
Multi Time Scale World Models

Anonymous Author(s)
Affiliation
Address
email

A Implementation Details1

Figure 1: Schematic of a 2-Level MTS3 Architecture. Inference in MTS3 takes place via closed-form
equations derived using exact inference, spread across two-time scales. For the fast time scale (fts)
SSM, these include the task conditional state predict and observation update stages as discussed in
Section 3.2 of the main paper. Whereas, for the slow time scale (sts) SSM, these include the task
prediction and task update stages which are described in Section 3.3.

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

A.1 Inference In Slow Time Scale SSM2

A.1.1 Inferring Action Abstraction (sts-SSM)3

αk,t

t

at,k

αk

N

Figure 2: Generative model for
the abstract action αk. The
hollow arrows are determinis-
tic transformations leading to
implicit distribution αk,t using
an action set encoder.

Given a set of encoded primitive actions and their correspond-4

ing variances {αk,t,ρk,t}Ht=1, using the prior and observation5

model assumptions in Section 3.1.2 of main paper, we infer6

the latent abstract action p(αk|αk,1:H) = N (µαk
,Σαk

) =7

N (µαk
, diag(σαk

)) as a Bayesian aggregation [10] of these us-8

ing the following closed-form equations:9

σαk
=

(
(σ0)

⊖
+

N∑
n=1

(
(ρk,t)

⊖
))⊖

,

µαk
= µ0 + σαk

⊙
N∑

n=1

(αk,t − µ0)⊘ ρk,t

Here, ⊖, ⊙ and ⊘ denote element-wise inversion, product, and10

division, respectively. The update equation is coded as the “abstract action inference” neural network11

layer as shown in Figure 1.12

A.1.2 Task Prediction (sts-SSM)13

The goal of this step is to update the prior marginal over the latent task variable lk, p(lk|β1:k−1,α1:k),14

given the posterior beliefs from the time window k − 1 and abstract action αk.15

Using the linear dynamics model assumptions from Section 3.3, we can use the following closed-form16

update equations to compute, p(lk|β1:k−1,α1:k) = N (µ−
lk
,Σ−

lk
), where17

µ−
lk

= Xµ+
lk−1

+Yαk

Σ−
lk

= XΣ+
lk−1

XT +YΣαk
YT + S.

(1)

These closed-form equations are coded as the “task predict” neural net layer as shown in Figure 1.18

A.1.3 Task Update (sts-SSM)19

In this stage, we update the prior over lk using an abstract observation set {βk,t}Ht=1, to ob-20

tain the latent task the posterior N (µ+
zk,t

,Σ+
zk,t

) = N (

[
µu+

t

µl+
t

]
,

[
Σu

t Σs
t

Σs
t Σl

t

]+
), with Σu

lk
=21

diag(σu
lk
), Σl

lk
= diag(σl

lk
) and Σs

lk
= diag(σs

lk
).22

To do so we first invert the prior covariance matrix
[

Σu
lk

Σs
lk

Σs
lk

Σl
lk

]+
to the precision matrix23 [

λu
lk

λs
lk

λs
lk

λl
lk

]+
for permutation invariant parallel processing. The posterior precision is then com-24

puted using scalar operations are follows, where only λu
lk

is changed by25

λu+
lk

= λu−
lk

+

H∑
t=1

1⊘ νk,t (2)

while λl+
lk

= λl−
lk

and λs+
lk

= λs−
lk

remain constant. The operator ⊘ denotes the element-wise26

division. The posterior precision is inverted back to the posterior covariance vectors σu+
lk

, σl+
lk

and27

σs+
lk

. Now, the posterior mean µ+
l,k can be obtained from the prior mean µ−

l,k as28

µ+
l,k = µ−

l,k +

[
σu+

lk
σs+

lk

]
⊙

[∑H
t=1

(
βk,t − µu,−

lk

)
⊘ νk,t∑H

t=1

(
βk,t − µu,−

lk

)
⊘ νk,t

]
. (3)

2

Figure 3: Implementation of task update layer which performs posterior latent task inference in the
sts-SSM.

29

The inversion between the covariance matrix and precision matrix can be done via scalar operations30

leveraging block diagonal structure as derived in Appendix B. Figure 3 shows the schematic of the31

task update layer.32

A.2 Inference In Fast Time Scale SSM33

The inference in fts-SSM for a time-window k involves two stages as illustrated in Figure ??,34

calculating the prior and posterior over the latent state variable zt. To keep the notation uncluttered,35

we will also omit the time-window index k whenever the context is clear as in section 3.2.36

A.2.1 Task Conditional State Prediction (fts-SSM)37

Following the assumptions of a task conditional linear dynamics as in Section 3.2 of the main paper,38

we obtain the prior marginal for p(zk,t|wk
1:t−1,a

k
1:t−1,β1:k−1,α1:k−1) = N (µ−

zk,t
,Σ−

zk,t
) in closed39

form, where40

µ−
zk,t

= Aµ−
zk,t−1

+Bak,t−1 +Cµ−
lk
,

Σ−
k,t = AΣ+

k,t−1A
T +CΣ−

lk
CT +Q.

