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Abstract

Existing analyses of neural network training often operate under the unrealistic as-1

sumption of an extremely small learning rate. This lies in stark contrast to practical2

wisdom and empirical studies, such as the work of J. Cohen et al. (ICLR 2021),3

which exhibit startling new phenomena (the “edge of stability” or “unstable conver-4

gence”) and potential benefits for generalization in the large learning rate regime.5

Despite a flurry of recent works on this topic, however, the latter effect is still6

poorly understood. In this paper, we take a step towards understanding genuinely7

non-convex training dynamics with large learning rates by performing a detailed8

analysis of gradient descent for simplified models of two-layer neural networks.9

For these models, we provably establish the edge of stability phenomenon and10

discover a sharp phase transition for the step size below which the neural network11

fails to learn “threshold-like” neurons (i.e., neurons with a non-zero first-layer bias).12

This elucidates one possible mechanism by which the edge of stability can in fact13

lead to better generalization, as threshold neurons are basic building blocks with14

useful inductive bias for many tasks.15
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Figure 1: Large step sizes are necessary to learn the “threshold neuron” of a ReLU network (2) for a
simple binary classification task (1). We choose d = 200, n = 300, λ = 3, and run gradient descent with the
logistic loss. The weights are initialized as a−, a+ ∼ N (0, 1/(2d)) and b = 0. For each learning rate η, we set
the iteration number such that the total time elapsed (iteration × η) is 10. The vertical dashed lines indicate our
theoretical prediction of the phase transition phenomenon (precise threshold at η = 8π/d2).

1 Introduction16

How much do we understand about the training dynamics of neural networks? We begin with a17

simple and canonical learning task which indicates that the answer is still “far too little”.18

Motivating example: Consider a binary classification task of labeled pairs (x(i), y(i)) ∈ Rd×{±1}19

where each covariate x(i) consists of a 1-sparse vector (in an unknown basis) corrupted by additive20

Gaussian noise, and the label y(i) is the sign of the non-zero coordinate of the 1-sparse vector. Due to21
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rotational symmetry, we can take the unknown basis to be the standard one and write22

x(i) = λy(i)ej(i) + ξ(i) ∈ Rd , (1)

where y(i) ∈ {±1} is a random label, j(i) ∈ [d] is a random index, ξ(i) is Gaussian noise, and23

λ > 1 is the unknown signal strength. In fact, (1) is a special case of the well-studied sparse coding24

model [OF97; VG00; OF04; Yan+09; AL22; KR18]. We ask the following fundamental question:25

How do neural networks learn to solve the sparse coding problem (1)?26

In spite of the simplicity of the setting, a full resolution to this question requires a thorough under-27

standing of surprisingly rich dynamics which lies out of reach of existing theory. To illustrate this28

point, consider an extreme simplification in which the basis e1, . . . , ed is known in advance, for29

which it is natural to parametrize a two-layer ReLU network as30

f(x; a−, a+, b) = a−
d∑

i=1

ReLU
(
−x[i] + b

)
+ a+

d∑

i=1

ReLU
(
+x[i] + b

)
. (2)

The parametrization (2) respects the latent data structure (1) well: a good network has a negative bias31

b to threshold out the noise, and has a− < 0 and a+ > 0 to output correct labels. We are particularly32

interested in understanding the mechanism by which the bias b becomes negative, thereby allowing33

the non-linear ReLU activation to act as a threshold function; we refer to this as the problem of34

learning “threshold neurons”. More broadly, such threshold neurons are of interest as they constitute35

basic building blocks for producing neural networks with useful inductive bias.36
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Figure 2: Large learning rates lead to unexpected phenomena: non-monotonic loss and wild oscillations of
weights. We choose the same setting as Figure 1. With a small learning rate (η = 2.5 · 10−5), the bias does not
decrease noticeably, and the same is true even when we increase the learning rate by ten times (η = 2.5 · 10−4).
When we increase the learning rate by another ten times (η = 2.5 · 10−3), we finally see a noticeable decrease
in the bias, but with this we observe unexpected behavior: the loss decreases non-monotonically and the sum of
second-layer weights d · (a− + a+) oscillates wildly.

