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Abstract

This paper proposes a new active learning method for semantic segmentation. The
core of our method lies in a new annotation query design. It samples informative
local image regions (e.g., superpixels), and for each of such regions, asks an oracle
for a multi-hot vector indicating all classes existing in the region. This multi-class
labeling strategy is substantially more efficient than existing ones like segmentation,
polygon, and even dominant class labeling in terms of annotation time per click.
However, it introduces the class ambiguity issue in training as it assigns partial
labels (i.e., a set of candidate classes) to individual pixels. We thus propose a new
algorithm for learning semantic segmentation while disambiguating the partial
labels in two stages. In the first stage, it trains a segmentation model directly
with the partial labels through two new loss functions motivated by partial label
learning and multiple instance learning. In the second stage, it disambiguates the
partial labels by generating pixel-wise pseudo labels, which are used for supervised
learning of the model. Equipped with a new acquisition function dedicated to the
multi-class labeling, our method outperforms previous work on Cityscapes and
PASCAL VOC 2012 while spending less annotation cost. Our code and results are
available at https://github.com/sehyun03/MulActSeg.

1 Introduction

Supervised learning of deep neural networks has driven significant advances of semantic segmentation
for a decade. At the same time, however, it has limited practical applications of the task as it demands
as supervision pixel-level class labels that are prohibitively expensive in general. To address this
limitation, label-efficient learning approaches such as weakly supervised learning [2, 3, 11, 20,
28, 34, 39, 40, 58, 63], semi-supervised learning [4, 12, 25, 33, 36, 37, 41–44, 48, 49], self-supervised
learning [24,60,69], and active learning (AL) [9,10,14,23,31,38,47,55,56,68] have been investigated.

This paper studies AL for semantic segmentation, where a training algorithm selects informative
samples from training data and asks an oracle to label them on a limited budget. In AL, the design
of annotation query, i.e., the granularity of query samples and the annotation format, is of vital
importance for maximizing the amount and quality of supervision provided by the oracle within
a given budget. Early approaches consider an entire image as a sample and ask for its pixel-wise
class labels [56, 68], or select individual pixels and query the oracle for their class labels [54]; they
turned out to be suboptimal since the former lacks the diversity of samples [47] and the latter is less
budget-efficient as a query provides supervision for only a single pixel.

As a compromise between these two directions, recent AL methods treat non-overlapped local image
regions as individual samples [9, 10, 14, 23, 31, 47, 55]. These region-based methods guarantee the
diversity of samples by selecting local regions from numerous images with diverse contexts. Also,
their queries are designed to obtain region-wise segmentation labels efficiently. For instance, they
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Figure 1: Dominant class labeling [9] versus our multi-class labeling. (left) Given a local region as
query, an oracle is asked to select the most dominant class by a single click in dominant class labeling,
and all existing classes by potentially more than one click in multi-class labeling. As shown here,
multi-class labeling often takes lessannotation time per clickbecause, to determine the dominant
one, the oracle has to infer every class in the region after all and sometimes should very carefully
investigate the region when the classes occupy areas of similar sizes. (right) We conducted a user
study to compare the two strategies in terms of actual labeling cost and accuracy versus the number
of classes in region queries; the results are summarized in the right plot with one standard deviation.
Multi-class labeling took less time per click on average due to the above reason. Furthermore, it
resulted in more accurate labels by annotating non-dominant classes ignored in dominant class
labeling additionally. Details of this user study are given in Appendix A.

ask the oracle to draw segmentation masks in the form of polygons within an image patch [14,47],
or to estimate the dominant class label of a superpixel so that the label is assigned to the entire
superpixel [9]. Although the existing region-based methods have achieved great success, we argue
that there is still large room for further improvement in their query designs: Polygon labeling [14,47]
still requires a large number of clicks per query, and dominant class labeling [9] provides wrong
supervision for part of a multi-class region. Note that the latter issue cannot be resolved even using
superpixels since they frequently violate object boundaries and include multiple classes.

