¯B

” gpp, δ, Bq. (15)

Combining these results together completes the proof.

Discussion. Note that gpp, δ, Bq is monotonically decreasing in B, because

B lnrgpp, δ, Bq{2s

BB
“ ln

´

p ` p1 ´ pqδ1{B
¯

´
Bp1 ´ pqδ1{B

p ` p1 ´ pqδ1{B

ln δ

B2

ď p ln 1 ` p1 ´ pq ln δ1{B ´
p1 ´ pqδ1{B

p ` p1 ´ pqδ1{B

ln δ

B
(by Jensen’s inequality)

“ p1 ´ pq

„

1 ´
δ1{B

p ` p1 ´ pqδ1{B

ȷ

ln δ

B

“
1 ´ p

B

pp1 ´ δ1{Bq

p ` p1 ´ pqδ1{B
ln δ

ă 0 (as 0 ă δ ă 1).
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Moreover, since g ě 0 and monotonically decreasing in B, it has a limit when p and δ are fixed and
B Ñ 8:

lim
BÑ8

lnrgpp, δ, Bq{2s “ lim
BÑ8

B ln
”

p ` p1 ´ pqδ1{B
ı

“ lim
BÑ8

B ln
”

p ` p1 ´ pqeln δ{B
ı

“ lim
BÑ8

B ln

„

p ` p1 ´ pq

ˆ

1 `
ln δ

B

˙

` o

ˆ

ln δ

B

˙ȷ

“ lim
BÑ8

B ln

„

1 `
ln δ1´p

B
` o

ˆ

ln δ

B

˙ȷ

“ lim
BÑ8

ln

«

ˆ

1 `
ln δ1´p

B
` o

ˆ

ln δ

B

˙˙B
ff

“ ln δ1´p. (16)

Hence we have that limBÑ8 gpp, δ, Bq “ 2δ1´p. This result implies that if B is allowed to increase
in a way that is independent of n, then under the conditions of Theorem 7, we have

lim
BÑ8

1

n

n
ÿ

i“1

Pξ,r|D,X

¨

˝

ˇ

ˇ

ˇ
RFBpXq ´ RF

zi
BpXq

ˇ

ˇ

ˇ
ą ε ` 2

d

2Z2
pnq

B
ln

ˆ

1

δ

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D,X

˛

‚ď 5δ1´p.

We will come back to this analysis in the proof of Corollary 2 below where B grows with n, but it
still holds that ln δpnq “ opBpnqq.

C Proofs of Theorem 8, Lemma 1, and Corollary 2; and discussion

C.1 Proof of Theorem 8

Similar to the proof for conditional stability, we have for some ε2 ” ε, ε1 “ ε3 ” t ą 0 that

PD,X,ξ,r

´
ˇ

ˇ

ˇ
RFBpXq ´ RF

zi
BpXq

ˇ

ˇ

ˇ
ą ε ` 2t

¯

ď PD,X,ξ,r p|RFBpXq ´ rfpXq| ą tq

` PD,X

´
ˇ

ˇ

ˇ
rfpXq ´ rfzi

pXq

ˇ

ˇ

ˇ
ą ε

¯

` PD,X,ξ,r

´
ˇ

ˇ

ˇ
rfzi

pXq ´ RF
zi
BpXq

ˇ

ˇ

ˇ
ą t

¯

” T 1
1 ` T 1

2 ` T 1
3.

We first consider the T 1
2 term, which can be bounded when the stability condition (7) for rf is applied.

Thus

T 1
2 ď ν ” ν2{λ. (17)

Then, taking expectation with respect to data distribution for T1 and T3 in (14) yields

T 1
1 ď E

«

2 exp

˜

´
Bt2

2Z2
pnq

¸ff

,

and

T 1
3 ď E

„

2
´

p ` p1 ´ pqe´t2{p2Z2
pnqq

¯B
ȷ

.

In order to obtain more informative bounds than the above ones, we introduce the following lemma.
Lemma 3. Let W be a random variable with finite mean, and suppose that h is a generic monotoni-
cally increasing function of W and is bounded in r0, 1s. Then we have for some λ ą 1 that

ErhpW qs ď hpλErW sq ` PpW ą λErW sq.
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Proof. This can be established by noting that

ErhpW qs “ ErhpW qItW ď λErW sus ` ErhpW qItW ą λErW sus

ď hpλErW sq ` PpW ą λErW sq.

The first term on the right-hand side results from h being monotonically increasing, and the second
term from h being upper bounded by 1.

Applying this lemma to the upper bounds of T 1
1 and T 1

3 above yields

T 1
1 ď 2 exp

˜

´
Bt2

2λErZ2
pnq

s

¸

` 2P
´

Z2
pnq ą λErZ2

pnqs

¯

” ν1,

and

T 1
3 ď 2

´

p ` p1 ´ pqe´t2{p2λErZ2
pnqsq

¯B

` 2P
´

Z2
pnq ą λErZ2

pnqs

¯

” ν3.

Now we choose t such that ν2 “ exp
´

´Bt2{p2λErZ2
pnq

sq

¯

to complete the proof of Theorem 8.

Remark 8. Unlike the conditional stability case, an additional tail probability term is introduced
in the upper bounds for both T 1

1 and T 1
3. This is because when Z2

pnq
is unbounded and no detailed

information of the data-generating distribution is provided, there seems no universal way to control
terms like Erexpp´1{Z2

pnq
qs. We tackle this problem by introducing the tail probability. As shown

below, it is not difficult to control this term for typical data distributions.