We train the parameters a−, a+, b using gradient descent with step size η > 0 on the logistic loss37 ∑n
i=1 ℓlogi(y

(i) f(x(i); a−, a+, b)), where ℓlogi(z) := log(1 + exp(−z)), and we report the results38

in Figures 1 and 2. The experiments reveal a compelling picture of the optimization dynamics.39

■ Large learning rates are necessary, both for generalization and for learning threshold40

neurons. Figure 1 shows that the bias decreases and the test accuracy increases as we increase41

η; note that we plot the results after a fixed time (iteration × η), so the observed results are not42

simply because larger learning rates track the continuous-time gradient flow for a longer time.43

■ Large learning rates lead to unexpected phenomena: non-monotonic loss and wild oscilla-44

tions of a− + a+. Figure 2 shows that large learning rates also induce stark phenomena, such as45

non-monotonic loss and large weight fluctuations, which lie firmly outside the explanatory power46

of existing analytic techniques based on principles from convex optimization.47

■ There is a phase transition between small and large learning rates. In Figure 1, we zoom in48

on learning rates around η ≈ 0.0006 and observe sharp phase transition phenomena.49

We have presented these observations in the context of the simple ReLU network (2), but we50

emphasize that these findings are indicative of behaviors observed in practical neural network51

training settings. In Figure 3, we display results for a two-layer ReLU network trained on the full52

sparse coding model (1) with unknown basis, as well as a deep neural network trained on CIFAR-10.53
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In each case, we again observe non-monotonic loss coupled with steadily decreasing bias parameters.54

For these richer models, the transition from small to large learning rates is oddly reminiscent of well-55

known separations between the “lazy training” or “NTK” regime [JGH18] and the more expressive56

“feature learning” regime. For further experimental results, see §A.57
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Figure 3: (Top) Results for training an over-parametrized two-layer neural network f(x;a,W , b) =∑m
i=1 ai ReLU

(
w⊤

i x + b
)

with m ≫ d for the full sparse coding model (1); in this setting, the basis
vectors are unknown, and the neural network learn them through additional parameters W = (wi)

m
i=1. Also,

we use m different weights a = (ai)
m
i=1 for the second layer. (Bottom) Full-batch gradient descent dynamics of

ResNet-18 on (binary) CIFAR-10 with various learning rates. Details are deferred to §A.

We currently do not have right tools to understand these phenomena. First of all, a drastic change58

in behavior between the small and the large learning rates cannot be captured through well-studied59

regimes, such as the “neural tangent kernel” (NTK) regime [JGH18; ALS19; Aro+19; COB19;60

Du+19; OS20] or the mean-field regime [CB18; MMM19; Chi22; NWS22; RV22]. In addition,61

understanding why a large learning rate is required to learn the bias is beyond the scope of prior62

theoretical works on the sparse coding model [Aro+15; Kar+21]. Our inability to explain these63

findings points to a serious gap in our grasp of neural network training dynamics and calls for a64

detailed theoretical study.65

1.1 Main scope of this work66

In this work, we do not aim to understand the sparse coding problem (1) in its full generality. Instead,67

we pursue the more modest goal of shedding light on the following question.68

Q. What is the role of a large step size in learning the bias for the ReLU network (2)?69

As discussed above, the dynamics of the simple ReLU network (2) is a microcosm of emergent70

phenomena beyond the convex optimization regime. In fact, there is a recent growing body of71

work [Coh+21; ALP22; AZS22; CB22; LLA22; Ma+22; WLL22; DNL23; Zhu+23] on training72

with large learning rates, which largely aims at explaining a striking empirical observation called the73

“edge of stability (EoS)” phenomenon.74

The edge of stability (EoS) phenomenon is a set of distinctive behaviors observed recently by75

[Coh+21] when training neural networks with gradient descent (GD). Here we briefly summarize the76

salient features of the EoS and defer a discussion of prior work to §1.3. Recall that if we use GD to77

optimize an L-smooth loss function with step size η, then the well-known descent lemma from convex78

optimization ensures monotonic decrease in the loss so long as L < 2/η. In contrast, when L > 2/η,79

it is easy to see on simple convex quadratic examples that GD can be unstable (or divergent). The80
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main observation of [Coh+21] is that when training neural networks1 with constant step size η > 0,81

the largest eigenvalue of the Hessian at the current iterate (dubbed the “sharpness”) initially increases82

during training (“progressive sharpening”) and saturates near or above 2/η (“EoS”).83

A surprising message of the present work is that the answer to our main question is intimately84

related to the EoS. Indeed, Figure 11 shows that the GD iterates of our motivating example exhibit85

the EoS during the initial phase of training when the bias decreases rapidly.86

Consequently, we first set out to thoroughly understand the workings of the EoS phenomena through87

a simple example. Specifically, we consider a single-neuron linear neural network in dimension 1,88

corresponding to the loss89

R2 ∋ (x, y) 7→ ℓ(xy) , where ℓ is convex, even, and Lipschitz . (3)

Although toy models have appeared in works on the EoS (see §1.3), our example is simpler than all90

prior models, and we provably establish the EoS for (3) with transparent proofs.91

We then use the newfound insights gleaned from the analysis of (3) to answer our main question.92

To the best of our knowledge, we provide the first explanation of the mechanism by which a large93

learning rate can be necessary for learning threshold neurons.94

1.2 Our contributions95

x

y

GF

EoS

Figure 4: Illustration of two different
regimes (the “gradient flow” regime and the
“EoS” regime) of the GD dynamics.