In this context, we �rst introduce a new query design for region-based AL of semantic segmentation.
The essence of our proposal is to ask the oracle for a multi-hot vector that indicates all classes existing
in the given region. Thismulti-class labelingstrategy enables to prevent annotation errors for local
regions capturing multiple classes, and works the same as dominant class labeling (and thus inherits
its advantages) for single-class region queries. Moreover, our user study revealed that multi-class
labeling demands less annotation time per click and results in more accurate labels compared with
dominant class labeling as demonstrated in Fig. 1. However, such region-wise multi-class labels
introduce a new challenge in training, known as theclass ambiguityissue, since they assignpartial
labels[16,29] (i.e., a set of candidate classes) to individual pixels of the selected regions.

To address the ambiguity issue, we propose a new AL method tailored to learning semantic segmen-
tation with partial labels. Fig. 2 illustrates the overall pipeline of the proposed method. Given a
set of local regions and their multi-class labels, our method trains a segmentation network in two
stages. In the �rst stage, the network is trained directly with the region-wise multi-class labels. To
this end, we propose two new loss functions for the label disambiguation based on the notions of
partial-label learning [16,29] and multiple instance learning [19], respectively. In the second stage,
our method disambiguates the partial labels through pseudo segmentation labels, which are used
to train the segmentation network in the supervised learning fashion. To be speci�c, it �nds a set
of class prototype features from each local region using the model of the �rst stage, and employs
the prototypes as a region-adaptive classi�er to predict pixel-wise pseudo labels within the region.
In addition, we propose to propagate the pseudo labels to neighboring local regions to increase the
amount of supervision given per query; this strategy bene�ts by multi-class labeling that enables to
propagate pseudo labels of multiple classes, leading to larger expansion of pseudo labels.

Last but not least, we introduce an acquisition function designed to maximize the advantage of
multi-class labels in the region-based AL. Our acquisition function considers both uncertainty [32,62]
and class balance [7,66,67] of sampled regions so that local regions where the model �nds dif�cult
and containing underrepresented classes are chosen more frequently. It shares a similar motivation
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with an existing acquisition function [9], but different in that it considers multiple classes of a region
and thus better aligns with multi-class labeling.

The proposed framework achieved the state of the art on both Cityscapes [15] and PASCAL VOC
2012 [21]. Especially, it achieved 95% of the fully supervised learning performance on Cityscapes
with only 4% of the full labeling cost. In addition, we veri�ed the ef�cacy and ef�ciency of multi-class
labeling through extensive empirical analyses: Its ef�cacy was demonstrated by experiments with
varying datasets, model architectures, acquisition functions, and budgets, while its ef�ciency was
examined in real-world annotation scenarios by measuring actual labeling time across a large number
of human annotators. In short, the main contribution of this paper is �ve-fold:

• We introduce a new query design for region-based AL in semantic segmentation, which asks the
oracle for a multi-hot vector indicating all classes existing within a particular region.

• We propose a novel AL framework that includes two new loss functions effectively utilizing the
supervision of multi-class labels and a method for generating pseudo segmentation labels from
the multi-class labels, resulting in enhanced supervision.

• To maximize the advantage of multi-class labels, we design an acquisition function that considers
multiple classes of a local region when examining its uncertainty and class balance.

• The effectiveness of multi-class labeling was demonstrated through extensive experiments and
user study in real-world annotation scenarios.

• The proposed framework achieved the state of the art on both two public benchmarks, Cityscapes
and PASCAL VOC 2012, with a signi�cant reduction in annotation cost.

2 Related Work

Active learning (AL). In AL, a training algorithm samples informative data and asks an oracle to
label them on a limited budget so as to maximize performance of a model trained with the labeled
data. To this end, AL methods have suggested various sampling criteria such as uncertainty [5,26,50],
diversity [53,56], or both [6,30,64,65]. Also, since most of existing AL methods for vision tasks
have focused on image classi�cation, the granularity of their annotation queries has been an entire
image in general. However, for structured prediction tasks like semantic segmentation, queries should
be more carefully designed to optimize cost-effectiveness of annotation.