C.2 Proof of Lemma 1

Suppose Z2
1 is sub-gamma on the right tail with parameters pσ2, cq, then it is known that ErZ2

pnq
s

is at most on the order of Oplnnq by the maximal inequality for sub-gamma random variables [8].
More precisely, we have

ErZ2
pnqs ď

?
2σ2 lnn ` c lnn.

When c “ 0, this reduces to the maximal inequality for sub-Gaussian random variables. When c ą 0,
the leading term of the bound is Oplnnq, meaning that the tail probability decays in an exponential,
rather than Gaussian, way. The parameter c also sets an upper bound quantitatively, and for large n,
we must have ErZ2

pnq
s „ a lnn with a ď c.

Since data are iid, the tail probability for the order statistic Z2
pnq

can be rewritten as

P
´

Z2
pnq ą λErZ2

pnqs

¯

“ 1 ´

”

1 ´ P
´

Z2
1 ą λErZ2

pnqs

¯ın

ď nP
´

Z2
1 ą λErZ2

pnqs

¯

.

Moreover, we have the concentration inequality that for every t ą 0 [8],

P
´

Z2
1 ą

?
2σ2t ` ct ` ErZ2

1 s

¯

ď e´t.

Setting λErZ2
pnq

s “
?
2σ2t ` ct ` ErZ2

1 s, and noticing t “ λa
c lnn ` oplnnq for large n, we obtain

for λ ą c
a that

lim
nÑ8

P
´

Z2
pnq ą λE

“

Z2
n

‰

¯

ď lim
nÑ8

ne´ λa
c lnn “ lim

nÑ8

ˆ

1

n

˙
λa
c ´1

“ 0,

completing the proof.

C.3 Proof of Corollary 2

Consider each pair of pεi, νi) defined above. First, the pε2, ν2{λq pair satisfies the stability condition
(7) of the derandomized RF. Hence for pε2, ν2q to converge to 0, we require

ε2pnq Ñ 0 as n Ñ 8,
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and

ν2pnq “
λErZ2

pnq
sηpnq

nε22pnq
Ñ 0 as n Ñ 8,

where ηpnq is defined in (13). It is clear that ε2pnq “ op1q is required. Since ηpnq converges to a
positive constant, and ErZ2

pnq
s „ a lnn with a ď c by the sub-gamma assumption 2, we thus have

ν2pnq “ Θ

ˆ

lnn

nε22pnq

˙

.

So if ν2pnq Ñ 0 as n Ñ 8, we must also have

ε2pnq “ ω

˜

c

lnn

n

¸

.

Second, consider the pε1, ν1q pair. In ν1, the additional tail probability term converges to 0 by the
sub-gamma assumption, as proved in Lemma 1, so ν1 converges to 0. For ε1, by definition,

ε1 “

d

2λErZ2
pnq

s

B
ln

ˆ

1

ν2

˙

“ O

˜

d

lnn

B
ln

ˆ

nε22
lnn

˙

¸

.

Since ε2 satisfies both ε2 “ op1q and ε2 “ ωp
a

lnn{nq, letting B “ Ωpln2 nq suffices for ε1 to
converge to 0.

Last, consider the pε3, ν3q pair. Since ε3 “ ε1, hence ε3 converges to 0. In ν3, the tail probability

term is proved to converge to 0 above, and it remains to show pp ` p1 ´ pqν
1
B
2 qB converges to 0. In

(16), we have seen in the conditional stability case that gpp, δ, Bq Ñ 2δ1´p as B Ñ 8, as long as
ln δ “ opBq. Similarly, when Bpnq “ Ωpln2 nq, then ln ν2 “ opBq, and we have

lim
nÑ8

Bpnq ln
´

ppnq ` p1 ´ ppnqqν2pnq
1

Bpnq

¯

“ lim
nÑ8

Bpnq ln

ˆ

ppnq ` p1 ´ ppnqq exp

ˆ

ln ν2pnq

Bpnq

˙˙

“ lim
nÑ8

Bpnq ln

ˆ

ppnq ` p1 ´ ppnqq

ˆ

1 `
ln ν2pnq

Bpnq

˙˙

“ lim
nÑ8

Bpnq ln

ˆ

1 `
p1 ´ ppnqq ln ν2pnq

Bpnq

˙

“ lim
nÑ8

Bpnq ln

ˆ

1 `
p1{e ` Op1{nqq ln ν2pnq

Bpnq

˙

“ lim
nÑ8

Bpnq ln

˜

1 `
ln ν

1{e
2 pnq

Bpnq

¸

“ lim
nÑ8

ln

»

–

˜

1 `
ln ν

1{e
2 pnq

Bpnq

¸Bpnq
fi

fl ,

which indicates

lim
nÑ8

pppnq ` p1 ´ ppnqqν2pnq
1

Bpnq qBpnq “ lim
nÑ8

˜

1 `
ln ν

1{e
2 pnq

Bpnq

¸Bpnq

“ lim
nÑ8

ν
1{e
2 pnq “ 0,

and the proof is completed.

2Strictly speaking, it is possible for a sub-gamma random variable to have the scaling of ErZ2
pnqs in between

?
lnn and lnn, but the point is that the heavier the tail (i.e., the faster growth of ErZ2

pnqs), the more difficult to
achieve stability in theory. So we focus on the most heavy-tail case that ErZ2

pnqs scales as lnn.
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C.4 Discussion: beyond the sub-gamma assumption

There is some subtlety in choosing the dependence of ε2, B, and λ on n. We consider the case that λ
is a fixed number above. However, if we make λ also depend on n, then the assumption that Y 2 is
sub-gamma can be removed. To see this, consider limnÑ8 λpnq “ 8. Then by Markov’s inequality,

lim
nÑ8

PpZ2
pnq ą λpnqErZ2

pnqsq ď lim
nÑ8

1

λpnq
“ 0.