Explaining the EoS with a single-neuron example. Al-96

though the EoS has been studied in various settings (see97

§1.3 for a discussion), these works either do not rigorously98

establish the EoS phenomenon, or they operate under com-99

plex settings with opaque assumptions. Here, we study100

a simple two-dimensional loss function, (x, y) 7→ ℓ(xy),101

where ℓ is convex, even, and Lipschitz. Some examples in-102

clude2 ℓ(s) = 1
2 log(1+ exp(−s))+ 1

2 log(1+ exp(+s))103

and ℓ(s) =
√
1 + s2. Surprisingly, GD on this loss already104

exhibits rich behavior (Figure 4).105

En route to this result, we rigorously establish the quasi-106

static dynamics formulated in [Ma+22].107

The elementary nature of our example leads to transparent108

arguments, and consequently our analysis isolates generalizable principles for “bouncing” dynamics.109

To demonstrate this, we use our insights to study our main question of learning threshold neurons.110

Learning threshold neurons with the mean model. The connection between the single-neuron111

example and the ReLU network (2) can already be anticipated via a comparison of the dynamics: (i)112

for the single neuron example, x oscillates wildly while y decreases (Figure 4); (ii) for the ReLU113

network (2), the sum of weights (a− + a+) oscillates while b decreases (Figure 2).114

We study this example in §2 and delineate a transition from the “gradient flow” regime to the “EoS115

regime”, depending on the step size η and the initialization. Moreover, in the EoS regime, we116

rigorously establish asymptotics for the limiting sharpness which depend on the higher-order behavior117

of ℓ. In particular, for the two losses mentioned above, the limiting sharpness is 2/η+O(η), whereas118

for losses ℓ which are exactly quadratic near the origin the limiting sharpness is 2/η +O(1).119

In fact, this connection can be made formal by considering an approximation for the GD dynamics120

for the ReLU network (2). It turns out (see §3.1 for details) that during the initial phase of training,121

the dynamics of At := d (a−t + a+t ) and bt due to the ReLU network are well-approximated by the122

“rescaled” GD dynamics on the loss (A, b) 7→ ℓsym(Ag(b)), where the step size for the A-dynamics123

is multiplied by 2d2, g(b) := Ez∼N (0,1) ReLU(z + b) is the “smoothed” ReLU, and ℓsym is the124

symmetrized logistic loss; see §3.1 and Figure 10. We refer to these dynamics as the mean model.125

1The phenomenon in [Coh+21] is most clearly observed for tanh activations, although the appendix
of [Coh+21] contains thorough experimental results for various neural network architectures.

2Suppose that we have a single-layer linear neural network f(x; a, b) = abx, and that the data is drawn
according to x = 1, y ∼ unif({±1}). Then, the population loss under the logistic loss is (a, b) 7→ ℓsym(ab)
with ℓsym(s) = 1

2
log(1 + exp(−s)) + 1

2
log(1 + exp(+s)).
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The mean model bears a great resemblance to the single-neuron example (x, y) 7→ ℓ(xy), and hence126

we can leverage the techniques developed for the latter in order to study the former.127

Our main result for the mean model precisely explains the phase transition in Figure 1. For any δ > 0,128

• if η ≤ (8− δ)π/d2, then the mean model fails to learn threshold neurons: the limiting bias129

satisfies |b∞| = Oδ(1/d
2).130

• if η ≥ (8 + δ)π/d2, then the mean model enters the EoS and learns threshold neurons: the131

limiting bias satisfies b∞ ≤ −Ωδ(1).132

1.3 Related work133

Edge of stability: Our work is motivated by the extensive empirical study of [Coh+21], which134

identified the EoS phenomenon. Subsequently, there has been a flurry of works aiming at developing135

a theoretical understanding of the EoS, which we briefly summarize here.136

Properties of the loss landscape: The works [AZS22; Ma+22] study the properties of the loss137

landscape that lead to the EoS. Namely, [AZS22] argue that the existence of forward-invariant subsets138

near the minimizers allows GD to convergence even in the unstable regime. They also explore various139

characteristics of EoS in terms of loss and iterates. Also, [Ma+22] empirically show that the loss140

landscape of neural networks exhibits subquadratic growth locally around the minimizers. They prove141

that for a one-dimensional loss, subquadratic growth implies that GD finds a 2-periodic trajectory.142

Limiting dynamics: Other works characterize the limiting dynamics of the EoS in various regimes.143

[ALP22; LLA22] show that (normalized) GD tracks a “sharpness reduction flow” near the manifold144

of minimizers. The recent work of [DNL23] obtains a different predicted dynamics based on self-145

stabilization of the GD trajectory. Also, [Ma+22] describes a quasi-static heuristic for understanding146

the overall trajectory of GD when one component of the iterate is oscillating.147

