
A python code for the figures and results is partially available at https:
//github.com/eliaturner/multitaskrepresentation.

1 Task and trial structure

1.1 Individual tasks
The design of tasks is elaborated in Section 2.2 of the main paper. Task inputs
consist of a sequence of pulses, each pulse being present for 5 steps with an as
the pulse’s magnitude. Subsequent to every input pulse, a delay interval selected
from the range [dmin, dmax] is employed before the next pulse emerges. Across
all experiments, we fix dmin = 10 and dmax = 40. The table presented below
delineates all pertinent details regarding the construction of individual tasks:

Attractor type Figures Input range Structure Trial duration
2 fixed points 1B, 2 {1, 3} y(an) = an 200

2 limit cycles 1B, 2 {1, 3} y(an, t) = 0.5 · sin
(

4πt
dmax

)
+ an 200

line attractor 1B, 2 [1, 3] y(an) = an 200
plane attractor 1B, 2 [1, 3] y(an, an−1) = an + an−1 200

2 nbits fixed points 3 {−1, 1} y(an) = an 200
line attractor 5 [1, 3] y(an) = 2 · ϕ

(
an−1

2

)
+ 1 250

ϕ(v) = vk, k = 1, 2, 4
ϕ(v) = 1− vk, k = 1, 2, 4
ϕ(v) = (1− v)k, k = 2, 4
ϕ(v) = 1− (1− v)k, k = 2, 4

1.2 Combining multiple tasks
Thus far, the input and output structure of individual tasks has been discussed.
Following, we examine how single tasks can be integrated into a multiple task
setup. In this paper, we only explore scenarios where each task possesses its own
distinct input and output channel. Specifically, the dimensionality of both the
input and output training tensors was [ntrials, nsteps, ntasks].

Given every task has its own output channel, there are at least three setups to
consider. Firstly, a gated setup, denoted by ∅, where each trial focuses on a single
task, while the output of other tasks is disregarded. Secondly, the orthogonal
setup, symbolized by ⊥, also concentrates on one task per trial, but mandates
the remaining outputs to be 0. Finally, the parallel (∥) setup, where all tasks
are active simultaneously in every trial.

Essentially, the ∅ trials are encompassed in both ⊥ and ∥ setups. Trials of ⊥
can be regarded as being contained in the ∥ setup, particularly for trials where
only one channel is active.

1

https://github.com/eliaturner/multitaskrepresentation
https://github.com/eliaturner/multitaskrepresentation

2 RNNs architecture and training

2.1 Network Architecture
The Vanilla RNN [1] with N = 100 units is utilized throughout the paper.

ht = tanh (Wihut+ bh +Wrecht−1) (1)

The readout is given by:

ŷt = Woutht + bout (2)

For some segments, the matrix Wrec was of rank-2, a product of two matrices
Wrec = mnT , where m,n ∈ RN×2.

To train the rank-2 networks [2] in Figures 4 and 5, full-rank RNNs were
initially trained on the given task, and then the final weights and the rank-2
approximation of the resulting Wrec, denoted as W 2

rec, were used:

USV T = Wrec → W 2
rec = s1,1u:,1v1,: + s2,2u:,2v2,:

These served as initial conditions for training a rank-2 model on the same tasks.
This model is denoted as Vanilla→Rank2.

2.2 Trainable Parameters and Weight Initialization
The parameters Wout, bout,and brec, when used, were initialized from the uniform
distribution U (−k, k), where k = 1√

N
. For the full rank version, Wih was also

initialized from U (−k, k), and Wrec was initialized from U (−k · g, k · g), with
g = 0.5, 1. For the rank-2 version, Wih was initialized from U (−k, k), and m
and n were initialized from N (0, k). Throughout the paper, the parameters
Wrec, bh,Wout, and bout were trained. In some instances, we also trained Win.
In certain cases, the recurrent bias term was excluded. The subsequent table
specifies the model, parameters used, and initialization used for each figure.

Model type Train Wih bh No. of nets g Task regime
1B Vanilla X V 0.5 ∅

2A,B Vanilla X V 30 ∅,⊥
10 0.5
20 1

2C,D Vanilla X V 10 0.5 ∅,⊥
3B Vanilla X X 10 0.5 ∅,⊥, ∥

3C,D Rank-2 X X ∥
5 Vanilla → Rank-2 V X 25 1 ∅

5C,D Vanilla V X 8× 45 1 ∅

2.3 Training protocol
All networks were trained using the Adam optimizer [3] for 10, 000 epochs with
a batch size of 32. The learning rate was initially set to 1× 10−3 and decayed

2

until it reached 1× 10−5. Unless specified otherwise, the training set consisted
of 400 trials, and the order of these trials was shuffled at the start of each epoch.
The performance of the network was evaluated using mean squared error (MSE),
and the training was stopped once a minimum threshold of 10−4 was achieved
over the training set.

2.3.1 Task and trial structure

For all tasks, the network was trained only on steps that did not include an
external input.