(4)

A.2.2 Observation Update (fts-SSM)41

In this stage, we compute the posterior belief p(zk,t|wk
1:t,a

k
1:t,β1:k,α1:k−1) = N (µ−

zk,t
,Σ−

zk,t
).42

using the same closed-form update as in [1]. The choice of the special observation model43

splits the state into two parts, an upper zu
t and a lower part zl

t, resulting in the posterior belief44

N (µ−
zk,t

,Σ−
zk,t

) = N (

[
µu+

t

µl+
t

]
,

[
Σu

t Σs
t

Σs
t Σl

t

]+
), with Σu

t = diag(σs
t), Σl

t = diag(σl
t) and45

Σs
t = diag(σs

t). Thus, the factorization allows for only the diagonal and one off-diagonal vector of46

the covariance to be computed and simplifies the calculation of the mean and posterior to simple47

scalar operations.48

The closed-form equations for the mean can be expressed as the following scalar equations,49

z+
t = z−

t +

[
σu,−

t

σl,−
t

]
⊙
[

wt − zu,−
t

wt − zu,−
t

]
⊘
[

σu,−
t + σobs

t

σu,−
t + σobs

t

]
,

The corresponding equations for the variance update can be expressed as the following scalar50

operations,51

σu,+
t = σu,−

t ⊙ σu,−
t ⊘

(
σu,−

t + σobs
t

)
,

σs,+
t = σu,−

t ⊙ σs,−
t ⊘

(
σu,−

t + σobs
t

)
,

σl,+
t = σl,−

t − σs,−
t ⊙ σs,−

t ⊘
(
σu,−

t + σobs
t

)
,

, where ⊙ denotes the elementwise vector product and ⊘ denotes an elementwise vector division.52

3

A.3 Modelling Assumptions53

A.3.1 Control Model54

To achieve action conditioning within the recurrent cell of fts-SMM, we include a control model55

b(ak,t) in addition to the linear transition model At. b(ak,t) = f(ak,t), where f(.) can be any56

non-linear function approximator. We use a multi-layer neural network regressor with ReLU activa-57

tions [8].58

However, unlike the fts-SSM where actions are assumed to be known and subjected to no noise, in59

the sts-SSM, the abstract action is an inferred latent variable with an associated uncertainty estimate.60

Hence we use a linear control model Y , for principled uncertainty propagation.61

A.3.2 Transition Noise62

We assume the covariance of the transition noise Q and S in both timescales to be diagonal. The63

noise is learned and is independent of the latent state.64

A.4 Training65

A.4.1 Training Objective Derivation66

We further expand on the training objective in Section 4.2 here. The training objective for the MTS367

involves maximizing the posterior predictive log-likelihood which for a single trajectory, can be68

derived as,69

L =

N∑
k=1

H∑
t=1

log p(ok,t+1|β1:k−1,α1:k−1,wk,1:t,ak,1:t)

=

N∑
k=1

H∑
t=1

log

∫∫
p(ok,t+1|zk,t+1)p(zk,t+1|wk,1:t,ak,1:t, lk)p(lk|β1:k−1,α1:k−1)dzk,t+1dlk

=

N∑
k=1

H∑
t=1

log

∫
p(ok,t+1|zk,t+1)plk(zk,t+1|wk,1:t,ak,1:t)dzk,t+1. (5)

The extension to multiple trajectories is straightforward. The approximation to the objective is done70

based on a moment-matching perspective as discussed in Section 4.2 of the main paper.71

A.4.2 Initialization72

We initialize the states l1 and z1,1 at both timescales for the first-time window k = 1 with an all zeros73

vector and corresponding covariance matrices as Σl1 = Σz1,1 = 10 · I. For subsequent windows, the74

prior belief p(zk,1) for the first time step of time window k, is initialized using the posterior belief75

plk−1
(zk−1,H |wk−1,1:H ,ak−1,1:H) of the last time step of time window k − 1.76

It is also crucial to correctly initialize the transition matrix at both time scales so that the transition77

does not yield an unstable system. Initially, the transition model should focus on copying the encoder78

output so that the encoder can learn how to extract good features if observations are available and79

useful. We initialize the diagonal elements of the transition matrix at both timescales with 1 and the80

off-diagonal elements with 0.2, while the rest of the elements are set to 0, a choice inspired from [1].81

A.4.3 Learnable Parameters82

The learnable parameters in the computation graph are as follows:83

Fast Time Scale SSM: The linear transition model A, the non-linear control factor b, the linear84

latent task transformation model C, the transition noise Q, along with the observation encoder and85

the output decoder.86

Slow Time Scale SSM: The linear transition model X, the linear control model Y, the transition87

noise S, along with the observation set encoder and the action set encoder.88

4

B Proofs and Derivations89

ri ℓ

N

Figure 4: Graphical
Model For Bayesian con-
ditioning with N obser-
vations.

In the following sections vectors are denoted by a lowercase letter in90

bold, such as "v", while Matrices as an uppercase letter in bold, such91

as "M". I denotes identity matrix and 0 represents a matrix filled with92

zeros. For any matrix M, m denotes the corresponding vector of diagonal93

entries. Also, ⊙ denotes the elementwise vector product and ⊘ denotes94

an elementwise vector division.95

B.1 Bayesian Conditioning As Permutation Invariant Set96

Operations97

Gaussian Update Rule 1 (Bayesian Conditioning). Consider the graphical model given in Figure98

4, where a set of N conditionally i.i.d observations r̄ = {ri}Ni=1 are generated by a latent variable99

l and the observation model p(ri|l) = N
(
ri | Hl, diag(σobs

i)
)
. Assuming an observation model100

H = [I,0], the mean (µ) and precision matrix (Λ) of the posterior over the latent variable l, p(l|r̄) =101