So in this case, ErZ2
pnq

s can have a faster growth rate in n and the sub-gamma assumption of Y 2 is
not needed to control the tail probability. Consider ErZ2

pnq
s “ ωplnnq, so that Y 2 has a heavier tail

than sub-gamma. Requiring ν2pnq to converge to 0 then results in

ε2pnq “ ω
´b

λpnqErZ2
pnq

s{n
¯

,

but ε2pnq also has to converge to 0, i.e., ε2pnq “ op1q. This introduces another constraint on ErZ2
pnq

s

that ErZ2
pnq

s “ opn{λpnqq. A straightforward analysis shows that

Bpnq “ ΩpλpnqErZ2
pnqs lnp1{ν2pnqqq

suffices to guarantee the convergence of ε1, ε3, and ν3.

Summing up, we find that by allowing limnÑ8 λpnq “ 8, one can generalize the results in Corollary
2 to the case that Y 2 follows a distribution beyond sub-gamma. The scaling of ErZ2

pnq
s is an indicator

of the tail behavior of the underlying distribution of Y 2, and ErZ2
pnq

s that satisfies both

ErZ2
pnqs “ ωplnnq and ErZ2

pnqs “ opn{λpnqq

represents a wide class of distributions with tails heavier than sub-gamma for proper dependence of
λpnq on n.

Example 2. Consider some random variable Y 2 with ErZ2
pnq

s “ Θpn1{4q, and pick λpnq “ Θpn1{4q,

ε2 “ Θpn´1{6q, and B “ Ωpn lnnq. Then consequently

ν2 “
λErZ2

pnq
sη

nε22
“ Θpn´1{6q,

ε1 “ ε3 “

d

2λErZ2
pnq

s

B
ln

ˆ

1

ν2

˙

“ Opn´1{4q,

ν1 “ 2ν2 ` 2PpZ2
pnq ą λErZ2

pnqsq “ Θpn´1{6q ` Opn´1{4q “ Θpn´1{6q,

ν3 “ 2pp ` p1 ´ pqν
1
B
2 qB ` 2PpZ2

pnq ą λErZ2
pnqsq “ Θpn´1{p6eqq ` Opn´1{4q “ Θpn´1{p6eqq.

Hence εn,B and νn,B converge to 0 for a heavy-tailed Y 2 beyond sub-gamma.

In Table 3, we summarize the limiting stability parameters that can be achieved based on our theory,
with properly chosen ε2, B, and λ. This result shows the wide applicability of the RF stability.
Sub-Gaussian is a subset of sub-gamma random variables with c “ 0, and the analysis is similar. For
bounded Y 2, there is even no need to introduce the tail probability term because |Y | ď M implies
Z2

pnq
ď M2, and T 1

1 and T 1
3 are naturally bounded as

T 1
1 ď 2 exp

ˆ

´
Bt2

2M2

˙

,

and

T 1
3 ď 2

´

p ` p1 ´ pqe´t2{p2M2
q
¯B

,

respectively. Both of the upper bounds are deterministic, and the analysis is greatly simplified. All
we need to do is replace λErZ2

pnq
s with M2 and drop the tail probability term in Theorem 8.
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Table 3: Summary of random forest stability conditions

Scaling of ErZ2
pnq

s Value of λ Stability parameters

Op1q (bounded Y 2) Unnecessary εn,B Ñ 0, νn,B Ñ 0
Op

?
lnnq (sub-Gaussian Y 2) Constant εn,B Ñ 0, νn,B Ñ 0

Oplnnq (sub-gamma Y 2) Constant εn,B Ñ 0, νn,B Ñ 0
Between ωplnnq and opn{λpnqq λ Ñ 8 εn,B Ñ 0, νn,B Ñ 0

Corollary 4. Assume training points in set D and the test point pX,Y q are iid, and |Y | ď M . For
the RF predictor RFB consisting of B trees and trained on D, we have

PD,X,ξ,r

´
ˇ

ˇ

ˇ
RFBpXq ´ RF

zi
BpXq

ˇ

ˇ

ˇ
ą εn,B

¯

ď νn,B , (18)

where εn,B “
ř3

i“1 εi, and νn,B “
ř3

i“1 νi. The pair of pε2, ν2q satisfies the derandomized RF
stability condition

PD,X

´
ˇ

ˇ

ˇ
rfpXq ´ rfzi

pXq

ˇ

ˇ

ˇ
ą ε2

¯

ď
M2

ε2n

ˆ

p

1 ´ p
`

q

p1 ´ pq2

˙

“ ν2,

where ε1 “ ε3 “

b

2M2 lnp 1
ν2

q{B, ν1 “ 2ν2, and ν3 “ gpp, ν2, Bq.

Based on our theory, for a random variable Y 2 with ErZ2
pnq

s “ Opnq, there is no hope to get both
νn,B and εn,B to converge to 0. But as we show in Fig. 1, there are hints that the RF stability
persists beyond our theory. This is because (2) is used to provide the worst-case deviation bound
between rf and rfzi. If a more informative bound can be found to replace (2), and the dependence of
such a bound on n is opErZ2

pnq
sq, then it is possible to find vanishing stability parameters even for

strongly heavy-tailed random variables theoretically. Such an improved bound may also help boost
the convergence rates of εn,B and νn,B . It might be a future research direction to look for a better
bound.

C.5 More examples of RF stability

We consider the RF stability on four real datasets, publicly available at UCI Machine Learning
Repository [2]. We name them as Concrete [34], Airfoil [11], Bioconcentration [16], and
Naval [12]. For each dataset, we investigate three aspects:

Marginal distribution of Y . As shown in Fig. 2 (left column), all the density plots of Y seem to
have a light tail. In fact, the response in many real datasets is bounded or narrowly distributed within
a given interval, which has to do with the physical constraints. For example, the strength of some
material is determined by the underlying chemical bond strength, and cannot be arbitrarily large.