Active learning for semantic segmentation.Most AL methods for semantic segmentation can be
categorized into image-based [17,56,68] and region-based methods [47]. The image-based methods
consider an entire image as the sampling unit and query an oracle for pixel-wise labels of sampled
images. These methods have been known to be less cost-effective due to the limited diversity of
sampled data; adjacent pixels in an image largely overlap in their receptive �elds and thus fail to
provide diverse semantics during training. On the other hand, the region-based methods divide each
image into non-overlapping local regions, which are considered as individual samples to be selected;
As such local regions, image patches [10,14,47] and superpixels [9,35,55] have been employed. Our
paper proposes a new cost-effective region query that allows more accurate and faster annotation, and
a new training algorithm taking full advantage of the query design.

Partial label learning. Partial label learning [8,16,29,46] is a branch of weakly supervised learning
where a set of candidate classes is assigned to each of training data, leading to ambiguous supervision.
One primitive yet common approach to partial label learning is to train a model while regarding
its top-1 prediction as true labels [8, 46]. However, this approach could be vulnerable to class
imbalance [61] and strong correlation between different classes [52]. In contrast, our two-stage
training algorithm addresses these issues by disambiguating partial labels by pseudo labeling.

3 Proposed Method

We consider an AL process withR rounds. At each round, local regions of a batch are selected using
an acquisition function, and then a multi-hot vector (i.e., multi-class label) is assigned to each of them
by an oracle. Given the labeled regions, our training algorithm operates in two stages as illustrated
in Fig. 2. In the �rst stage, a segmentation model is trained directly with the region-wise multi-class
labels by two loss functions specialized to handle the ambiguity of the labels (Sec. 3.2). In the second
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Figure 2: Our two-stage training algorithm using partial labels. (left) In the �rst stage, a model
is trained using region-wise multi-class labels through two losses: the merged positive loss that
encourages the model to predict any of the annotated classes for each pixel of the region, and the
prototypical pixel loss that ensures at least one pixel in the region corresponds to each annotated class.
(right) The second stage disambiguates the region-wise multi-class labels by generating pixel-wise
pseudo labels, which are then used for training the �nal model. To this end, it �rst assigns pseudo
class labels to individual pixels within the region (i.e., intra-region label localization), and then
propagates the pseudo labels to adjacent regions (i.e., label expansion).

stage, the ambiguity is mitigated by generating pixel-wise pseudo labels and using them for training
the model further (Sec. 3.3). The remainder of this section describes details of our framework.

3.1 Acquisition of region-wise multi-class labels

For an unlabeled image setI , we partition each imageI 2 I into a set of non-overlapping regions,
denoted byS(I ), such that a pixelx 2 I belongs to only a unique regions 2 S(I ). Such a non-
overlapping partition can be obtained by a superpixel algorithm as in [9]. LetS :=

S
I 2I S(I )

be the set of all the partitions forI . For each roundt, we issue a batch of regions, denoted by
Bt � S , each of which is queried to acquire a multi-class labelY � f 1; 2; � � � ; Cg, wherejY j � 1
andC is the number of classes. Then the model� t is trained using the labeled regions obtained so
far, denoted asD :=

S
t Dt , whereDt consists of pairs of region and associated multi-class label,

Dt := f (s; Y) : s 2 B t g. The model� t includes a feature extractorf t (�) and a classi�er with a
weight matrix[w t; 1; w t; 2; � � � ; w t;C ] 2 Rd� C . The predictive probability of pixelx being classc is
computed by

P� t (y = cjx) = softmax
�

f t (x)> w t;c

� kf t (x)k kw t;c k

�
; (1)

where� is a temperature term.

Acquisition function. We introduce an acquisition function for selecting a batch of regionsBt � S
at roundt that aims to optimize the bene�ts of multi-class labels, while adhering to the principles of
previous studies [7,9,66] for uncertain and class-balanced region selection. We adopt best-versus-
second-best (BvSB) [32,62] as an uncertainty measure, de�ned as

u� t (x) :=
P� t (y = csbjx)
P� t (y = cbjx)

; (2)

wherecb andcsb are the classes with the largest and second-largest predictive probabilities forx
under� t , respectively. For class-balanced sampling, we �rst estimate the label distributionP� t (y) as

P� t (y = c) =
1

jX j

X

x 2 X

P� t (y = cjx) ; (3)

whereX := f x : 9s 2 S; x 2 sg. Our acquisition function, favoring uncertain regions of rare
classes, is de�ned as

a(s; � t ) :=
1
jsj

X

x 2 s

u� t (x)
�
1 + � P � t (cb)

� 2 ; (4)
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where� is a hyperparameter regulating the class balancing effect. Distinct from an existing acquisition
function [9] that considers the dominant class only, our function considers classes of all pixels in a
region and thus better aligns with multi-class labeling. For the remainder of this section, we will omit
the round indext from Dt and� t for simplicity.