N
(
µ+

l ,Σ
+
l

)
= N

(
µ+

l , (Λ
+
l)

−1
)
, given the prior p0(l) = N

(
µ−

l ,Σ
−
l

)
= N

(
µ−

l , (Λ
−
l)

−1
)

have102

the following permutation invariant closed form updates.103

Λ+
l = Λ−

l +

[
diag(

∑n
i=1

1
σobs

i

), 0

0, 0

]

µ+
l = µ−

l +

[
σu+

l

σs+
l

]
⊙

[∑N
i=1

(
ri − µu,−

l

)
⊙ 1

σobs
i∑N

i=1

(
ri − µu,−

l

)
⊙ 1

σobs
i

] (6)

Note that Σl is the covariance matrix which is the inverse of the precision matrix Λl. Due to the
observation model assumption H = [I,0], they take block diagonal form,

Σl =

[
Σu

l Σs
l

Σs
l Σl

l

]
, with Σu = diag(σu

l), Σl = diag(σl
l) and Σs = diag(σs

l).

Proof:104

Case 1 (Single Observation): Before deriving the update rule for N conditionally iid observations,105

let us start with a simpler case consisting of a single observation r. If the marginal Gaussian distri-106

bution for the latent variable l takes the form p(l) = N
(
l | µ,Λ−1

)
and the conditional Gaussian107

distribution for he single observation r given l has the form , p(r | l) = N
(
r | Hl+ b,L−1

)
. Then108

the posterior distribution over l can be obtained in closed form as,109

p(l | r) = N
(
l | Σ

{
HTLr+Λµ

}
,Λ−1

)
,where Λ =

(
Λ+HTLH

)
. (7)

We refer to [2] to the proof for this standard result.110

Case 2 (Set Of Observations): Now instead of a single observation, we wish to derive a closed form
solution for the posterior over latent variable l ∈ R2d, given a set of N conditionally i.i.d observations
r̄ = {ri}Ni=1. Here each element ri ∈ Rd of the set r̄ is assumed to to have an observation model
H = [I,0]. In the derivation, we represent the set of N observations as a random vector

r̄ =


r1
r2
.
.
rN


Nd×1

.

Since each observation in the set r̄ are conditionally independent, we denote the conditional distri-
bution over the context set as r̄ | l ∼ N

(
H̄l,Σr

)
, where the diagonal covariance matrix has the

following form:

Σr =


diag(σr1), 0, 0, .., 0
0, diag(σr2), 0, .., 0
., ., ., .., .
., ., ., .., .
0, 0, 0, .., diag(σrN)


Nd×Nd

.

5

The corresponding observation model H̄ is

H̄ =


H
H
.
.
H


Nd×2d

=


I,0
I,0
., .
., .
I,0


Nd×2d

.

Now given the prior over the latent task variable l ∼ N
(
µ−
l ,Σ

−
l

)
, the parameters of the posterior111

distribution over the task variable, p(l|r̄) ∼ N
(
µ+
l ,Λ

+
l

)
, can be obtained in closed-form substituting112

in Equation (7) as follows.113

Λ+
l = (Σ+

l)
−1

= Σ−1
l + H̄TΣrH̄

= Σ−1
l +

[
diag(σr1), diag(σr2), diag(σr3), ., ., diag(σrN)
0, 0, 0, ., ., 0

]
2d×nd

H̄

= λ−
l +

[
diag(

∑n
i=1

1
σri

), 0

0, 0

]
2d×2d

µ+
l = µ−

l + (Λ+)−1H̄T
(
σ−2
r I

) (
y − H̄µx

)
= µ−

l +Σ+H̄
(
σ−2
r I

) (
y − H̄µx

)
= µ−

l +Σ+

[
σ−2
r1

I, σ−2
r2

I, σ−2
r3

I, ., ., σ−2
rn

I
0, 0, 0, ., ., 0

] (
y − H̄µx

)
= µ−

l +

[
σu+
l , σs+

l

σs+
l , σl+

l

] [∑N
n=1

(
rn − µu,−

l

)
⊙ 1

σi

0

]

= µ−
l +

[
σu+
l

σs+
l

]
⊙

[∑N
i=1

(
ri − µu,−

l

)
⊙ 1

σri∑N
i=1

(
rn − µu,−

l

)
⊙ 1

σri

]

(8)

Here µ+
l is the posterior mean and Λ+

l is the posterior precision matrix.114

Corollary 1. The closed form updates for the resulting posterior distribution p(l|r̄) is permutation115

invariant with respect to the observation set r̄.116

B.2 Derivation For Matrix Inversions as Scalar Operations117

Inversion Of Block Diagonal Matrix. Consider a block matrix of the following form A =118 [
diag(au) diag(as)
diag(as) diag(al)

]
. Then inverse A−1 = B can be calculated using scalar operations119

and is given as, B =

[
diag(bu) diag(bs)

diag(bs) diag(bl)

]
where,120

bu = al ⊘ (au ⊙ al − as ⊙ as)

bs = −as ⊘ (au ⊙ al − as ⊙ as)

bl = au ⊘ (au ⊙ al − as ⊙ as)

(9)

.121

Proof: To prove this we will use the following matrix identity of a partitioned matrix from [2],122

which states123 (
A B
C D

)−1

=

(
M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)
(10)

where M is defined as
M =

(
A− BD−1C

)−1
.