Simple models and beyond: Closely related to our own approach, there are prior works which148

carefully study simple models. [CB22] prove global convergence of GD for the two-dimensional149

function (x, y) 7→ (xy − 1)
2 and a single-neuron student-teacher setting; note that unlike our results,150

they do not study the limiting sharpness. [WLL22] study progressive sharpening for a neural151

network model. Also, the recent and concurrent work of [Zhu+23] studies the two-dimensional loss152

(x, y) 7→ (x2y2 − 1)2; to our knowledge, their work is the first to asymptotically and rigorously153

show that the limiting sharpness of GD is 2/η in a simple setting, at least when initialized locally. In154

comparison, in §2, we perform a global analysis of the limiting sharpness of GD for (x, y) 7→ ℓ(xy)155

for a class of convex, even, and Lipschitz losses ℓ, and in doing so we clearly delineate the “gradient156

flow regime” from the “EoS regime”.157

Effect of learning rate on learning: Recently, several works have sought to understand how158

the choice of learning rate affects the learning process, in terms of the properties of the resulting159

minima [Jas+18; WME18; MMS21; Nac+22] and the behavior of optimization dynamics [Xin+18;160

Jas+19; Jas+20; Lew+20; Jas+21].161

[LWM19] demonstrate for a synthethic data distribution and a two-layer ReLU network model that162

choosing a larger step size for SGD helps with generalization. Subsequent works have shown similar163

phenomena for regression [Nak20; Wu+21; Ba+22], kernel ridge regression [BMR22], and linear164

diagonal networks [Nac+22]. However, the large step sizes considered in these work still fall under165

the scope of descent lemma, and most prior works do not theoretically investigate the effect of large166

step size in the EoS regime. A notable exception is the work of [Wan+22], which studies the impact167

of learning rates greater than 2/smoothness for a matrix factorization problem. Also, the recent work168

of [And+22] seeks to explain the generalization benefit of SGD in the large step size regime by169

relying on a heuristic SDE model for the case of linear diagonal networks. Despite this similarity,170

their main scope is quite different from ours, as we (i) focus on GD instead of SGD and (ii) establish a171

direct and detailed analysis of the GD dynamics for a model of the motivating sparse coding example.172

2 Single-neuron linear network173

In this section, we analyze the single-neuron linear network model (x, y) 7→ f(x, y) := ℓ(xy).174
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2.1 Basic properties and assumptions175

Basic properties. If ℓ is minimized at 0, then the global minimizers of f are the x- and y-axes. The176

GD iterates xt, yt, for step size η > 0 and iteration t ≥ 0 can be written as177

xt+1 = xt − η ℓ′(xtyt) yt , yt+1 = yt − η ℓ′(xtyt)xt .

Assumptions. From here onward, we assume η < 1 and the following conditions on ℓ : R → R.178

(A1) ℓ is convex, even, 1-Lipschitz, and of class C2 near the origin with ℓ′′(0) = 1.179

(A2) There exist constants β > 1 and c > 0 with the following property: for all s ̸= 0,180

ℓ′(s)/s ≤ 1− c |s|β 1{|s| ≤ c} .

We allow β = +∞, in which case we simply require that ℓ′(s)
s ≤ 1 for all s ̸= 0.181

Assumption (A2) imposes decay of s 7→ ℓ′(s)/s locally away from the origin in order to obtain more182

fine-grained results on the limiting sharpness in Theorem 2. As we show in Lemma 5 below, when ℓ183

is smooth and has a strictly negative fourth derivative at the origin, then Assumption (A2) holds with184

β = 2. See Example 1 for some simple examples of losses satisfying our assumptions.185

2.2 Two different regimes for GD depending on the step size186

Before stating rigorous results, in this section we begin by giving an intuitive understanding of the187

GD dynamics. It turns out that for a given initialization (x0, y0), there are two different regimes for188

the GD dynamics depending on the step size η. Namely, there exists a threshold on the step size such189

that (i) below the threshold, GD remains close to the gradient flow for all time, and (ii) above the190

threshold, GD enters the edge of stability and diverges away from the gradient flow.191

First, recall that the GD dynamics are symmetric in x, y and that the lines y = ±x are invariant.192

Hence, we may assume without loss of generality that193

y0 > x0 > 0 , yt > |xt| for all t ≥ 1 , and GD converges to (0, y∞) for y∞ > 0 .

