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Abstract

Manifold learning flows are a class of generative modelling techniques that assume
a low-dimensional manifold description of the data. The embedding of such a
manifold into the high-dimensional space of the data is achieved via learnable
invertible transformations. Therefore, once the manifold is properly aligned via
a reconstruction loss, the probability density is tractable on the manifold and
maximum likelihood can be used to optimize the network parameters. Naturally,
the lower-dimensional representation of the data requires an injective-mapping.
Recent approaches were able to enforce that the density aligns with the modelled
manifold, while efficiently calculating the density volume-change term when
embedding to the higher-dimensional space. However, unless the injective-mapping
is analytically predefined, the learned manifold is not necessarily an efficient
representation of the data. Namely, the latent dimensions of such models frequently
learn an entangled intrinsic basis, with degenerate information being stored in each
dimension. Alternatively, if a locally orthogonal and/or sparse basis is to be
learned, here coined canonical intrinsic basis, it can serve in learning a more
compact latent space representation. Toward this end, we propose a canonical
manifold learning flow method, where a novel optimization objective enforces the
transformation matrix to have few prominent and non-degenerate basis functions.
We demonstrate that by minimizing the off-diagonal manifold metric elements
ℓ1-norm, we can achieve such a basis, which is simultaneously sparse and/or
orthogonal. Canonical manifold flow yields a more efficient use of the latent space,
automatically generating fewer prominent and distinct dimensions to represent
data, and consequently a better approximation of target distributions than other
manifold flow methods in most experiments we conducted, resulting in lower FID
scores. 1

1 Introduction

Many emerging methods in generative modeling are based on the manifold hypothesis, i.e., higher-
dimensional data are better described by a lower-dimensional sub-manifold embedded in an ambient
space. These methods replace the bijective normalizing flow in the original construction [1–5] (NF)
with an injective flow. NFs are constructed as a smooth bijective mapping, i.e. a homeomorphism,
where the learned distribution density is supported on the set of dimension D equal to the data
dimension, where RD is the data space. In order to fulfill the manifold hypothesis, an emerging class
of methods, namely manifold learning flow models (MLF) [6–9], model the latent distribution as a
random variable in Rd where d < D, i.e. realize injective flows. Consequently, the density lives on
some d-dimensional manifold Md embedded in RD as required. If Md is known a-priori, [10, 11],
the density transformation to RD in MLF is a relatively straight forward affair. If the manifold is to be

1Code is available at https://github.com/k-flouris/cmf/.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/k-flouris/cmf/


learned, the change-of-variable formula, i.e. the volume element, can be computationally inhibiting
to calculate. Caterini et al [7] have recently solved this problem and established tractable likelihood
maximization.

MLF methods have thus evolved to the point where the general manifold hypothesis is properly
incorporated and the likelihood is efficiently calculated. However, it has been observed that the
learned manifold can be suboptimal; for example, due to a nonuniform magnification factor [12] and
the inability to learn complex topologies [13]. Furthermore, pushforward models such as MLFs, i.e.,
d < D, are designed to avoid over-fitting, but d in Rd is still arbitrary unless determined by some
meta-analysis method. As well as, there is often degeneracy in the information stored in each of these
latent dimensions d. For instance, as we show in Section 4.1, consider modeling a two-dimension
line with considerable random noise, i.e. a ’fuzzy line’. If d = 2, both latent dimensions will
attempt to encompass the entire manifold in a degenerative use of latent dimensions. Particularly, this
behavior of storing degenerate representations is inefficient and can lead to over-fitting, topological,
and general learning pathologies. Alternatively, we postulate that motivating sparsity [14] and local
orthogonality during learning can enhance the manifold learning process of MLFs.

To this end, we propose an optimization objective that either minimizes or finds orthogonal gradient
attributions in the learned transformation of the MLF. Consequently, a more compact [15] and
efficient latent space representation is obtained without degenerate information stored in different
latent dimensions, in the same spirit as automatic relevance determination methods [16] or network
regularization [17]. The relevant dimensions correspond to locally distinct tangent vectors on the
data manifold, which can yield a natural ordering among them in the generations. Borrowing the
term ’canonical basis’, i.e., the set of linearly independent generalized eigenvectors of a matrix, we
introduce Canonical manifold learning flows (CMF). In CMF, the normalizing flow is encouraged to
learn a sparse and canonical intrinsic basis for the manifold. By utilizing the Jacobians calculated for
likelihood maximization, the objective is achieved without additional computational cost.