Here M is called the Schur complement of the Matrix on the left side of Equation 10. The algebraic124

manipulations to arrive at scalar operations in Equation 9 are straightforward.125

6

C Metrics Used For Measuring Long Horizon Predictions126

C.1 Sliding Window RMSE127

The sliding window RMSE (Root Mean Squared Error) metric is computed for a predicted trajectory
in comparison to its ground truth. At each time step, the RMSE for each trajectory is determined by
taking the root mean square of the differences between the ground truth and predicted values within a
sliding window that terminates at the current time step. This sliding window, with a specified size,
provides a smoothed localized assessment of prediction accuracy over the entire prediction length.
Mathematically, the sliding window RMSE at time step t is given by:

RMSE(t) =

√√√√ 1

W

t∑
i=t−W+1

(gti − predi)
2

where t is the current time step, W is the window size, and gti and predi are the ground truth and128

predicted values at time step i, respectively. The extension to multiple trajectories is straightforward129

and omitted to keep the notation uncluttered.130

C.2 Sliding Window NLL131

The sliding window NLL (Negative Log-Likelihood) metric is computed for a predicted probability132

distribution against the true distribution. At each time step, the NLL is determined by summing133

the negative log-likelihood values within a sliding window that terminates at the current time step.134

This sliding window, with a specified size, provides a smoothed localized evaluation of prediction135

accuracy across the entire sequence.136

Mathematically, the sliding window NLL at time step t is given by:

NLL(t) = − 1

W

t∑
i=t−W+1

logN (gti | predMeani,predVari)

where t is the current time step, W is the window size. predMeani, predVari, and gti represent the137

predicted mean, predicted variance, and the ground truth at time step i.138

D Additional Experiments and Plots139

D.1 Additional results on ablation with discretization step H.∆t140

0.5 1.0 1.5 2.0 2.5 3.0
Seconds (Each Second = 250 timesteps)

0.1

0.2

0.3

0.4

0.5

0.6

Flat MTS3
2
3

5
10
30

50
75 (chosen in paper)
150

RM
SE

Figure 5: Ablation on discretization
step H.∆t. The long-term prediction
results in terms of RMSE, with differ-
ent H on the mobile dataset.

In addition to the Hydraulics Dataset discussed in Section141

6.4, we report the results of the ablation study with different142

values of H.∆t, for the mobile robot dataset. The higher the143

value of H, the slower the timescale of the task dynamics144

relative to the state dynamics. As seen in Figure 5, smaller145

values of H (like 2,3,5 and 10) give significantly worse146

performance. Very large values of H (like 150) also result in147

degradation of performance. In the paper, we used a value148

of H=75.149

D.2 Visualization150

of predictions given by different models.151

In this section, we plot the multistep ahead predictions (mean152

and variance) by different models on 3 datasets on normalized test trajectories. Not that we omit NaN153

values in predictions while plotting.154

7

D.2.1 Franka Kitchen155

0 25 50 75 100 125 150

1.0

0.5

0.0 MTS3

Ground Truth

Predictions

Masked

0 25 50 75 100 125 150
1.5

1.0

0.5

0.0

0.5 AR-Transformer

Ground Truth

Predictions

Masked

0 25 50 75 100 125 150

1.0

0.5

0.0Multi-Transformer

Ground Truth

Predictions

Masked

0 25 50 75 100 125 150

2

1

0
LSTM

Ground Truth

Predictions

Masked

0 25 50 75 100 125 150
1.5

1.0

0.5

0.0

0.5
RKN

Ground Truth

Predictions

Masked

Figure 6: Multi-step ahead mean and variance predictions for a particular joint (joint 1) of Franka
Kitchen Environment. The multi-step ahead prediction starts from the first red dot, which indicates
masked observations. MTS3 gives the most reliable mean and variance estimates.

8

D.2.2 Hydraulic Excavator156

0 200 400 600 800 1000 1200

0.5

0.0

0.5

1.0

1.5
MTS3

Ground Truth

Predictions

Masked

0 200 400 600 800 1000 1200

0

1

2 AR-Transformer

Ground Truth

Predictions

Masked

0 200 400 600 800 1000 1200

0.5

0.0

0.5

1.0Multi-Transformer

Ground Truth

Predictions

Masked

0 200 400 600 800 1000 1200

0.5

0.0

0.5

1.0

1.5
LSTM

Ground Truth

Predictions

Masked

0 200 400 600 800 1000 1200
1.0

0.5

0.0

0.5

1.0
RKN

Ground Truth

Predictions

Masked

Figure 7: Multi-step ahead mean and variance predictions for a particular joint (joint 1) of Excavator
Dataset. The multi-step ahead prediction starts from the first red dot, which indicates masked
observations. MTS3 gives the most reliable mean and variance estimates even up to 12 seconds into
the future. Another interesting observation can also be seen in the predictions for MTS3, where
after every window k of sts-SSM, which is 0.3 seconds (30 timesteps) long, the updation of the
higher-level abstractions helps in grounding the lower-level predictions thus helping in the long
horizon yet fine-grained predictions.

9

D.2.3 Mobile Robot157

0 200 400 600 800

0.50

0.25

0.00

0.25
MTS3

Ground Truth

Predictions

Masked

0 200 400 600 800

0.4

0.2

0.0

0.2 AR-Transformer

Ground Truth

Predictions

Masked

0 200 400 600 800

0.4

0.2

0.0

0.2
Multi-Transformer

Ground Truth

Predictions

Masked

0 200 400 600 800
1.0

0.5

0.0

0.5

1.0
LSTM

Ground Truth

Predictions

Masked

0 200 400 600 800
1.0

0.5

0.0

0.5

1.0
RKN

Ground Truth

Predictions

Masked

Figure 8: Multi-step ahead mean and variance predictions for a particular joint (joint 7) of Mobile
Robot Dataset. The multi-step ahead prediction starts from the first red dot, which indicates masked
observations. MTS3 gives the most accurate mean and variance estimates among all algorithms.