Difference between the RF predictor and OOB predictors. To this end, we randomly split every
dataset into two parts with equal size n. One is for training and the other for testing. Based on n

training points, we have an RF predictor RFB , as well as n OOB predictors RFzi
B . We fix B “ 1000

in all cases. For each of these predictors, we compute its error on n test points, and in Fig. 2
(middle column) we plot the density of the absolute difference |RFBpXq ´ RF

zi
BpXq| for all n OOB

predictors. Also, we calculate the 0.95 quantile of each empirical distribution of the difference, say,
ε̂0.95,i, i P rns. We let ε̂n,B “ maxi ε̂0.95,i as an estimate of εn,B given νn,B “ 0.05.

Comparison between prediction error and OOB error. For the RF predictor, we calculate its
prediction error on n test points to come up with a density plot of such prediction errors. For each
OOB predictor, we calculate its corresponding OOB error, and we have a density plot based on n
such OOB errors. In Fig. 2 (right column), we plot both of prediction and OOB error. The similarity
between them, especially on the right tail, provides much credence to the idea of constructing PIs
using the OOB error.

We train the RFs using default parameters except that the number of trees is fixed to be B “ 1000 in
all cases. The training can be done within a few minutes on a laptop.
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Figure 2: Left column: Density plots of Y . Middle column: Density plots of |RFBpXq ´ RF
zi
BpXq|.

Right column: Density plots of |Y ´ RFBpXq| and |Yi ´ RF
zi
BpXiq|. Row 1: Concrete dataset.

Numerically, we find ε̂n,B « 0.62, ν̂n,B “ 0.05 for n “ 515. Row 2: Airfoil dataset with ε̂n,B «

0.25, ν̂n,B “ 0.05 for n “ 751. Row 3: Bioconcentration dataset with ε̂n,B “ 0.05, ν̂n,B « 0.05
for n “ 389. Row 4: Naval dataset with ε̂n,B « 0.00016, ν̂n,B “ 0.05 for n “ 5967.
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D Proof of Theorem 9

Recall that each of εn,B and νn,B can be written as the sum of three terms:

εn,B “ ε1 ` ε2 ` ε3, νn,B “ ν1 ` ν2 ` ν3,

and we have established in the proof of Theorem 8 that

P p|rfpXq ´ RFBpXq| ą ε1q ď ν1,

P
´

|rfpXq ´ rfzi
pXq| ą ε2

¯

ď ν2,

P
´

|RF
zi
BpXq ´ rfzi

pXq| ą ε3

¯

ď ν3.

Now assume the test point pX,Y q ” pXn`1, Yn`1q is accessible to us, and define n`1 derandomized
RF predictors as follows:

rrf
zi

” rrf
zi

ppX1, Y1q, . . . , pXi´1, Yi´1q, pXi`1, Yi`1q, . . . , pXn`1, Yn`1qq,

meaning that rrf
zi

is trained on n pairs of data points without pXi, Yiq. Furthermore, define for
i P rn ` 1s that

rri “ |Yi ´ rrf
zi

pXiq|.

Lemma 4. For α P p1{pn ` 1q, 1q, let rri, i P rn ` 1s be defined above. Then

P prrn`1 ď qn,αtrriuq ě 1 ´ α,

where qn,αtrriu denotes the rp1 ´ αqpn ` 1qs-th smallest value of trr1, . . . , rrnu. If we further assume
there are no ties among rri, then we also have

P prrn`1 ď qn,αtrriuq ď 1 ´ α `
1

n ` 1
.

Proof. This proof is provided for completeness. For the first part, note that all rri are exchangeable.
Hence the rank of each rri is uniformly distributed on rn ` 1s, and

P prrn`1 ą qn,αtrriuq ď
n ` 1 ´ rp1 ´ αqpn ` 1qs

n ` 1

“
tαpn ` 1qu

n ` 1
pnote n ` 1 “ rpn ` 1qp1 ´ αqs ` tpn ` 1qαuq

ď
αpn ` 1q

n ` 1
“ α.

For the second part, if there are no ties among all trriu, then we have

Pprrn`1 ă rrp1qq “ P
`

rrn`1 is the smallest among trriu
n`1
i“1

˘

“
1

n ` 1
,

and for each i P rn ´ 1s, we have

P
`

rrpiq ă rrn`1 ă rrpi`1q

˘

“ P
`

rrn`1 is the pi ` 1q-th smallest among trriu
n`1
i“1

˘

“
1

n ` 1
.

As a result,

P prrn`1 ď qn,αtrriuq “ P
`

rrn`1 ď rrprp1´αqpn`1qsq

˘

“ P
`

rrn`1 ă rrprp1´αqpn`1qsq

˘

“ P
`

rrn`1 ă rrp1q

˘

`

rp1´αqpn`1qs´1
ÿ

i“1

P
`

rrpiq ă rrn`1 ă rrpi`1q

˘

“
rp1 ´ αqpn ` 1qs

n ` 1
.
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By the definition of the ceiling function, we have
p1 ´ αqpn ` 1q ď rp1 ´ αqpn ` 1qs ď p1 ´ αqpn ` 1q ` 1.

Therefore, we conclude that if there are no ties between trriu, then

1 ´ α ď P prrn`1 ď qn,αtrriuq ď 1 ´ α `
1

n ` 1
,

which completes the proof.

By the first part of the above lemma and the definition of rrn`1, we know that

P
ˆ

|Yn`1 ´ rrf
zpn`1q

pXn`1q| ď qn,αtrriu

˙

ě 1 ´ α.