3.2 Stage 1: Learning with region-wise multi-class labels

During training of the segmentation model, regions labeled with a single class are used for the
conventional supervised learning using the pixel-wise cross-entropy (CE) loss. The set of local
regions equipped with single-class labels is de�ned as

Ds :=
�

(s; f cg) : 9(s; Y) 2 D ; jY j = 1 ; c 2 Y
	

: (5)

The pixel-wise CE loss is then given by

L CE = Ê(s; f cg) �D s

�
1
jsj

X

x 2 s

� log P� (y = cjx)
�

: (6)

On the other hand, regions labeled with multiple classes, denoted asDm := D � D s, cannot be used
for training using the pixel-wise CE loss, since a multi-class label lacks precise correspondence
between each pixel and class candidates, making it a weak label [16,19,29]. To effectively utilize the
supervision ofDm, we introduce two loss functions.

Merged positive loss.Each pixel in a region is assigned with partial labels [16, 29],i.e., a set of
candidate classes. The per-pixel prediction in each region should be one of these candidate classes.
This concept is directly incorporated into the merged positive loss, which is de�ned as

L MP := Ê(s;Y ) �D m

�
1
jsj

X

x 2 s

� log
X

c2 Y

P� (y = cjx)
�

: (7)

This loss encourages to predict any class from the candidate set since the predictive probability of
every candidate class is considered as positive.

Prototypical pixel loss.Learning with regions assigned with multi-class labels can be considered as
an example of multiple instance learning (MIL) [19], where each region is a bag, each pixel in the
region is an instance, and at least one pixel in the region must be positive for each candidate class.
We call such a pixelprototypical pixel, and the pixel with the most con�dent prediction for each
candidate class within the region is chosen as a prototypical pixel:

x �
s;c := max

x 2 s
P� (y = cjx) ; (8)

wherec 2 Y and(s; Y) 2 D m. The segmentation model is trained by applying the CE loss to each
prototypical pixel with the assumption that the class associated with it is true. To be speci�c, the loss
is de�ned as

L PP := Ê(s;Y ) �D m

�
1

jY j

X

c2 Y

� log P� (y = cjx �
s;c )

�
: (9)

As reported in the literature of MIL [19], although the prototypical pixels may not always match
the ground truth, it is expected that training with numerous prototypical pixels from diverse regions
enables the model to grasp the underlying concept of each class. Moreover, this loss mitigates the
class imbalance issue as it ensures that every candidate class equally contributes to training via a
single prototypical pixel in a region, leading to a balanced class representation.

In summary, the total training loss of the �rst stage is given by

L = � CE L CE + � MP L MP + L PP ; (10)

where� CE and� MP are balancing hyperparameters.

3.3 Stage 2: Learning with pixel-wise pseudo labels

In the second stage, we disambiguate the partial labels by generating and exploiting pixel-wise one-
hot labels. The pseudo label generation process comprises two steps:intra-region label localization
that assigns pseudo class labels to individual pixels within each labeled region, andlabel expansion
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Figure 3: The pseudo label generation process (left) and its qualitative results (right). In each of the
labeled regions, the feature vector located at the prototypical pixel of an annotated class is considered
the prototype of the class, and the set of such prototypes is used as a region-adaptive classi�er for
pixel-wise pseudo labeling within the region (label localization). The pseudo labels of the region are
propagated to adjacent unlabeled regions similarly (label expansion), but for conservative propagation,
only relevant pixels that are close to at least one prototype will be assigned pseudo labels.

that spreads the pseudo labels to unlabeled regions adjacent to the labeled one. This process is
illustrated in Fig. 3, and described in detail below.