10

E Robots and Data158

In all datasets, we only use information about agent/object positions and we mask out velocities159

to create a partially observable setting. All datasets are subjected to a mean zero, unit variance160

normalization during training. During testing, they are denormalized after predictions. The details of161

the different datasets used are explained below:162

E.1 D4RL Datasets163

Details: We use a set of 3 different environments/agents from D4RL dataset [4], which includes164

the HalfCheetah, Franka Kitchen and Maze2D (medium) environment. (a) HalfCheetah: We used165

1000 suboptimal trajectories collected from a policy trained to approximately 1/3 the performance166

of the expert. The observation space consists of 8 joint positions and the action space consists of 6167

joint torques collected at 50 Hz frequency. 800 trajectories were used for training and 200 for testing.168

For the long horizon task, we used 1.2 seconds (60 timesteps) as context and tasked the model to169

predict 6 seconds (300 timesteps) into the future. (b) Franka Kitchen: The goal of the Franka170

Kitchen environment is to interact with the various objects to reach a desired state configuration. The171

objects you can interact with include the position of the kettle, flipping the light switch, opening and172

closing the microwave and cabinet doors, or sliding the other cabinet door. We used the "complete"173

version of the dataset and collected 1000 trajectories where all four tasks are performed in order. The174

observation space consists of 30 dimensions (9 joint positions of the robot and 21 object positions).175

The action space consists of 9 joint velocities clipped between -1 and 1 rad/s. The data was collected176

at a 50 Hz frequency. 800 trajectories were used for training and 200 for testing. For the long horizon177

task, we used 0.6 seconds (30 timesteps) as context and tasked the model to predict 2.7 seconds (135178

timesteps) into the future. The dataset is complex due to multi-task, multi-object interactions in a179

single trajectory. (c) Medium Maze: We used 20000 trajectories from a 2D Maze environment,180

where each trajectory consists of a force-actuated ball (along the X and Y axis) moving to a fixed181

target location. The observation consists of as the (x, y) locations and a 2D action space. The data is182

collected at 100 Hz frequency. 16000 trajectories were used for training and 4000 for testing. For the183

long horizon task, we used 0.6 seconds (60 timesteps) as context and tasked the model to predict 3.9184

seconds (390 timesteps) into the future. Rendering of the three environments is shown in Figure 9.185

Figure 9: D4RL Environments: (left) HalfCheetah (middle) Franka Kitchen (right) Maze2D-Medium

E.2 Hydraulic Excavator186

Details: We collected the data from a wheeled excavator JCB Hydradig 110W show in Figure187

10. The data was collected by actuating the boom and arm of the excavator using Multisine and188

Amplitude-Modulated Pseudo-Random Binary Sequence (APRBS) joystick signals with safety189

mechanisms in place. A total of 150 mins of data was collected at a frequency of 100 Hz. of which190

was used as a training dataset and the rest as testing. The observation space consists of the boom and191

arm positions, while the joystick signals are chosen as actions. For the long horizon task we used 1.5192

seconds (150 timesteps) as context and tasked the model to predict 12 seconds (1200 timesteps) into193

the future.194

195

E.3 Panda Robot With Varying Payloads196

Details: We collected the data from a 7 DoF Franka Emika Panda manipulator during free motion197

and while manipulating loads with weights 0kg (free motion), 0.5 kg, 1 kg, 1.5 kg, 2 kg and 2.5198

11

Figure 10: (left) JCB Hydradig 110W Excavator (right) Franka Emika Panda Robot

kg. The robot used is shown in Figure 10. Data is sampled at a frequency of 100 Hz. The training199

trajectories were motions with loads of 0kg(free motion), 1kg, 1.5kg, and 2.5 kgs, while the testing200

trajectories contained motions with loads of 0.5 kg and 2 kg. The observations for the forward model201

consist of the seven joint angles in radians, and the corresponding actions were joint Torques in Nm.202

For the long horizon task we used 0.6 seconds (60 timesteps) as context and tasked the model to203

predict 1.8 seconds (180 timesteps) into the future.204

205

E.4 Wheeled Mobile Robot206

Figure 11: Wheeled Mobile Robot traversing ter-
rain with complex variations in slopes induced by
a mix of sine functions.