But rrf
zpn`1q

is just rf, so we have
P p|Yn`1 ´ rfpXn`1q| ď qn,αtrriuq ě 1 ´ α.

Of course, rri are unknown, and we eventually will need to replace them with Ri, but before that, we
use ri instead. Before proceeding, a useful lemma that connects trriu, triu, and tRiu is given below.
Lemma 5. Suppose there are n pairs of real numbers pai, biq, i P t1, . . . , nu. Let ap1q ď . . . ď apnq

and bp1q ď . . . ď bpnq. For any ε P R, if bpkq ą apjq ` ε for some j and k, then there are at
least j ´ k ` 1 pairs of pai, biq such that bi ą ai ` ε. In particular, if k “ rpn ` 1qp1 ´ αqs and
j “ rpn ` 1qp1 ´ α1qs with α1 “ α ´ δα and δα ě 0, then j ´ k ` 1 ě pn ` 1qδα.
Remark 9. It might be more convenient to state the lemma as that if qn,αtbiu ą qn,α1 taiu ` ε with
α1 “ α ´ δα, then there are at least pn ` 1qδα pairs of pai, biq such that bi ą ai ` ε.

Proof. This result was directly obtained in [3] “by definition of quantiles,” while a more complete
proof might be helpful. Without loss of generality, we take ε “ 0. (Otherwise, we consider ta1

i, biu
instead, where a1

i “ ai ` ε.) We first define three sets as follows.
SA ” ti : ai ď apjqu,

SB ” ti : bi ě bpkqu,

SC ” ti : ai ă biu.

It is obvious that for any i P SA X SB , we have ai ď apjq ă bpkq ď bi. Hence i P SC . That is,
SA X SB Ď SC .

As a consequence, |SA X SB | ď |SC |, where | ¨ | denotes the cardinality of a set. Then, note that
SA “ pSA X SBq Y pSA X Sc

Bq,

where Sc
B is the complement of SB , and

|SA| “ |SA X SB | ` |SA X Sc
B |.

Therefore, we have
|SC | ě |SA X SB | “ |SA| ´ |SA X Sc

B | ě |SA| ´ |Sc
B | “ j ´ pk ´ 1q “ j ´ k ` 1.

Now consider j “ rpn ` 1qp1 ´ α1qs and k “ rpn ` 1qp1 ´ αqs with α1 “ α ´ δα. Note for any
β P p0, 1q that n ` 1 “ rpn ` 1qp1 ´ βqs ` tpn ` 1qβu. Then we have

j ´ k ` 1 “ rpn ` 1qp1 ´ α1qs ´ rpn ` 1qp1 ´ αqs ` 1

“ tpn ` 1qαu ´ tpn ` 1qα1u ` 1

“ tpn ` 1qpα1 ` δαqu ´ tpn ` 1qα1u ` 1

ě tpn ` 1qα1u ` tpn ` 1qδαu ´ tpn ` 1qα1u ` 1

“ tpn ` 1qδαu ` 1

ě pn ` 1qδα,

completing the proof.

We are now ready to prove Theorem 9. Basically, we use the stability property once and the
concentration of measure twice to establish probabilistic deviation bounds for |rfpXq ´ rfzi

pXq|,
|rfpXq ´ RFBpXq|, and |rfzi

pXq ´ RF
zi
BpXq|, respectively.
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D.1 Using the stability property to control |rfpXq ´ rfzi
pXq|

Following the same idea as in [3], we consider the event

Al “ “qn,αtrriu ą qn,α2triu ` ε2”,

where α2 “ α ´
?
ν2. We then have that

1 ´ α ď P p|Yn`1 ´ rfpXn`1q| ď qn,αtrriu and Alq ` P p|Yn`1 ´ rfpXn`1q| ď qn,αtrriu and Ac
l q

ď PpAlq ` P prrn`1 ď qn,α2
triu ` ε2q ,

where Ac
l is the complement of Al. Now, we calculate PpAlq. By Lemma 5, event Al implies that

there are at least pn ` 1q
?
ν2 pairs of prri, riq such that rri ą ri ` ε2, and thus

PpAlq ď P

˜

n
ÿ

i“1

Itrri ą ri ` ε2u ě pn ` 1q
?
ν2

¸

ď
E r

řn
i“1 Itrri ą ri ` ε2us

pn ` 1q
?
ν2

(by Markov’s inequality)

“
nE rItrri ą ri ` ε2us

pn ` 1q
?
ν2

(by iid data)

“
nP prri ą ri ` ε2q

pn ` 1q
?
ν2

“

nP
ˆ

|Yi ´ rrf
zi

pXiq| ą |Yi ´ rfzi
pXiq| ` ε2

˙

pn ` 1q
?
ν2

“

nP
ˆ

|Yi ´ rrf
zi

pXiq| ą |Yi ´ rrf
zpn`1,iq

pXiq| ` ε2

˙

pn ` 1q
?
ν2

(by definitions of rrf
zi
, rf, rfzi)

“

nP
ˆ

|Yn`1 ´ rrf
zpn`1q

pXn`1q| ą |Yn`1 ´ rrf
zpi,n`1q

pXn`1q| ` ε2

˙

pn ` 1q
?
ν2

(by iid data)

“

nP
´

|Yn`1 ´ rfpXn`1q| ą |Yn`1 ´ rfzi
pXn`1q| ` ε2

¯

pn ` 1q
?
ν2

(by definitions of rrf
zi
, rf, rfzi)

ď
nP

´

|Yn`1 ´ rfpXn`1q ´ Yn`1 ` rfzi
pXn`1q| ą ε2

¯

pn ` 1q
?
ν2

(because |a| ´ |b| ď |a ´ b|)

“

nP
´

|rfpXn`1q ´ rfzi
pXn`1q| ą ε2

¯

pn ` 1q
?
ν2

ď
nν2

pn ` 1q
?
ν2

(by stability of rf)

ď
?
ν2.