2 Theoretical background

2.1 Normalizing and rectangular normalizing flows

First, we define a data space as X with samples {x1, ..., xn}, where xi ∈ RD, and a latent space
Z ⊂ Rd. If, d = D, then a normalizing flow is a ϕ parameterized diffeomorphism qϕ : RD → RD,
i.e., a differentiable bijection with a differentiable inverse, that transforms samples from the latent
space to the data space, X := qϕ(Z). Optimization of ϕ is achieved via likelihood maximization,
where due to the invertibility of qϕ the likelihood, pX (x), can be calculated exactly from the latent
probability distribution pZ(z) using the transformation of distributions formula [18],

pX (x) = pZ(q�1ϕ (x))|detJq�(q�1ϕ (x))|�1. (1)

J denotes the Jacobian functional such that Jq� = ∂x/∂z, i.e., the Jacobian of qϕ at x = qϕ(z).
Here, Z is modelled by a random variable z ∼ pZ for a simple density pZ , e.g., a normal distribution.
Therefore, for large n, a normalizing flow approximates well the distribution that gave rise to the
samples in a dataset {xi}ni=1 by transforming the samples z ∼ pZ with a trained qϕ∗ if ϕ� :=
argmaxϕ

Pn
i=1 log pX (xi) [4].

In the context of manifold learning flows, or rectangular normalizing flows, d < D implies there is
a lower dimensional manifold M ⊂ Rd that is embedded into the RD with a smooth and injective
transformation gϕ : Rd → RD. In practice, gϕ = hη◦pad◦fθ, where hη : Rd → Rd, fθ : RD → RD

and pad : Rd → RD. Padding can be used for trivial embedding, i.e., pad(~z) = (~z0 . . . ~zd�1, 0 . . . 0).
The rectangular Jacobian of Jg� is not invertible and thus, JT

g�
Jg� ̸= J2

g�
, which implies that the

volume element needs to be calculated fully, i.e., the square root of the determinant of JT
g�

Jg� which
is an equivalent expression for the general metric tensor in this context - see the appendix. This leads
to a more generic formulation

pX (x) = pZ

�
g�1ϕ (x)

�
|detJT

g�
(g�1ϕ (x))Jg�(g�1ϕ (x))|�1/2. (2)

However, note that maximizing pX (x) on its own would only maximize the likelihood of the
projection of x on the latent space, not ensuring that the model can reconstruct x from z, i.e., the
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modeled manifold may not be aligned with the observed data. To encouragex 2 M , namely to
align the learned manifold to the data space, a reconstruction error needs to be minimized during
optimization. The following loss is thus added to the maximum-likelihood loss function, as explained
in [6]:

nX

i =1






 x i � g�

�
g� 1

� (x)
� 







2

2
: (3)

Combining the logarithm of Equation (2) and using the hyperparameter� > 0 to adjust Equation (3)
we arrive at the total Lagrangian to be maximized:

� � = argmax �

nX

i =1

�
logpZ

�
g� 1

� (x i )
�

� log jdetJT
h �

(g� 1
� (x i )) j

�
1
2

log jdetJT
f �

(f � 1
� (x i ))J f � (f � 1

� (x i )) j � �





 x i � g�

�
g� 1

� (x i )
� 







2

2

�
:

(4)

2.2 Riemannian geometry and the metric tensor

A d dimensional curved space is represented by a Riemannian manifoldM � Rd, which is locally
described by a smooth diffeomorphismh, called the chart. The set of tangential vectors attached
to each pointy on the manifold is called the tangent spaceTy M . All the vector quantities are
represented as elements ofTy M . The derivatives of the charth are used to de�ne the standard basis
(e1; :::; ed) = @h

@z1
; :::; @h

@zd
.

The metric tensorg can be used to measure the length of a vector or the angle between two vectors.
In local coordinates, the components of the metric tensor are given by

Gij = ei � ej =
@h
@zi

�
@h
@zj

; (5)

where� is the standard Euclidean scalar product.

The metric tensorGij describing the manifoldM � RD learned in manifold learning �ows is
equivalent to the section of the rectangular Jacobian-transpose-JacobianJ T J that describesM . As
explained in [7] and the appendix, theJ T J can be very ef�ciently approximated in the context of
MLFs. Thus, it can be seen that no additional computational cost is need to calculate the metric
tensor.