3 Data analysis

3.1 Plotting alternative setups
In Figure 1, we provide illustrative examples demonstrating how each of the task
setups, the gated, orthogonal, and parallel, lead to qualitatively different joint
representations:

2 bits

3 bits

∅ ⊥ ∥

Figure 1: The neural representation of the flip-flop task for the gated (∅),
orthogonal (⊥), and parallel (∥), for either two or three bits. For the two-bit
scenario, we projected into the first two principal components (PCs), and for
the three-bit scenario, we projected into the first three PCs. Each plot shows
the percentage of the variance explained by each dimension.

During training, each input value is generated from a uniform distribution.
However, during validation trials, we only generate values from a predefined
sequence of values:

3

v ∈ V :=

(
vmin +

l − 1

nvalues − 1
vmax

)nvalues

l=1

(3)

where nvalues is the number of desired samples. In our reports, we set
nvalues = 15.

3.2 Attractor extraction
For each task, we ran the dynamics for inputs sampled from the validation
set presented above. For every value, we allowed the dynamics to evolve au-
tonomously and collected the states reached when the neural speed was less than
10−4. We quantified the neural speed in phase space [4] as

q(ht) = ∥ht+1 − ht∥2, t ∈ N
For every condition, such as different input history, we averaged over the

set of states. When the network reached a limit cycle, we associated each input
condition with a complete cycle. At the end of the day, for every task, we had a
list of attractor states that span all possible input conditions.

3.3 Measuring separability
In Figure 1, for every pair of tasks, we trained a linear SVM to distinguish
between the attractor states of the tasks. In the gated setup, the tasks were
inseparable in all instances. In the orthogonal setup, all of the tasks were
separable. We normalized all of the states jointly before inputting them into the
algorithm. We used the sklearn.svm method with parameter C = 100.

3.4 F-factor
To assess the differences between the representations of two tasks, we utilized a
statistical method that compares the variances within and between the sets. This
approach, often used in statistical analysis, calculates the variances within each
set separately, var(R1) and var(R2), as well as the variance of the combined set
var(R1

⋃
R2). From these measurements, we define the within-group variance

as the mean of the two variances:

Vwithin =
var(R1) + var(R2)

2

The variance between groups is then defined as the difference between the
combined variance and the mean within-group variance:

Vbetween = var(R1

⋃
R2)− Vwithin

4

We then calculate the F-factor, denoted as F , by dividing the between-group
variance by the within-group variance:

F =
Vbetween

Vwithin

The F-ratio serves as a measure to assess the significance of the observed
differences. A larger F-ratio indicates a higher likelihood of significant differences
between the sets, while a smaller F-ratio suggests that the variation within the
sets is relatively higher compared to the variation between them. This analysis
is shown in Figure 2.C.

3.5 Spectrum analysis
For each network, we computed the spectrum of the eigenvalues of the recurrent
matrix Wrec. In Figure 1, we counted the number of eigenvalues with norm
greater than 1 for each network. In discrete systems, eigenvalues with a norm
greater than 1 are unstable. The spectrum, however, is not a complete description
for a nonlinear system. It does describe the dynamics around the origin (in the
absence of bias), and can therefore indicate when unstable modes develop. Under
certain assumptions (such as Gaussian distribution of low-rank perturbations),
there are exact links between outliers and nontrivial fixed points [5]. In general,
however, eigenvalues that are outside the bulk, but not larger than 1 can also
play a role in the dynamics. To capture this possibility, we devised the following
measure for Figure 2c (top),

∑N
i=1 w(λi)λi where

w(λ) =


0 |λ| <= 0.3

|λ| − 0.3 0.3 < |λ| <= 1.3

1 otherwise.

The value of 0.3 is given by the spectrum of the bulk - the expected distribution
of eigenvalues from Wigner’s circle law.

3.6 Rank-2 analysis
Analyzing the phase space of a high-dimensional system can be challenging.
While it is possible to gain some understanding through the analysis of input-
driven trajectories, it is not straightforward to access the entire dynamical
landscape. However, when we work with the rank-2 version, we can plot and
analyze the entire landscape by projecting every state h onto n, and then analyze
the system in the 2D system spanned by the columns of m—a plane we refer to
as the κ-plane—instead of looking at the original N dimensional space.

In the κ-plane, the neural speed can be redefined as:

q(kt) = ∥κt+1 − κt∥2, t ∈ N, κt+1 = nT tanh (κm+ brec)

5

In Figures 3 and 5, we analyze the dynamics as follows: We determine
the limits of the κ plane reached by the dynamics by considering κmax =
nT · sign(nT1). We then evaluate the q function over the two-dimensional grid
[−κ1

max, κ
1
max]× [−κ2

max, κ
2
max] at every point. This allows us to display the level

curves and verify to which slow region the dynamics of each task reaches, as
shown in Figure 3D. In Figure 3D, we used a q-value of 0.1 to locate the curves.
In Figure 5B, we used the level curves 0.1, 0.25, 0.5, and 1.