As a consequence, we have

P p|Yn`1 ´ rfpXn`1q| ď qn,α2
triu ` ε2q ě 1 ´ α ´ PpAlq ě 1 ´ α ´

?
ν2 “ 1 ´ α2 ´ 2

?
ν2.

That is to say, we have a reduced lower bound of coverage using an ε2-inflated interval constructed
from triu. However, triu is unknown, and we want to further approximate ri by Ri.

D.2 Using the concentration of measure to control |rfzi
pXq ´ RF

zi
BpXq|

To this end, we similarly define another event:

A1
l “ “qn,α2

triu ą qn,α3
tRiu ` ε3”,
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where α3 “ α2 ´
?
ν3, and we have

1´α2 ´ 2
?
ν2

ď P
`

|Yn`1 ´ rfpXn`1q| ď qn,α2
triu ` ε2 and A1

l

˘

` P
´

|Yn`1 ´ rfpXn`1q| ď qn,α2
triu ` ε2 and A

1c
l

¯

ď PpA1
lq ` P p|Yn`1 ´ rfpXn`1q| ď qn,α3

tRiu ` ε2 ` ε3q ,

where A
1c
l is the complement of A1

l. Applying Lemma 5 again yields

PpA1
lq ď P

˜

n
ÿ

i“1

Itri ą Ri ` ε3u ě pn ` 1q
?
ν3

¸

ď
E r

řn
i“1 Itri ą Ri ` ε3us

pn ` 1q
?
ν3

(by Markov’s inequality)

ď
nP pri ą Ri ` ε3q

pn ` 1q
?
ν3

(by iid data)

“

nP
´

|Yi ´ rfzi
pXiq| ą |Yi ´ RF

zi
BpXiq| ` ε3

¯

pn ` 1q
?
ν3

ď

nP
´

|Yi ´ rfzi
pXiq ´ Yi ` RF

zi
BpXiq| ą ε3

¯

pn ` 1q
?
ν3

(because |a| ´ |b| ď |a ´ b|)

“
nP

´

|rfzi
pXiq ´ RF

zi
BpXiq| ą ε3

¯

pn ` 1q
?
ν3

“
nP

´

|rfzi
pXq ´ RF

zi
BpXq| ą ε3

¯

pn ` 1q
?
ν3

(because Xi and X are iid, and rfzi and RF
zi
B do not depend on Xi)

ď
nν3

pn ` 1q
?
ν3

(by concentration of measure)

ď
?
ν3.

So we have

P p|Yn`1 ´ rfpXn`1q| ď qn,α3
tRiu ` ε2 ` ε3q ě 1 ´ α2 ´ 2

?
ν2 ´ PpA1

lq ě 1 ´ α3 ´ 2
?
ν2 ´ 2

?
ν3.

D.3 Using the concentration of measure to control |rfpXq ´ RFBpXq|

Finally, we need to replace rfpXn`1q by RFBpXn`1q. Note that for t ą 0,

P p|Y ´ RFBpXq| ą t ` ε1q “ P p|Y ´ rfpXq ` rfpXq ´ RFBpXq| ą t ` ε1q

ď P p|Y ´ rfpXq| ą tq ` P p|rfpXq ´ RFBpXq| ą ε1q

ď P p|Y ´ rfpXq| ą tq ` ν1,

which implies
P p|Y ´ RFBpXq| ď t ` ε1q ě P p|Y ´ rfpXq| ď tq ´ ν1.

Let t “ qn,α3tRiu ` ε2 ` ε3, and we arrive at

P p|Y ´ RFBpXq| ď qn,α3tRiu ` ε2 ` ε3 ` ε1q ě P p|Y ´ rfpXq| ď qn,α3tRiu ` ε2 ` ε3q ´ ν1
ě 1 ´ α3 ´ 2

?
ν2 ´ 2

?
ν3 ´ ν1,

which completes the proof of Theorem 9. Moreover, for ν1 P p0, 1q, we have
?
ν1 ą ν1. So

2
?
ν2`2

?
ν3`ν1 ď 2p

?
ν2`

?
ν3`

?
ν1q “ 6ˆ

?
ν2 `

?
ν3 `

?
ν1

3
ď 6ˆ

a

pν1 ` ν2 ` ν3q{3 “ 2
?
3

?
νn,B .

Hence we eventually have

P p|Y ´ RFBpXq| ď qn,αtRiu ` εn,Bq ď 1 ´ α ´ 2
?
3
?
νn,B ,

which leads to the informal version of the theorem.
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E Proof of Theorem 10

E.1 Using the stability property to control |rfpXq ´ rfzi
pXq|

Since we have assumed trriu, i P rn ` 1s have no ties, by the second part of Lemma 4, we have for
the test point pX,Y q “ pXn`1, Yn`1q that

P
ˆ

|Yn`1 ´ rrf
zpn`1q

pXn`1q| ď qn,αtrriu

˙

“ P prrn`1 ď qn,αtrriuq ď 1 ´ α `
1

n ` 1
.