3 Related Work and motivation

Generative models with lower-dimensional latent space have long being established as favorable
methods due to their ef�ciency and expressiveness. For instance, variational autoencoders [19] have
been shown to learn data manifoldsM with complex topologies [20, 21]. However, as seen in [22],
variational approaches exhibit limitations in learning the distributionpX onM . Manifold learning
�ows [ 6] (M�ow) form a bridge between tractable density and expressiveness. Their support2 Rd can
inherently match the complex topology ofRD , while maintaining a well-de�ned change of variables
transformation. Furthermore, state-of-the-art methods can ef�ciently calculate the determinant of
the Jacobian dot product, as in rectangular normalizing �ow [7] (RNF). Denoising normalizing �ow
[9] (DNF) represents a progression beyond M�ow, where density denoising is used to improve on
the density estimation. RNFs can be seen as a parallel approach to DNF but with a more direct
methodology, circumventing potential ambiguities stemming from heuristic techniques like density
denoising.

Despite the success of manifold learning �ows in obtaining a tractable density whilst maintaining
expressivity, the learned manifold is not optimized within its latent space representation [23], an
outstanding problem for most generative models. For example, due to lack of constrains between
latent variables it can be the case that some of them contain duplicate information, i.e., form a
degenerate intrinsic basis to describe the manifold, also demonstrated in Section 4.1. Sparse learning
[14] was an early attempt to limit this degeneracy and encourage learning of global parameters,
introducing solutions such as the relevance vector machine [24, 25] (RVM).The RVM attempts to
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limit learning to its minimum necessary con�guration, while capturing the most relevant components
that can describe major features in the data.

Even stricter approaches are principal [26, 27] and independent component analyses [28, 29], PCA
and ICA, respectively. PCA and ICA can obtain a well-de�ned and optimized representation when
convergent; however, PCA and ICA are linear in nature and their non-linear counterparts require
kernel de�nitions. Here, the network-based approach is more general, reducing the need for hand-
crafting nonlinear mappings. Furthermore, pure PCA and ICA can be limited in modelling some data
manifold topologies where strict global independent components are not necessarily a favorable basis
[30]. Furthermore, [15] presents a method for ef�cient post-learning structuring of the latent space,
showcasing the advantages of model compactness. We propose a canonical manifold learning �ow
where the model is motivated to learn a compact and non-degenerate intrinsic manifold basis.

Furthermore, it has been shown that tabular neural networks can show superior performance when
regularized via gradient orthogonalization and specialization [17]. They focus on network regulariza-
tion, which is not speci�c to one method but requires certain network structure and costly attribution
calculations.

Recently, NF methods with �ow manifested in the principal components have been proposed [31, 32].
Cranmer et al. [31] focus on datasets that have distinct PCAs that can be ef�ciency calculated
and, therefore, utilize the computed PCAs for ef�cient density estimation. Cunningham et al.
[32] (PCA�ow) relies on a lower-bound estimation of the probability density to bypass theJ T J
calculation. This bound is tight when complete principal component �ow, as de�ned by them, is
achieved. The fundamental distinction here is that our method does not con�ne itself to a pure
PCA�ow scenario, which has the potential to restrict expressivity. In contrast, our method only
loosely enforces orthogonality, while encouraging sparsity, i.e. promoting learning of a canonical
manifold basis.

4 Method

4.1 Canonical intrinsic basis

In this section, in order to motivate the proposed development, we �rst demonstrate how rectangular
manifold learning �ows assign a latent space representation in comparison to canonical manifold
learning �ow. We generated synthetic data on a tilted line with noise in the perpendicular and parallel
directions, i.e., a fuzzy line. We sample 1000x i 's such thatx1 � U (� 2:5; 2:5) andx2 = x1 + � ,
where� � U (� 0:5; 0:5). In Figure 1(a), a two-dimensional manifoldM is learned with the vanilla-
RNF method using the samples by minimizing the loss given in Equation 4. As expected and seen
on the left of Figure 1(a), the probability density is learned satisfactorily, i.e., the model �t well the
samples and can generate samples with accurate density. However, when samples on the manifold
are generated from the two latent dimensions,zi , individually, shown in Figure 1 (ii) and (iii), the
sampling results are very similar. The implication being that the intrinsic basis is almost degenerate
and information is duplicated amongst the latent variables. In contrast, when the sameM is learned
with the proposed CMF, shown in Figure 2, the sampled latent dimensions are close to perpendicular
to each other. Each basis is capturing non-degenerate information aboutM , see Figure 1(b), i.e., the
two major axes of the dataset.