Observation and Data Set: We collected 50
random trajectories from a Pybullet simulator
a wheeled mobile robot traversing terrain with
slopes generated by a mix of sine waves as
shown in Figure 11. Data is sampled at high
frequencies (500Hz). 40 out of the 50 trajecto-
ries were used for training and the rest 10 for
testing. The observations consist of parameters
which completely describe the location and ori-
entation of the robot. The observation of the
robot at any time instance t consists of the fol-
lowing features:

ot = [x, y, z, cos(α), sin(α), cos(β)
sin(β), cos(γ), sin(γ)]

where, x, y, z - denote the global position of the Center of Mass of the robot, α, β, γ− Roll, pitch207

and yaw angles of the robot respectively, in the global frame of reference [9]. For the long horizon208

task we used 0.6 seconds (150 timesteps) as context and tasked the model to predict 3 seconds (750209

timesteps) into the future.210

211

12

F Hyperparameters and Compute Resources212

Compute Resources For training MTS3, LSTM, GRU and Transformer models we used compute213

nodes with (i) Nvidia 3090 and (ii) Nvidia 2080 RTX GPUs. For training more computationally214

expensive locally linear models like RKN, HiP-RSSM we used compute nodes with NVIDIA A100-40215

GPUs.216

Hyperparameters Hyperparameters were selected via grid search. In general, the performance of217

MTS3 is not very sensitive to hyperparameters. Among all the baselines, Transformer models were218

most sensitive to hyperparameters (see Appendix E.5 for details of Transformer architecture).219

Discretization Step: For MTS3, the discretization step for the slow time scale SSM as discussed in220

Section 3.1 for all datasets was fixed as H ·∆t = 0.3 seconds. In our experiments, we found that221

discretization values between 0.2 ≤ H ·∆t ≤ 0.5 seconds give similar performance.222

Rule Of thumb for choosing discretization step in MTS3: For any N-level MTS3 as defined in223

Section 3.4, we recommend searching for discretization factor Hi as a hyperparameter. However,224

as a general rule of thumb, it can be chosen as Hi = (N
√
T)i, where T is the maximum prediction225

horizon required / episode length. This ensures that very long recurrences are divided between226

smaller equal-length task-reconfigurable local SSM windows (of length N
√
T) spread across several227

hierarchies.228

Encoder Decoder Architecture: For all recurrent models (MTS3, HiP-RSSM, RKN, LSTM and229

GRU) we use a similar encoder-decoder architecture across datasets. Small variations from these230

encoder-decoder architecture hyperparameters can still lead to similar prediction performance as231

reported in the paper.232

233

Observation Set Encoder (MTS3): 1 fully connected + linear output:234

• Fully Connected 1: 240, ReLU235

Action Set Encoder (MTS3): 1 fully connected + linear output:236

• Fully Connected 1: 240, ReLU237

Observation Encoder (MTS3, HiP-RSSM, RKN, LSTM, GRU): 1 fully connected + linear output:238

• Fully Connected 1: 120, ReLU239

Observation Decoder (MTS3, HiP-RSSM, RKN, LSTM, GRU): 1 fully connected + linear output:240

• Fully Connected 1: 120, ReLU241

Control Model (Primitive Action Encoder) (MTS3, HiP-RSSM, RKN): 1 fully connected + linear242

output:243

• Fully Connected 1: 120, ReLU244

The rest of the hyperparameters are described below:245

F.1 D4RL Datasets246

F.1.1 Half Cheetah247

Recurrent Models248

Transition Model (HiP-RSSM, RKN): number of basis: 32249

• α(zt): No hidden layers - softmax output250

13

Hyperparameters MTS3 HiP-RSSM RKN LSTM GRU
Learning Rate 3e-3 1e-3 1e-3 1e-3 1e-3

Latent Observation Dimension 15 15 15 15 15
Observation Set Latent Dimension (sts-SSM) 15 - - - -

Latent State Dimension 30 30 30 45 45
Latent Task Dimension 30 30 - - -

Latent Abstract Action Dimension (sts-SSM) 30 - - - -

Autoregressive Transformer Baseline251

Learning Rate: 1e-5252

Optimizer Used: Adam Optimizer253

Embedding size: 96254

Number of Decoder Layers: 4255

Number Of Attention Heads: 4256

Multistep Transformer Baseline257

Learning Rate: 1e-5258

Optimizer Used: Adam Optimizer259

Embedding size: 128260

Number Of Encoder Layers: 2261

Number of Decoder Layers: 1262

Number Of Attention Heads: 4263

F.1.2 Franka Kitchen264

Recurrent Models

Hyperparameters MTS3 HiP-RSSM RKN LSTM GRU
Learning Rate 3e-3 9e-4 9e-4 1e-3 1e-3

Latent Observation Dimension 30 30 30 30 30
Observation Set Latent Dimension (sts-SSM) 30 - - - -

Latent State Dimension 60 60 60 90 90
Latent Task Dimension 60 60 - - -

Latent Abstract Action Dimension (sts-SSM) 60 - - - -

265

Transition Model (HiP-RSSM, RKN): number of basis: 15266

• α(zt): No hidden layers - softmax output267

Autoregressive Transformer Baseline268

Learning Rate: 5e-5269

Optimizer Used: Adam Optimizer270

Embedding size: 64271

Number of Decoder Layers: 4272

Number Of Attention Heads: 4273

Multistep Transformer Baseline274

Learning Rate: 1e-5275

Optimizer Used: Adam Optimizer276

Embedding size: 64277

Number Of Encoder Layers: 2278

Number of Decoder Layers: 1279

Number Of Attention Heads: 4280

F.1.3 Maze 2D281

Recurrent Models282

Transition Model (HiP-RSSM, RKN): number of basis: 15283

14

Hyperparameters MTS3 HiP-RSSM RKN LSTM GRU
Learning Rate 3e-3 9e-4 9e-4 1e-3 1e-3

Latent Observation Dimension 30 30 30 30 30
Observation Set Latent Dimension (sts-SSM) 30 - - - -