Now consider the event that

Au “ “qn,α2triu ´ ε2 ď qn,αtrriu”,

where α2 “ α `
?
ν2. We denote Ac

u as the complement of Au. Note that in this case the ancillary
quantity α2 is greater than α, while in the proof of Theorem 9, α2 is less than α. We then have

P prrn`1 ď qn,α2triu ´ ε2q “ P prrn`1 ď qn,α2triu ´ ε2 and Auq ` P prrn`1 ď qn,α2triu ´ ε2 and Ac
uq

ď P prrn`1 ď qn,α2triu ´ ε2 and Auq ` PpAc
uq

ď P prrn`1 ď qn,αtrriuq ` PpAc
uq

ď 1 ´ α `
1

n ` 1
` PpAc

uq.

Next, we bound PpAc
uq. By Lemma 5, event Ac

u implies there are at least pn` 1q
?
ν2 pairs of pri, rriq

such that ri ą rri ` ε2, and thus

PpAc
uq ď P

˜

n
ÿ

i“1

Itri ą rri ` ε2u ě pn ` 1q
?
ν2

¸

ď
E r

řn
i“1 Itri ą rri ` ε2us

pn ` 1q
?
ν2

(by Markov’s inequality)

“
nE rItri ą rri ` ε2us

pn ` 1q
?
ν2

(by iid data)

“
nP pri ą rri ` ε2q

pn ` 1q
?
ν2

“

nP
ˆ

|Yi ´ rfzi
pXiq| ą |Yi ´ rrf

zi
pXiq| ` ε2

˙

pn ` 1q
?
ν2

“

nP
ˆ

|Yi ´ rrf
zpn`1,iq

pXiq| ą |Yi ´ rrf
zi

pXiq| ` ε2

˙

pn ` 1q
?
ν2

(by definitions of rrf
zi
, rf, rfzi)

“

nP
ˆ

|Yn`1 ´ rrf
zpi,n`1q

pXn`1q| ą |Yn`1 ´ rrf
zpn`1q

pXn`1q| ` ε2

˙

pn ` 1q
?
ν2

(by iid data)

“
nP

´

|Yn`1 ´ rfzi
pXn`1q| ą |Yn`1 ´ rfpXn`1q| ` ε2

¯

pn ` 1q
?
ν2

(by definitions of rrf
zi
, rf, rfzi)

ď

nP
´

|Yn`1 ´ rfzi
pXn`1q ´ Yn`1 ` rfpXn`1q| ą ε2

¯

pn ` 1q
?
ν2

(because |a| ´ |b| ď |a ´ b|)

“

nP
´

|rfpXn`1q ´ rfzi
pXn`1q| ą ε2

¯

pn ` 1q
?
ν2

ď
nν2

pn ` 1q
?
ν2

(by stability of rf)

ď
?
ν2.
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Hence we have

P prrn`1 ď qn,α2
triu ´ ε2q ď 1 ´ α `

1

n ` 1
`

?
ν2 “ 1 ´ α2 `

1

n ` 1
` 2

?
ν2.

Note that this proof also works for a general stable algorithm, as stated in Corollary 3.

E.2 Using the concentration of measure to control |rfzi
pXq ´ RF

zi
BpXq|

We further define an event

A1
u “ “qn,α3

tRiu ´ ε3 ď qn,α2
triu”,

where α3 “ α2 `
?
ν3. We denote A

1c
u as the complement of A1

u. Again, we increase rather than
decrease α3 in this case, as opposed to in the proof of the lower bound. We then have

Pprrn`1 ď qn,α3
tRiu ´ ε2 ´ ε3q

“ P
`

rrn`1 ď qn,α3
tRiu ´ ε2 ´ ε3 and A1

u

˘

` P
´

rrn`1 ď qn,α3
tRiu ´ ε2 ´ ε3 and A

1c
u

¯

ď P
`

rrn`1 ď qn,α3
tRiu ´ ε2 ´ ε3 and A1

u

˘

` PpA
1c
u q

ď P prrn`1 ď qn,α2triu ´ ε2q ` PpA
1c
u q

ď 1 ´ α2 `
1

n ` 1
` 2

?
ν2 ` PpA

1c
u q.

By Lemma 5, A
1c
u implies there exist at least pn ` 1q

?
ν3 pairs of pRi, riq such that Ri ą ri ` ε3,

and thus

PpA
1c
u q ď P

˜

n
ÿ

i“1

ItRi ą ri ` ε3u ě pn ` 1q
?
ν3

¸

ď
E r

řn
i“1 ItRi ą ri ` ε3us

pn ` 1q
?
ν3

(by Markov’s inequality)

“
nP pRi ą ri ` ε3q

pn ` 1q
?
ν3

(by iid data)

“

nP
´

|Yi ´ RF
zi
BpXiq| ą |Yi ´ rfzi

pXiq| ` ε3

¯

pn ` 1q
?
ν3

ď

nP
´

|Yi ´ RF
zi
BpXiq ´ Yi ` rfzi

pXiq| ą ε3

¯

pn ` 1q
?
ν3

(because |a| ´ |b| ď |a ´ b|)

“
nP

´

|rfzi
pXiq ´ RF

zi
BpXiq| ą ε3

¯

pn ` 1q
?
ν3

“

nP
´

|rfzi
pXq ´ RF

zi
BpXq| ą ε3

¯

pn ` 1q
?
ν3

(because Xi and X are iid, and rfzi and RF
zi
B do not depend on Xi)

ď
nν3

pn ` 1q
?
ν3

(by concentration of measure)

ď
?
ν3.