From the expression (8) for the Hessian of f and our normalization ℓ′′(0) = 1, it follows that the194

sharpness reached by GD in this example is precisely y2∞.195

Initially, in both regimes, the GD dynamics tracks the continuous-time gradient flow. Our first196

observation is that the gradient flow admits a conserved quantity, thereby allowing us to predict the197

dynamics in this initial phase.198

Lemma 1 (conserved quantity). Along the gradient flow for f , the quantity y2 − x2 is conserved.199

Proof. Differentiating y2t−x2
t with respect to t gives 2yt (−ℓ′(xtyt)xt)−2xt (−ℓ(xtyt) yt) = 0.200

Lemma 1 implies that the gradient flow converges to (0, yGF
∞ ) = (0,

√
y20 − x2

0). For GD with201

step size η > 0, the quantity y2 − x2 is no longer conserved, but we show in Lemma 6 that it is202

approximately conserved until the GD iterate lies close to the y-axis. Hence, GD initialized at (x0, y0)203

also reaches the y-axis approximately at the point (xt0 , yt0) ≈ (0,
√

y20 − x2
0).204

At this point, GD either approximately converges to the gradient flow solution (0,
√
y20 − x2

0) or205

diverges away from it, depending on whether or not y2t0 > 2/η. To see this, for |xt0yt0 | ≪ 1, we can206

Taylor expand ℓ′ near zero to obtain the approximate dynamics for x (recalling ℓ′′(0) = 1),207

xt0+1 ≈ xt0 − ηxt0y
2
t0 = (1− ηy2t0)xt0 . (4)

From (4), we deduce the following conclusions.208

(i) If y2t0 < 2/η, then |1 − ηy2t0 | < 1. Since yt is decreasing, it implies that |1 − ηy2t | < 1 for all209

t ≥ t0, and so |xt| converges to zero exponentially fast.210

(ii) On the other hand, if y2t0 > 2/η, then |1− ηy2t0 | > 1, i.e., the magnitude of xt0 increases in the211

next iteration, and hence GD cannot stabilize. In fact, in the approximate dynamics, xt0+1 has212

the opposite sign as xt0 , i.e., xt0 jumps across the y-axis. One can show that the “bouncing” of213

the x variable continues until y2t has decreased past 2/η, at which point we are in the previous214

case and GD approximately converges to (0, 2/η).215
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This reasoning, combined with the expression for the Hessian of f , shows that216

sharpness(0, y∞) := λmax

(
∇2f(0, y∞)

)
≈ min

{
y20 − x2

0, 2/η
}

= min{gradient flow sharpness, EoS prediction} .
Accordingly, we refer to the case y20 − x2

0 < 2/η as the gradient flow regime, and the case217

y20 − x2
0 > 2/η as the EoS regime.218

See Figure 4 for illustrations of these two regimes. In the subsequent sections, we aim to make the219

above reasoning rigorous. For example, instead of the approximate dynamics (4), we consider the220

original GD dynamics and justify the Taylor approximation. Also, in the EoS regime, rather than221

loosely asserting that |xt| ↘ 0 exponentially fast and hence the dynamics stabilizes “quickly” once222

y2t < 2/η, we track precisely how long this convergence takes so that we can bound the gap between223

the limiting sharpness and the prediction 2/η.224

2.3 Results225

Gradient flow regime. Our first rigorous result is that when y20 − x2
0 = 2−δ

η for some constant226

δ ∈ (0, 2), then the limiting sharpness of GD with step size η is y20 − x2
0 + O(1) = 2−δ

η + O(1),227

which is precisely the sharpness attained by the gradient flow up to a controlled error term.228

In fact, our theorem is slightly more general, as it covers initializations in which δ can scale mildly229

with η. The precise statement is as follows.230

Theorem 1 (gradient flow regime; see §B.2). Suppose we run GD with step size η > 0 on the231

objective f , where f(x, y) := ℓ(xy), and ℓ satisfies Assumptions (A1) and (A2). Let (x̃, ỹ) ∈ R2232

satisfy ỹ > x̃ > 0 with ỹ2 − x̃2 = 1. Suppose we initialize GD at (x0, y0) := ( 2−δ
η )1/2 (x̃, ỹ), where233

δ ∈ (0, 2) and η ≲ δ1/2 ∧ (2− δ). Then, GD converges to (0, y∞) satisfying234

2− δ

η
−O(2− δ)−O

( η

min{δ, 2− δ}
)
≤ λmax

(
∇2f(0, y∞)

)
≤ 2− δ

η
+O

( η

2− δ

)
,

where the implied constants depend on x̃, ỹ, and ℓ, but not on δ, η.235

The proof of Theorem 1 is based on a two-stage analysis. In the first stage, we use Lemma 6 on236

the approximate conservation of y2 − x2 along GD in order to show that GD lands near the y-axis237

with y2t0 ≈ 2−δ
η . In the second stage, we use the assumptions on ℓ in order to control the rate of238

convergence of |xt| to 0, which is subsequently used to control the final deviation of y2∞ from 2−δ
η .239

EoS regime. Our next result states that when y20 − x2
0 > 2/η, then the limiting sharpness of GD is240

close to the EoS prediction of 2/η, up to an error term which depends on the exponent β in (A2).241