Latent State Dimension 60 60 60 90 90
Latent Task Dimension 60 60 - - -

Latent Abstract Action Dimension (sts-SSM) 60 - - - -

• α(zt): No hidden layers - softmax output284

Autoregressive Transformer Baseline285

Learning Rate: 5e-5286

Optimizer Used: Adam Optimizer287

Embedding size: 96288

Number of Decoder Layers: 4289

Number Of Attention Heads: 4290

Multistep Transformer Baseline291

Learning Rate: 1e-5292

Optimizer Used: Adam Optimizer293

Embedding size: 128294

Number Of Encoder Layers: 2295

Number of Decoder Layers: 1296

Number Of Attention Heads: 4297

F.2 Franka Robot Arm With Varying Loads298

Recurrent Models

Hyperparameters MTS3 HiP-RSSM RKN LSTM GRU
Learning Rate 3e-3 9e-4 9e-4 3e-3 3e-3

Latent Observation Dimension 15 15 15 15 15
Observation Set Latent Dimension (sts-SSM) 15 - - - -

Latent State Dimension 30 30 30 45 45
Latent Task Dimension 30 30 - - -

Latent Abstract Action Dimension (sts-SSM) 30 - - - -

299

Transition Model (HiP-RSSM,RKN): number of basis: 32300

• α(zt): No hidden layers - softmax output301

Autoregressive Transformer Baseline302

Learning Rate: 5e-5303

Optimizer Used: Adam Optimizer304

Embedding size: 64305

Number of Decoder Layers: 4306

Number Of Attention Heads: 4307

Multistep Transformer Baseline308

Learning Rate: 2e-5309

Optimizer Used: Adam Optimizer310

Embedding size: 64311

Number Of Encoder Layers: 2312

Number of Decoder Layers: 1313

Number Of Attention Heads: 4314

F.3 Hydraulic Excavator315

Transition Model (HiP-RSSM,RKN): number of basis: 15316

15

Hyperparameters MTS3 HiP-RSSM RKN LSTM GRU
Learning Rate 3e-3 8e-4 8e-4 1e-3 1e-3

Latent Observation Dimension 15 15 15 15 15
Observation Set Latent Dimension (sts-SSM) 15 - - - -

Latent State Dimension 30 30 30 45 45
Latent Task Dimension 30 30 - - -

Latent Abstract Action Dimension (sts-SSM) 30 - - - -

• coefficient net α(zt): No hidden layers - softmax output317

Autoregressive Transformer Baseline318

Learning Rate: 1e-5319

Optimizer Used: Adam Optimizer320

Embedding size: 96321

Number of Decoder Layers: 4322

Number Of Attention Heads: 4323

Multistep Transformer Baseline324

Learning Rate: 5e-5325

Optimizer Used: Adam Optimizer326

Embedding size: 64327

Number Of Encoder Layers: 2328

Number of Decoder Layers: 1329

Number Of Attention Heads: 4330

F.4 Wheeled Robot Traversing Uneven Terrain331

Hyperparameters MTS3 HiP-RSSM RKN LSTM GRU
Learning Rate 3e-3 8e-4 8e-4 1e-3 1e-3

Latent Observation Dimension 30 30 30 30 30
Observation Set Latent Dimension (sts-SSM) 30 - - - -

Latent State Dimension 60 60 60 90 90
Latent Task Dimension 60 60 - - -

Latent Abstract Action Dimension (sts-SSM) 60 - - - -

Transition Model (HiP-RSSM,RKN): number of basis: 15332

• coefficient net α(zt): No hidden layers - softmax output333

Autoregressive Transformer Baseline334

Learning Rate: 5e-5335

Optimizer Used: Adam Optimizer336

Embedding size: 128337

Number of Decoder Layers: 4338

Number Of Attention Heads: 4339

Multistep Transformer Baseline340

Learning Rate: 5e-5341

Optimizer Used: Adam Optimizer342

Embedding size: 64343

Number Of Encoder Layers: 4344

Number of Decoder Layers: 2345

Number Of Attention Heads: 4346

F.5 Transformer Architecture Details347

For the AR-Transformer Baseline, we use a GPT-like autoregressive version of transformers except348

that for the autoregressive input we also concatenate the actions to make action conditional predictions.349

16

For Multi-Transformer we use the same direct multistep prediction and loss as in recent Transformer350

time-series forecasting literature [12, 6, 7, 11]. A description of the action conditional direct multi-step351

version of the transformer is given in Algorithm 1.352

Algorithm 1: MultiStep Transformer

Require: Input past observations oinp ∈ RS×C ; Input Past Actions ainp ∈ RS×A; Future
Actions apred ∈ RO×A;Input Length S; Predict length O; Observation Dimension C; Action
Dimension A; Feature dimension dk; Encoder layers number N ; Decoder layers number M .

1: oinp ∈ RS×C ,ainp ∈ RS×A,apred ∈ RO×A

2: Xinp = ConCatFeatureWise (oinp,ainp) ▷Xinp ∈ RS×(C+A)

3: Xpred = ConCatFeatureWise (Zeros(O,C),apred) ▷Xpred ∈ RO×(C+A)

4: Xenc,Xdec = Xinp,ConCat (Xinp,Xpred) ▷Xenc ∈ RS×(C+A),Xdec ∈
R(S+O)×(C+A)