Intra-region label localization. For each of the labeled regions, we de�ne aprototypefor each
annotated class as the feature vector located at the prototypical pixel of the class, which is estimated by
Eq.(8) using the model of the �rst stage. The set of such prototypes is then used as a region-adaptive
classi�er, which is dedicated to pixel-level classi�cation within the region. To be speci�c, we assign
each pixel the class of its nearest prototype in a feature space; the assigned pseudo label forx 2 s
where(s; Y) 2 D , is estimated by

ŷ(x) := arg max
c2 Y

cos
�
f � (x); f � (x �

s;c )
�

; (11)

wherex �
s;c is the prototypical pixel of classc andcos(f; f 0) = f > f 0

kf k k f 0k is the cosine similarity
between two feature vectorsf andf 0.

Label expansion.The rationale behind the label expansion step is that the class compositionY of
a region(s; Y) 2 D may provide clues about classes of its adjacent regionss0 2 N(s), whereN(�)
denotes a set of unlabeled regions adjacent tos, i.e., N(s) \ D = ; . Similar to label localization,
the label expansion step aims to assign pixels inN(s) the class labels of their nearest prototypes.
However, sinceN(s) may contain irrelevant classes, propagating the labels to all pixels inN(s) could
cause incorrect pseudo labels, leading to performance degradation of the �nal model. Hence, the
pseudo labels are proposed only to relevant pixels that are suf�ciently close to at least one prototype
in the feature space. More speci�cally, to compute the relevance in a region- and class-adaptive
manner, we propose to use prototype-adaptive thresholds: the prototype-adaptive threshold for class
c 2 Y in (s; Y) 2 D is de�ned as

� c(s) = med
� �

cos
�
f � (x); f � (x �

s;c )
�

: x 2 s; ŷ(x) = c
	 �

; (12)

wheremed(�) yields the median value of a set,x �
s;c is the prototypical pixel of classc (Eq. (8)), and

ŷ(x) is the pseudo label ofx (Eq. (11)). We propagate pseudo labels of the labeled regions in D to
pixels of an adjacent regionf x : 9s0 2 N(s); x 2 s0g by

ŷ(x) := arg max
c2 Ŷ (x )

cos
�
f � (x); f � (x �

s;c )
�

only if jŶ (x)j � 1 ; (13)

whereŶ (x) :=
�

c : cos
�
f � (x); f � (x �

s;c )
�

> � c(s); c 2 Y
	

; x is a relevant pixel ifjŶ (x)j � 1. By
using the prototype-adaptive threshold for �ltering, we can adjust the amount of label expansion in
each region without the need for hand-tuned hyperparameters.

The segmentation model is then further trained using the pixel-wise CE loss with pseudo segmentation
labels generated by both of the label localization and expansion steps.
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Figure 4: Accuracy in mIoU (%) versus the number of clicks (budget) for dominant class labeling
(Dom) [9] and multi-class labeling (Mul) equipped with four different acquisition functions (Random,
BvSB, ClassBal, PixBal). The reported accuracy scores are averaged across three trials.

4 Experiments

4.1 Experimental setup

Datasets.Our method is evaluated on two semantic segmentation datasets, Cityscapes [15] and
PASCAL VOC 2012 (VOC) [21]. The former contains 2975 training, 500 validation, and 1525 test
images with 19 semantic classes. The latter consists of 1464 training and 1449 validation images
with 20 semantic classes. We evaluated models on validation splits of these datasets.

Implementation details. We adopt DeepLabv3+ [13] with ResNet-50/101 pretrained on Ima-
geNet [18] as our segmentation models, AdamW [45] for optimization. The balancing hyper-
parameters� CE and� MP of Eq.(10)are set to 16 and 8, respectively, and the temperature� was �xed
by 0.1. In both datasets we utilize32� 32 superpixel regions given by SEEDS [59]. For Cityscapes,
initial learning rates are set to2e� 3 (stage 1) and4e� 3 (stage 2), and� in Eq. (4) is set to 6. The
models are trained for 80K iterations with mini-batches of four769� 769 images. We assign an
extraunde�nedclass for pixels not covered by the original 19 classes. For VOC, we con�gure� to 12
and train the models for 30K iterations using a learning rate of1e� 3 in both stages. Each mini-batch
consists of twelve513� 513images. More details are given in the Appendix B.