4.2 Canonical manifold learning

As canonical manifold is not a standard term in literature, let us start by de�ning a canonical manifold
for manifold learning �ows.

De�nition 4.1. Here, a canonical manifold,M , is a manifold that has an orthogonal and/or sparse
basisei such thatei � ej = 0 8y 2 M and wheneveri 6= j .

The name in De�nition 4.1 is inspired from the “canonical basis”, i.e., the set of linearly independent
generalized eigenvectors of a matrix, as de�ned in linear algebra. We hypothesize that enforcing
learning a canonical manifold as de�ned in De�nition 4.1 during manifold �ows will lead to a less
degenerate use of the latent space, and consequently a better approximation of the data distribution. As
in sparse learning [14], during training necessary dimensions in the latent space will be automatically
determined, and those that are necessary will be used in such a way to model a manifold with an
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(a) Density plot for a fuzzy line learned with
RNF, via Equation 4.

(b) Density plot for a fuzzy line learned with
CMF, via Equation 8.

Figure 1: Comparison of density plots for a fuzzy line learned with RNF (a) and CMF (b). Sampled
1000x i 's such thatx1 � U (� 2:5; 2:5) andx2 = x1 + � with � � U (� 0:5; 0:5). The black dots
represent samples from the real data manifold. (i) Samples from the model using the full latent space
where colors correspond tologp(x). (ii), (iii) Samples from the model using only the �rst and the
second componentsz1=2 2 Z while setting the other to zero, respectively. Colors correspond to
logp(x) once more. All densities have been normalized to[� 1; 1] for visualization purposes. Note
that compared to RNF, with CMF different latent variables could capture almost an orthogonal basis
for this manifold.

orthogonal local basis to �t the data samples. This, we believe, will enhance the manifold learning
process, avoiding over�tting and other learning pathologies associated with correlated attributions to
dimensions of the latent space.

In order to obtain a canonical basis we �rst realize that, as described in Section 2 and the appendix,
the metric tensor can be used as concise language to describe the manifold i.e. the transformation of
the chart.

Gij =
X

k

@g� 1;k
� (x)

@zi
@g� 1;k

� (x)

@zj
=

X

k

@xk

@zi
@xk

@zj
: (6)

This provides an opportunity to regularize the learned representation directly with a single optimiza-
tion objective. The dependencies onG are dropped for brevity.

Leveraging the metric tensor representation, we propose to minimize the off-diagonal elements of the
metric tensor, enforcing learning of a canonical manifold

kGi 6= j k1
1 ,

X

i

X

j 6= i

kGij k1
1 ; (7)

wherek�k1
1 is the `1 norm. UsingkGi 6= j k1

1 as a cost to minimize serves both the sparsity and
generating orthogonal basis. While the`2 norm could be used to enforce a speci�c embedding [8], it
is not in the scope of this work. In order to minimize this cost, the network will have to minimize
the dot products@x=@zi � @x=@zj . There are two ways to accomplish this. The �rst is to reduce the
magnitudes of the basis vectors@x=@zi . Minimizing the magnitudes with thè1 norm would lead
to sparser basis vectors. The second is to make the basis vectors as orthogonal as possible so the
dot product is minimized, which serves towards learning a canonical manifold as well. As detailed
in [7] and the appendix, the Jacobian product, the bottleneck for both RNF and our method, can be
ef�ciently approximated. With complexityO(id2), it is less thanO(d3) wheni << d , wherei is the
conjugate gradients method iterations. Thus, encouraging a canonical manifold throughGi 6= j incurs
minimal extra computational cost.

One can imagine an alternative optimization schemes. For instance, the diagonal elements of the
metric tensorGkk can be used to access the transformation of individualzi 2 Z . Minimizing
the`1 norm

P
k kGkk k1

1 will encourage sparse learning, akin to a relevance vector machine [14]
or network specialization [17]. Nevertheless, minimizing the diagonal elements will clearly not
motivate perpendicular components and notably there is no mixing constraint on these components.
Consequently, only the magnitude of the transformation can be affected.