5: X0
enc = Embed (Xenc) ▷X0

enc ∈ RS×dk

6: for l in {1, · · · , N} do
7: Xl−1

enc = LayerNorm
(
Xl−1

enc +Attn
(
Xl−1

enc

))
▷Xl−1

enc ∈ RS×dk

8: Xl
enc = LayerNorm

(
Xl−1

enc + FFN
(
Xl−1

enc

))
▷Xl

enc ∈ RS×dk

end
9: X0

dec = Embed (Xdec) ▷X0
dec ∈ R(S+O)×dk

10: for for l in {1, · · · ,M} do
11: Xl−1

dec = LayerNorm
(
Xl−1

dec +Attn
(
Xl−1

dec

))
▷ Decoder

12: Xl−1
dec = LayerNorm

(
Xl−1

dec +Attn
(
Xl−1′

dec ,XN
enc

))
▷Xl−1

dec ∈ R(S+O)×dk

13: Xl
dec = LayerNorm

(
Xl−1

dec + FFN
(
Xl−1

dec

))
▷Xl

dec ∈ R(S+O)×dk

end
14: y = MLP

(
XM

dec

)
▷y ∈ R(S+O)×C

15: Return y ▷ Return the prediction results

17

G Limitations353

We list some of the limitations of the paper here. (i) We restricted our definition and experiments to354

MTS3 with two levels of temporal abstractions, which was sufficient in many of our tasks. However,355

for certain tasks like the Maze2D, we believe more hierarchies can help. As discussed in the main356

paper the method and inference scheme allows easy addition of more Feudal [3] hierarchies with357

larger discretization steps (H ·∆t). (ii) We restrict our application to action conditional long horizon358

future predictions and do not use the model for (hierarchical) control. A probabilistically principled359

formalism for hierarchical control as an inference problem, that builds upon MTS3 models is left360

for future work. (iii) Finally, we restrict our experiments to proprioceptive sensors from the agent361

and objects. The performance of MTS3 which relies on “reconstruction loss” as the objective is yet362

to be validated on noisy high dimensional sensor inputs like Images. Image-based experiments and363

“non-reconstruction” based losses [5] can be taken up as future work.364

H Broader Impact365

While we do not foresee any immediate negative societal impacts of our work, we do believe that366

machines that can replicate human intelligence at some point should be able to reason at multiple367

levels of temporal abstractions using internal world models [5]. Having intelligent agents with368

type 2 reasoning capabilities can have both positive and negative impacts. We believe identifying369

and mitigating the potentially harmful effects of such autonomous systems is the responsibility of370

sovereign governments.371

18

References372

[1] Philipp Becker, Harit Pandya, Gregor Gebhardt, Cheng Zhao, C James Taylor, and Gerhard373

Neumann. Recurrent kalman networks: Factorized inference in high-dimensional deep feature374

spaces. In International Conference on Machine Learning, pages 544–552. PMLR, 2019.375

[2] Christopher M Bishop. Pattern recognition. Machine learning, 128(9), 2006.376

[3] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural377

information processing systems, 5, 1992.378

[4] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for379

deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.380

[5] Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27.381

Open Review, 62, 2022.382

[6] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers:383

Exploring the stationarity in time series forecasting. In Alice H. Oh, Alekh Agarwal, Danielle384

Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,385

2022.386

[7] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth387

64 words: Long-term forecasting with transformers. In The Eleventh International Conference388

on Learning Representations, 2023.389

[8] Vaisakh Shaj, Philipp Becker, Dieter Buchler, Harit Pandya, Niels van Duijkeren, C James390

Taylor, Marc Hanheide, and Gerhard Neumann. Action-conditional recurrent kalman networks391

for forward and inverse dynamics learning. Conference On Robot Learning, 2020.392

[9] Rohit Sonker and Ashish Dutta. Adding terrain height to improve model learning for path393

tracking on uneven terrain by a four wheel robot. IEEE Robotics and Automation Letters,394

6(1):239–246, 2020.395

[10] Michael Volpp, Fabian Flürenbrock, Lukas Grossberger, Christian Daniel, and Gerhard Neu-396

mann. Bayesian context aggregation for neural processes. In International Conference on397

Learning Representations, 2020.398

[11] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series399

forecasting? arXiv preprint arXiv:2205.13504, 2022.400

[12] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai401

Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In402

Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115,403

2021.404

19

	Implementation Details
	Inference In Slow Time Scale SSM
	Inferring Action Abstraction (sts-SSM)
	Task Prediction (sts-SSM)
	Task Update (sts-SSM)

	Inference In Fast Time Scale SSM
	Task Conditional State Prediction (fts-SSM)
	Observation Update (fts-SSM)

	Modelling Assumptions
	Control Model
	Transition Noise

	Training
	Training Objective Derivation
	Initialization
	Learnable Parameters

	Proofs and Derivations
	Bayesian Conditioning As Permutation Invariant Set Operations
	Derivation For Matrix Inversions as Scalar Operations

	Metrics Used For Measuring Long Horizon Predictions
	Sliding Window RMSE
	Sliding Window NLL

	Additional Experiments and Plots
	Additional results on ablation with discretization step H.t
	Visualization of predictions given by different models.
	Franka Kitchen
	Hydraulic Excavator
	Mobile Robot

	Robots and Data
	D4RL Datasets
	Hydraulic Excavator
	Panda Robot With Varying Payloads
	Wheeled Mobile Robot

	Hyperparameters and Compute Resources
	D4RL Datasets
	Half Cheetah
	Franka Kitchen
	Maze 2D

	Franka Robot Arm With Varying Loads
	Hydraulic Excavator
	Wheeled Robot Traversing Uneven Terrain
	Transformer Architecture Details

	Limitations
	Broader Impact