Active learning protocol. Following the previous work [9], we consider the number of clicks as
the labeling cost. While this protocol assumes a uniform cost per click, it does not hold in reality as
shown in Fig. 1. It is adopted for comparisons with the prior art using dominant class labeling [9],
but isadverse tothe proposed method since our multi-class labeling takes less cost per click than
dominant class labeling. We conduct 5 rounds of consecutive data sampling and model updates, with
a budget of 100K and 10K clicks per round on Cityscapes and VOC, respectively. The models are
evaluated for each round in mean Itersection-over-Union (mIoU) [21] on the validation sets. At the
�rst round, regions are selected at random, and the models are reinitialized with ImageNet pretrained
weights per round. We conduct all experiments three times and report the average performance.

Baseline methods.We compare our multi-class labeling (Mul) with the dominant class labeling
(Dom) in combination with various data selection strategies. Following the established strategies in
the previous study [9], we employRandom, which randomly selects superpixels, and the uncertainty-
basedBvSB given in Eq. (2). ClassBal is BvSB sampling with additional class balancing term
proposed in the previous work [9], andPixBal is our sampling method based on Eq. (4).

4.2 Experimental results

Impact of multi-class labeling. In Fig. 4, we evaluate the performance of multi-class and dominant
class labeling across varying budgets, using ResNet50 and ResNet101 backbones, on both Cityscapes
and VOC with different acquisition functions. Multi-class labeling constantly outperforms dominant
class labeling in every setting across all the compared architectures and datasets. In particular, the
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Table 1: The ratio of clicks (%) needed to reach
95% mIoU of the fully-supervised model, relative
to full supervision. Results withy are from the
prior work [9] using Xception-65 as backbone.

Query Sampling Clicks (%)

Patch + Polygon EntropyBox+y [14] 10.5
MetaBox+y [14] 10.3

Spx + Dominant
ClassBaly [9] 7.9
ClassBal [9] 9.8
PixBal 7.9

Spx + Multi-class PixBal (Ours) 4.0

Figure 5: Histogram and cumulative distribu-
tion function (CDF) for the number of classes
in regions selected at round-5 usingPixBal sam-
pling on Cityscapes.

Table 2: Contribution of each component of our method in accuracy (mIoU, %) at each round.

Loss function Pseudo labeling Rnd-1 Rnd-2 Rnd-3 Rnd-4 Rnd-5 Avg
L MP L PP Localization Expansion

(a) 3 3 3 3 66.6 73.6 74.5 75.6 75.7 73.2� 0.3
(b) 3 3 3 7 65.2 72.2 73.5 74.3 74.7 72.0� 0.3
(c) 3 3 7 7 63.8 70.3 71.8 72.6 73.3 70.4� 0.2
(d) 3 7 7 7 60.8 69.7 71.0 72.3 72.3 69.2� 0.3
(e) 7 3 7 7 63.1 69.9 70.9 71.2 71.9 69.4� 0.4

multi-class labeling model, with just 200K clicks, outperforms the dominant class labeling counterpart
that uses 500K clicks on Cityscapes. When using ResNet50, the multi-class labeling model equipped
with PixBal sampling, achieves 95% mIoU of the fully-supervised model using only 200K clicks on
Cityscapes and 20K clicks on VOC, respectively.

Impact of the proposed sampling method.Fig. 4 also demonstrates the ef�cacy ofPixBal. On
Cityscapes,PixBal consistently outperforms all the other sampling methods regardless of budget size.
It also enhances the performance of dominant class labeling. On VOC,PixBal generally surpasses the
baselines, although its improvement overBvSB, which lacks class balancing, is marginal at times
since VOC less suffers from class imbalance than Cityscapes. Further analysis on these sampling
methods are provided in Appendix C.4.