Theorem 2 (EoS; see §B.4). Suppose we run GD on f with step size η > 0, where f(x, y) := ℓ(xy),242

and ℓ satisfies Assumptions (A1) and (A2). Let (x̃, ỹ) ∈ R2 satisfy ỹ > x̃ > 0 with ỹ2 − x̃2 = 1.243

Suppose we initialize GD at (x0, y0) := ( 2+δ
η )1/2 (x̃, ỹ), where δ > 0 is a constant. Also, assume244

that for all t ≥ 1 such that y2t > 2/η, we have xt ̸= 0. Then, GD converges to (0, y∞) satisfying245

2/η −O(η1/(β−1)) ≤ λmax

(
∇2f(0, y∞)

)
≤ 2/η ,

where the implied constants depend on x̃, ỹ, δ ∧ 1, and ℓ, but not on η.246

Remarks on the assumptions.247

1. Choice of initialization. The initialization in our results is such that both y0 and y0 − x0 are248

on the same scale, i.e., y0, y0 − x0 = Θ(1/
√
η). This rules out extreme initializations such as249

y0 ≈ x0, which are problematic because they lie too close to the invariant line y = x. Since our250

aim in this work is not to explore every edge case, we focus on this setting for simplicity.251

2. Assumption that xt ̸= 0 in Theorem 2. We imposed the additional assumption that the iterates252

of GD do not exactly hit the y-axis before crossing y2 = 2/η. This is necessary because if xt = 0253

for some iteration t, then (xt′ , yt′) = (xt, yt) for all t′ > t, and hence the limiting sharpness may254

not be close to 2/η. This assumption holds generically, e.g., if we perturb each iterate of GD with255

a vanishing amount of noise from a continuous distribution, and we conjecture that for any step256

size η > 0, the assumption holds for all but a measure zero set of initializations.257
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When β = +∞, which is the case for the Huber loss in Example 1, the limiting sharpness is258

2/η +O(1). When β = 2, which is the case for the logistic and square root losses in Example 1, the259

limiting sharpness is 2/η+O(η). Numerical experiments show that our error bound of O(η1/(β−1))260

is sharp; see Figure 9 below.261

We make a few remark about the proof. As we outline the proof in §B.3, in turns out in order to bound262

the gap 2/η − y2∞, the proof requires a control of the size |xtyt|, where t is the first iteration such263

that y2t crosses 2/η. However, controlling the size of |xtyt| is surprisingly delicate as it requires a264

fine-grained understanding of the bouncing phase. The insight that guides the proof is the observation265

that during the bouncing phase, the GD iterates lie close to a certain envelope (Figure 12).266

As a by-product of our analysis, we obtain a rigorous version of the quasi-static principle from267

which can more accurately track the sharpness gap and convergence rate (see §B.5). The results268

of Theorem 1, Theorem 2, and Theorem 5 are displayed pictorially as Figure 12.269

3 Understanding the bias evolution of the ReLU network270

In this section, we use the insights from §2 to answer our main question, namely understanding271

the role of a large step size in learning threshold neurons for the ReLU network (2). Based on the272

observed dynamics (Figure 2), we can make our question more concrete as follows.273

(Refined) Q. What is the role of a large step size during the “initial phase” of training in which (i)274

the bias b rapidly decreases and (ii) the sum of weights a− + a+ oscillates?275

3.1 Approximating the initial phase of GD with the “mean model”276

4 2 0 2 4
0

1

2

3

4

5

Figure 5: The ‘smoothed’ ReLU g(b)

Deferring details to §C, the GD dynamics for the ReLU net-277

work (2) in the initial phase are well-approximated by278

GD dynamics on (a−, a+, b) 7→ ℓsym(d (a
− + a+) g(b)) ,

where ℓsym(s) :=
1
2 (log(1 + exp(−s)) + log(1 + exp(+s)))279

and g(b) := Ez∼N (0,1) ReLU(z + b) is the ‘smoothed’ ReLU.280

The GD dynamics can be compactly written in terms of the parameter At := d (a−t + a+t ).281

At+1 = At − 2d2η ℓ′sym(Atg(bt)) g(bt) , bt+1 = bt − η ℓ′sym(Atg(bt))Atg
′(bt) . (5)

We call these dynamics the mean model. Figure 10 shows that the mean model closely captures the282

GD dynamics for the ReLU network (2), and we henceforth focus on analyzing the mean model.283

The main advantage of the representation (5) is that it makes apparent the connection to the single-284

neuron example that we studied in §2. More specifically, (5) can be interpreted as the “rescaled”285

GD dynamics on the objective (A, b) 7→ ℓsym(Ag(b)), where the step size for the A-dynamics is286

multiplied by 2d2. Due to this resemblance, we can apply the techniques from §2.287

3.2 Two different regimes for the mean model288

Throughout the section, we use the shorthand ℓ := ℓsym, and focus on initializing wiht a±0 = Θ(1/d),289

a− + a+ ̸= 0, and b0 = 0. This implies A0 = Θ(1). We also note the following fact for later use.290