Furthermore, one can imagine minimizing the cosine similarity between the basis vectors to promote
orthogonality. However, this would not serve towards automatically determining the necessary
dimensions in the latent space. Combining the`1 of the diagonal elements and the cosine similarity
may also be a solution; however, this would bring an additional weighing factor between the two
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losses.̀ 1 loss of the off-diagonal elements of the metric tensor brings together these two objectives
elegantly.

Note that the injective nature of the �ow, the arbitrary topology of the image space and the �nite
dimensionality of the chart imply that a canonical solution may not exist for the complete learned
manifold. However, this is not prohibitive as the local nature of the proposed method should allow
even for isolated, sparse and independent component realizations. Even such solutions can be more
preferable when representing complex multidimensional image dataset manifolds. Additionally, the
canonical solution is not absolutely but rather statistically enforced, i.e. it is not a strict constraint.
This is similar to encouraging orthogonality and specialization of gradient attributions for network
regularizations [17].

To this end, combining Equation (7) with the established manifold learning �ow log likelihood and
reconstruction loss from Section 2.1, i.e., Equation (4), we arrive at the following total optimization
objective of the canonical manifold learning �ow loss:

� � = argmax �

nX

i =1

�
logpZ

�
g� 1

� (x i )
�

� log jdetJT
h �

(g� 1
� (x i )) j

�
1
2

log jdetJT
f �

(f � 1
� (x i ))J f � (f � 1

� (x i )) j � �





 x i � g�

�
g� 1

� (x i )
� 







2

2

�
� 
 kGj 6= k k1

1 ;

(8)

where
 is a hyperparameter. In summary, for the transformation parameters� , the log-likelihood
of NFs is maximized, while taking into consideration the rectangular nature of the transformation.
Additionally, a reconstruction loss with a regularization parameter� is added to ensure that the
learned manifold,M � Rd, is aligned to the data manifold,M � RD . The`1 loss of the off-diagonal
metric tensor ensures that a canonical manifoldM is learned.

5 Experiments

We compare our method with the rectangular normalizing �ow (RNF) and the original Brehmer
and Cranmer manifold learning �ow (MFlow). No meaningful comparison can be made to linear
PCA/ICA as they are not suitable for data on non-linear manifolds. While non-linear PCA/ICA can
be used, they require a speci�c feature extractor or kernel. Our method, a type of manifold learning,
directly learns this non-linear transformation from data. We use the same architectures as [7], namely
real NVP [7] without batch normalization, for the same reasons explained in the nominal paper2.
Further experimental details can be found in the appendix. In short, we use the same hyperparameters
for all models to ensure fairness. For example, we use a learning rate of1 � 10� 4 across the board,
and we have only carried out simple initial searches for the novel parameter
 from Equation (8).
Namely, from trying
 = [0 :001; 0:01; 0:1; 1; 10; 50], we concluded in using
 = � = 1 for the
low-dimensional datasets,� = 5 and
 = 0 :1 for the tabular datasets and� = 5 and
 = 0 :01 for the
image datasets to ensure stable training.
 = 1 also produced good results in our experiments with
different datasets, but it was not always stable and long training was required. Overall, the method is
not overly sensitive to the hyperparameter
 . Likelihood annealing was implemented for all image
training runs. Approximate training times can be found in the appendix.

5.1 Simulated data

We consider some simulated datasets. Speci�cally, we implement uniform distributions over a
two-dimensional sphere and a Möbius band embedded inR3. Then we generate 1000 samples from
each of these distributions and use the samples as the simulated data to �t both RNF and CMF. Such
datasets have a straightforward and visualizable canonical manifold representation. The samples
generated by the trained networks are shown in Figure 2(a) and Figure 2(b) for the RNF and CMF
methods, respectively. From the fully sampled density plots Figure 2(a)(i) and Figure 2(b)(i), both
methods learn the manifold and the distribution on it. However, the manifold learning of CMF is
superior to RNF as the sphere is fully encapsulated, and the density is more uniform. Furthermore,
when the threezi dimensions are sampled individually in Figure 2(b) (ii),(iii) and (iv), the canonical

2Batch normalization causes issues with vector-Jacobian product computations.
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