We then have

Pprrn`1 ď qn,α3
tRiu ´ ε2 ´ ε3q ď 1 ´ α3 `

1

n ` 1
` 2

?
ν2 ` 2

?
ν3.
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E.3 Using the concentration of measure to control |rfpXq ´ RFBpXq|

We write Rn`1 “ |Yn`1 ´ RFBpXn`1q|. Then
PpRn`1 ď qn,α3

tRiu ´ ε1 ´ ε2 ´ ε3q

“ P pRn`1 ´ rrn`1 ` rrn`1 ď qn,α3
tRiu ´ ε1 ´ ε2 ´ ε3q

ď P pRn`1 ´ rrn`1 ă ´ε1q ` P prrn`1 ď qn,α3
tRiu ´ ε2 ´ ε3q

ď P p|Rn`1 ´ rrn`1| ą ε1q ` 1 ´ α3 `
1

n ` 1
` 2

?
ν2 ` 2

?
ν3

“ P p||Yn`1 ´ RFBpXn`1q| ´ |Yn`1 ´ rfpXn`1q|| ą ε1q ` 1 ´ α3 `
1

n ` 1
` 2

?
ν2 ` 2

?
ν3

ď P p|rfpXq ´ RFBpXq| ą ε1q ` 1 ´ α3 `
1

n ` 1
` 2

?
ν2 ` 2

?
ν3 (because ||a| ´ |b|| ď |a ´ b|)

ď 1 ´ α3 `
1

n ` 1
` ν1 ` 2

?
ν2 ` 2

?
ν3, (by concentration of measure)

which completes the proof. Again, for ν1 P p0, 1q, the upper bound is 1 ´ α3 ` 1
n`1 ` Op

?
νn,Bq.

The proof of Theorem 9 bears some resemblance to that of Theorem 10 because of the symmetry
consideration. For example, “rfpXq is close to rfzi

pXq” also means “rfzi
pXq is close to rfpXq.”

Hence the probabilistic deviation bounds established above apply in two directions, and the upper
bound can be proved. Still, we use the stability property once and the concentration of measure twice.

F Proof of Theorem 11

We start from Pp|Y ´ RFBpXq| ď qn,αtRiu ` εn,Bq. Denote R “ |Y ´ RFBpXq|, and let its
CDF be Fn, where we explicitly use n to denote the size of the training set. Then we can rewrite
Pp|Y ´ RFBpXq| ď qn,αtRiu ` εn,Bq as

Pp|Y ´ RFBpXq| ď qn,αtRiu ` εn,Bq “ ErFnpqn,αtRiu ` εn,Bqs,

where the expectation is with respect to qn,αtRiu, which is random. By the assumption, when
n ě n0, the family tFnptquněn0

is uniformly equicontinuous, which means that for any ν ą 0, there
exists some δ ą 0 that is independent of t and n, such that |Fnpt1q ´ Fnptq| ď ν for all |t1 ´ t| ď δ
and n ě n0. Then we have for n ě n0 and ν ą 0 that

Fnpqn,αtRiu ` εn,Bq ´ Fnpqn,αtRiuq

“ Fnpqn,αtRiu ` εn,Bq ´ Fnpqn,αtRiu ` δq ` Fnpqn,αtRiu ` δq ´ Fnpqn,αtRiuq

ď sup
t

rFnpt ` εn,Bq ´ Fnpt ` δqs ` sup
t

rFnpt ` δq ´ Fnptqs

ď sup
t

rFnpt ` εn,Bq ´ Fnpt ` δqs ` ν.

However, Fnptq as a CDF is monotonically increasing, and for any t, Fnpt ` εn,Bq ´ Fnpt ` δq ď 0
as long as εn,B ď δ. By Corollary 2, limnÑ8 εn,B “ 0. So there exists some n1 such that when
n ě n1, we have εn,B ď δ. Hence we conclude that for any ν ą 0, for all n ě maxtn0, n1u

0 ď Fnpqn,αtRiu ` εn,Bq ´ Fnpqn,αtRiuq ď ν a.s.,
implying that

lim
nÑ8

tFnpqn,αtRiu ` εn,Bq ´ Fnpqn,αtRiuqu “ 0 a.s.

As Fn is bounded, then by the bounded dominance theorem, we have
lim
nÑ8

ErFnpqn,αtRiu`εn,Bq´Fnpqn,αtRiuqs “ Er lim
nÑ8

tFnpqn,αtRiu`εn,Bq´Fnpqn,αtRiuqus “ 0.

Under the conditions of Corollary 2, both εn,B and νn,B go to 0 as n Ñ 8, and the lower bound (11)
implies that

1 ´ α ď lim inf
nÑ8

ErFnpqn,αtRiu ` εn,Bqs

“ lim inf
nÑ8

ErFnpqn,αtRiu ` εn,Bq ´ Fnpqn,αtRiuq ` Fnpqn,αtRiuqs

“ lim
nÑ8

ErFnpqn,αtRiu ` εn,Bq ´ Fnpqn,αtRiuqs ` lim inf
nÑ8

ErFnpqn,αtRiuqs

“ lim inf
nÑ8

ErFnpqn,αtRiuqs.
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Similarly, the upper bound (12) implies that

1 ´ α ě lim sup
nÑ8

ErFnpqn,αtRiu ` εn,Bqs

“ lim sup
nÑ8

ErFnpqn,αtRiu ` εn,Bq ´ Fnpqn,αtRiuq ` Fnpqn,αtRiuqs

“ lim
nÑ8

ErFnpqn,αtRiu ` εn,Bq ´ Fnpqn,αtRiuqs ` lim sup
nÑ8

ErFnpqn,αtRiuqs

“ lim sup
nÑ8

ErFnpqn,αtRiuqs.

Combining these results, we have

1 ´ α ď lim inf
nÑ8

ErFnpqn,αtRiuqs ď lim sup
nÑ8

ErFnpqn,αtRiuqs ď 1 ´ α.

Thus,
lim
nÑ8

PpR ď qn,αtRiuq “ lim
nÑ8

ErFnpqn,αtRiuqs “ 1 ´ α,

completing the proof.
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