Lemma 2 (formula for the smoothed ReLU; see §D.1). The smoothed ReLU function g can be291

expressed in terms of the PDF φ and the CDF Φ of the standard Gaussian distribution as g(b) =292

φ(b) + b Φ(b). In particular, g′ = Φ.293

Note also that bt is monotonically decreasing. This is because ℓ′(Atg(bt))Atg
′(bt) ≥ 0 since ℓ′ is294

an odd function and g(b), g′(b) > 0 for any b ∈ R.295

Following the strategy of §2.2, we begin with the continuous-time dynamics of the mean model:296

Ȧ = −2d2 ℓ′(Ag(b)) g(b) , ḃ = −ℓ′(Ag(b))Ag′(b) . (6)

Lemma 3 (conserved quantity; see §D.1). Let κ : R → R be defined as κ(b) :=
∫ b

0
g/g′. Along the297

gradient flow (6), the quantity 1
2A

2 − 2d2κ(b) is conserved.298
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Based on Lemma 3, if we initialize the continuous-time dynamics (6) at (A0, 0) and if At → 0, then299

the limiting value of the bias bGF
∞ satisfies κ(bGF

∞ ) = − 1
4d2 A

2
0, which implies that bGF

∞ = −Θ( 1
d2 );300

indeed, this holds since κ′(0) = g(0)/g′(0) > 0, so there exist constants c0, c1 > 0 such that301

c0b ≤ κ(b) ≤ c1b for all −1 ≤ b ≤ 0. Since the mean model (5) tracks the continuous-time302

dynamics (6) until it reaches the b-axis, the mean model initialized at (A0, 0) also approximately303

reaches (At0 , bt0) ≈ (0,−Θ( 1
d2 )) ≈ (0, 0) in high dimension d ≫ 1. In other words, the continuous-304

time dynamics (6) fails to learn threshold neurons.305

Once the mean model reaches the b-axis, we again identify two different regimes depending on the306

step size. A Taylor expansion of ℓ′ around the origin yields the following approximate dynamics307

(here ℓ′′(0) = 1/4): At0+1 ≈ At0 − ηd2

2 At0 g(bt0)
2
= At0

(
1− ηd2

2 g(bt0)
2). We conclude that the308

condition which now dictates whether we have bouncing or convergence is 1
2 d

2g(bt0)
2 > 2/η.309

(i) Gradient flow regime: If 2/η > d2g(0)2/2 = d2/(4π) (since g(0)2 = 1/(2π)), i.e., the310

step size η is below the threshold 8π/d2, then the final bias of the mean model bMM
∞ satisfies311

bMM
∞ ≈ bGF

∞ ≈ 0. In other words, the mean model fails to learn threshold neurons.312

(ii) EoS regime: If 2/η < d2/(4π), i.e., the step size η is above the threshold 8π/d2, then313
1
2 d

2g2(bMM
∞ ) < 2/η, i.e., bMM

∞ < g−1(2/
√
ηd2). For instance, if η = 10π

d2 , then bMM
∞ < −0.087.314

In other words, the mean model successfully learns threshold neurons.315

3.3 Results for the mean model316

Theorem 3 (mean model, gradient flow regime; see §D). Consider the mean model (5) initialized at317

(A0, 0), with step size η = (8−δ)π
d2 for some δ > 0. Let γ := 1

200 min{δ, 8− δ, 8−δ
|A0|}. Then, as long318

as η ≤ γ/|A0|, the limiting bias bMM
∞ satisfies319

0 ≥ bMM
∞ ≥ −(η/γ) |A0| = −OA0,δ(1/d

2) .

Theorem 4 (mean model, EoS regime; see §D). Consider the mean model initialized at (A0, 0),320

with step size η = (8+δ)π
d2 for some δ > 0. Furthermore, assume that for all t ≥ 1 such that321

1
2 d

2g(bt)
2 > 2/η, we have At ̸= 0. Then, the limiting bias bMM

∞ satisfies322

bMM
∞ ≤ g−1

(
2/
√

(8 + δ)π
)
≤ −Ωδ(1) .