3.7 Repeating task-to-outlier analysis with other setups
We ran the same experiment of studying the relationship between number of
bits and number of unstable eigenvalues in two other configurations. The first is
Vanilla RNN, now initialized with a rich output regime: Wout, bout drawn from
U(− 1

N , 1
N) instead of U(− 1√

N
, 1√

N
). The second is GRU networks, trained with

the original regime. We trained the same number of networks in each of these
configurations.

A B

Figure 2: Repeating the analysis in fig.3B for both Vanilla networks trained on
rich output regime (left) and GRU networks (right)

4 How input-output architecture shapes solutions
In the paper we addressed the fact that we chose an input-output architecture
that imposes the minimal amount of constraints over the representation. Here,
we describe three distinct configurations for input delivery and two for output
delivery, showing how various combinations can lead to different results.

For input delivery, we consider three possibilities:

• A shared data channel + a transient context channel for each task. A
transient context is a short pulse of magnitude 1 at the beginning of each
trial.

• A shared data channel + a tonic context channel for each task. A tonic con-
text is continuously delivered during the trial as a fixed value of magnitude
1.

6

• A separate data channel for each task. This setup was used in the main
paper.

When a shared data channel is employed, the network must process inputs for all
tasks uniformly. Especially in transient context scenarios, there is less available
information during the trial to distinguish between the tasks.

For output delivery, we have two options:

1. A shared output channel

2. A separate output channel for each task. This setup was used in the main
paper.

When the readout is shared across tasks, it imposes significant constraints on the
representations. Specifically, all tasks must align with respect to their outputs.

We now hypothesize about how a network might jointly represent the attrac-
tors of two tasks.

• Invariant - across all tasks, inputs are aligned to exactly the same points.

• Shared - all tasks converge to the same attractor, but these are not identical
to each other.

• Equivariant - some elements of the dynamics are shared while others are
separate.

• Separated - each task is implemented in a distinct region of the state space.

Even though these options do not have to lie on a spectrum, they all differ in
how much the manifolds are close to each other.

To demonstrate the role of architectural constraints in arriving at different
solutions, we trained vanilla networks with each architecture on two tasks that
correspond to the functions ϕ1(v) = v2, ϕ2(v) = (1−v)2. These functions produce
opposite output sequences for the same uniform input interval V . Consequently,
in state-space, the line attractors can align with respect to either input or output
direction, but not both.

In Figure 3, we present the 2D PCA for each task, colored by the input
value. It becomes evident that networks can align with respect to their inputs
only when the output for each task is separate. Furthermore, it can be seen
that when outputs are separate and context is transient, the network tends to
lean towards a completely invariant representation. This is because a transient
context is more similar to having no context at all, thus implementing all tasks
simultaneously.

To avoid biasing the network towards completely separating or merging the
tasks, we chose to focus on multiple inputs and multiple outputs in this work.
Having multiple outputs and a tonic context signal is also feasible, but in this
case, the attractors of the tasks reside on separate dynamical systems.

7

References
[1] J. L. Elman, “Finding Structure in Time,” Cognitive Science, vol. 14, no. 2,

pp. 179–211, Mar. 1990.

[2] A. Dubreuil, A. Valente, M. Beiran, F. Mastrogiuseppe, and S. Ostojic,
“The role of population structure in computations through neural dynamics,”
Neuroscience, Preprint, Jul. 2020.

[3] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv:1412.6980 [cs], Jan. 2017.

[4] D. Sussillo and O. Barak, “Opening the Black Box: Low-Dimensional Dynam-
ics in High-Dimensional Recurrent Neural Networks,” Neural Computation,
vol. 25, no. 3, pp. 626–649, Mar. 2013.

[5] F. Schuessler, A. Dubreuil, F. Mastrogiuseppe, S. Ostojic, and O. Barak,
“Dynamics of random recurrent networks with correlated low-rank structure,”
Physical Review Research, vol. 2, no. 1, p. 013111, Feb. 2020. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevResearch.2.013111

8

https://link.aps.org/doi/10.1103/PhysRevResearch.2.013111

transient
context

transient
context

data

output

output

output

tonic
context

tonic
context

data

data

data

tonic
context

tonic
context

data

data

data

output

output

transient
context

transient
context

data

output

output

output

output

invariant

shared

equivariant

separated

dim 1

dim
 2dim 3 ℳ!

ℳ"

Figure 3: Qualitatively different joint representations obtained by different input-
output architectures. Left: Six different architectures differentiated by either
input delivery structure or output delivery structure. Middle: 2D-PCA for each
architecture, trained on two complementary tasks. Right: Different potential
joint representations of two neural manifolds corresponding to two tasks.

9

	Task and trial structure
	Individual tasks
	Combining multiple tasks

	RNNs architecture and training
	Network Architecture
	Trainable Parameters and Weight Initialization
	Training protocol
	Task and trial structure

	Data analysis
	Plotting alternative setups
	Attractor extraction
	Measuring separability
	F-factor
	Spectrum analysis
	Rank-2 analysis
	Repeating task-to-outlier analysis with other setups

	How input-output architecture shapes solutions