Comparison with various query designs. In Table 1, we evaluate multi-class labeling against
baseline methods employing different query designs: drawing polygon mask within an image patch
(Patch+Polygon), clicking dominant class within superpixel (Spx+Dominant), and clicking all classes
within superpixel (Spx+Multi-class). Following the prior work [9], in this experiment, we measure
the ratio of clicks used, relative to the total number of clicks required to draw polygon masks on all
images (i.e., full supervision). We then measure the ratio of clicks each method needs to achieve 95%
mIoU of the fully-supervised model. As indicated in Table 1, superpixel-based methods typically
outperform the baselines using patch or polygon queries. Among these, our multi-class labeling
stands out, achieving 95% mIoU of the fully-supervised model using only 4% of its required data.

4.3 In-depth analysis on the proposed method

The number of classes in selected regions.The histogram and cumulative distribution of Fig. 5
summarize the number of classes within regions selected at round-5 using ourPixBal sampling method
on Cityscapes. We observe that more than 50% of the selected regions contain two or more classes,
explaining the necessity of multi-class labeling. This also suggests that, regarding labeling cost in
reality (i.e., actual annotation time), multi-class labeling holds potential for further improvement in
ef�ciency as it requires less labeling time for multi-class regions (Fig. 1).

Contribution of each component. Table 2 quanti�es the contribution of each component in our
method over �ve rounds: merged positive loss in Eq. (7), prototypical pixel loss in Eq. (9), intra-region
label localization, and label expansion. The results show that all components improve performance at
every round. The performance gap between (c) and (e) in the table veri�es the ef�cacy of merged
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Figure 6: Qualitative comparisons between different labeling strategies. (a) Dominant class labels.
(b) Label localization. (c) Label localization + label expansion. (d) Ground-truth.

positive loss for learning with multi-class labels. Meanwhile, the gap between (c) and (d) in the
table shows the ef�cacy of prototypical pixel loss, particularly at the initial round with severe
class imbalance due to random sampling. The largest mIoU gain is achieved by intra-region label
localization, as shown by the gap between (b) and (c) of the table. Lastly, label expansion further
boosts the performance by 1.2%p on average.

Qualitative analysis on pseudo labels.Fig. 6 qualitatively compares region-wise dominant class
labels and pixel-wise pseudo labels given by the proposed method to show the label disambiguation
ability of our method. Regions labeled with dominant classes overlook areas occupied by minor
classes. In contrast, our intra-region localization accurately identi�es various classes within each
region as shown in the second column of Fig. 6. Moreover, label expansion augments the amount of
supervision by referencing the class composition within the region. Notably, minor classes within a
region often signi�cantly enhance the quality of pseudo labels via label expansion.

Figure 7: mIoU gain (%) from intra-region label local-
ization and label expansion varying budgets. (a) Gain of
label localization with vs. without prototype. (b) Gain
of label expansion on dominant and multi-class labels.

Ablation study of pseudo labeling.Fig. 7
presents our ablation study on pseudo label-
ing with ResNet50 on Cityscapes. Fig. 7(a)
compares performance improvement by the
intra-region label localization (w/ proto-
types) and that by a baseline assigning the
most con�dent class among multi-class la-
bels as a pixel-wise pseudo label (w/o pro-
totypes). The result suggests that using
prototypes consistently surpasses the base-
line across different budgets due to their
adaptability to local regions. In Fig. 7(b),
we investigate the improvement when la-
bel expansion is applied to multi-class and
dominant class labels across varying bud-
gets. It turns out that label expansion is
more effective with multi-class labeling, as it enables the propagation of pseudo labels belonging to
multiple classes, leading to a more extensive expansion of pseudo labels.

Impact of region generation algorithm. In Fig. 8(a), we evaluate both dominant class labeling
(Dom) and multi-class labeling (Mul) across two superpixel generation algorithms: SLIC [1] and
SEEDS [59]. Both labeling methods show better performance when combined with SEEDS. This is
because SEEDS is better than SLIC in terms of boundary recall [57] and thus regions generated by
SEEDS better preserves the class boundary. Note that the dominant class labeling shows signi�cant
performance degradation when combined with SLIC, while the multi-class labeling only shows a
modest performance drop. This result suggests that the proposed multi-class labeling is more robust
to the quality of the superpixel generation algorithm.
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