4 Conclusion323

In this paper, we present the first explanation for the emergence of threshold neuron (i.e., ReLU324

neurons with negative bias) in models such as the sparse coding model (1) through a novel connection325

with the “edge of stability” (EoS) phenomenon. Along the way, we obtain a detailed and rigorous326

understanding of the dynamics of GD in the EoS regime for a simple class of loss functions, thereby327

shedding light on the impact of large learning rates in non-convex optimization.328

Many interesting questions remain, and we conclude with some directions for future research.329

• Extending the analysis of EoS to richer models. Although the analysis we present in this work330

is restricted to simple models, the underlying principles can potentially be applied to more general331

settings. In this direction, it would be interesting to study models which capture the impact of the332

depth of the neural network on the EoS phenomenon.333

• The interplay between the EoS and the choice of optimization algorithm. As discussed in §2.3,334

the bouncing phase of the EoS substantially slows down the convergence of GD (see Figure 9).335

Investigating how different optimization algorithm (e.g., SGD, or GD with momentum) interact336

with the EoS phenomenon could potentially lead to practical speed-ups or improved generalization.337

• An end-to-end analysis of the sparse coding model. Finally, we have left open the motivating338

question of analyzing how two-layer ReLU networks learn to solve the sparse coding model (1).339

Despite the apparent simplicity of the problem, its analysis has thus far remained out of reach, and340

we believe that a resolution to this question would constitute compelling and substantial progress341

towards understanding neural network learning. We are hopeful that the insights in this paper342

provide the first step towards this goal.343
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A Further experimental results494

In this section, we report further experimental results which demonstrate that our theory, while limited495

to the specific models we study (namely, the single-neuron example and the mean model), is in fact496

indicative of behaviors commonly observed in more realistic instances of neural network training. In497

particular, we show that threshold neurons often emerge in the presence of oscillations in the other498

weight parameters of the network.499

A.1 Experiments for the full sparse coding model500

We provide the details for the top plot of Figure 3. consider the sparse coding model in the form (1).501

Compared to (2), we assume that the basis vectors are unknown, and the neural network learn them502

through additional parameters W = (wi)
m
i=1 together with m different weights a = (ai)

m
i=1 for the503

second layer as follows:504

f(x;a,W , b) =

m∑

i=1

ai ReLU
(
⟨wi,x⟩+ b

)
. (7)

We show results for d = 100, m = 2000. We generate n = 20000 data points according to the505

aforementioned sparse coding model with λ = 5. We use the He initialization, i.e., a ∼ N (0, Im/m),506

w ∼ N (0, Id/d), and b = 0. As shown in the top plot of Figure 3, the bias decreases more with the507

large learning rate. Further, we report the behavior of the average of second layer weights in Figure 6,508

and confirm that the sum oscillates.509
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Figure 6: The average of the second layer weights of the ReLU network (7). Note that the average value
oscillates similarly to our findings for the mean model.

A.2 Experiments on the CIFAR-10 dataset510

Next, we provide the details for the bottom plot of Figure 3. We train ResNet-18 on a binarized511

version of the CIFAR-10 dataset formed by taking only the first two classes; this is done for the512

purpose of monitoring the average logit of the network. The average logit is measured over the entire513

training set. The median bias is measured at the last convolutional layer right before the pooling. For514

the optimizer, we use full-batch GD with no momentum or weight decay, plus a cosine learning rate515

scheduler where learning rates shown in the plots are the initial values.516

Oscillation of expected output (logit) of the network. Bearing a striking resemblance to our517

two-layer models, here the expected mean of the output (logit) of the deep net also oscillates due to518

GD dynamics. As we have argued in the previous sections, this occurs as the bias parameters are519

driven towards negative values.520
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Figure 7: Oscillation of logit of ResNet18 model averaged over the (binary) CIFAR-10 training set. Since
the dataset is binary, the logit is simply a scalar.

Results for SGD. In Figure 8, we report qualitatively similar phenomena when we instead train521

ResNet-18 with stochastic gradient descent (SGD), where we use all ten classes of CIFAR-10. Again,522

the median bias is measured at the last convolutional layer. We further report the average activation523

which is the output of the ReLU activation at the last convolutional layer, averaged over the neurons524

and the entire training set. The average activation statistics represent the hidden representations525

before the linear classifier part, and lower values represent sparser representations. Interestingly, the526

threshold neuron also emerges with larger step sizes similarly to the case of gradient descent.527
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Figure 8: SGD dynamics of ResNet-18 on (multiclass) CIFAR-10 with various learning rates and batch sizes.
(Top) batch size 100; (Bottom) batch size 1000. The results are consistent across different batch sizes.

B Proofs for the single-neuron linear network528

We start by describing basic and relevant properties of the model and the assumptions on ℓ.529

Basic properties. If ℓ is minimized at 0, then the global minimizers of f are the x- and y-axes. The530

gradient and Hessian of f are given by:531

∇f(x, y) = ℓ′(xy)

[
y
x

]
,

∇2f(x, y) = ℓ′′(xy)

[
y
x

]⊗2

+ ℓ′(xy)

[
0 1
1 0

]
. (8)

This results in GD iterates xt, yt, for step size η > 0 and iteration t ≥ 0:532

xt+1 = xt − η ℓ′(xtyt) yt ,

yt+1 = yt − η ℓ′(xtyt)xt .

Lemma 4 (invariant lines). Assume that ℓ is even, so that ℓ′ is odd. Then, the lines y = ±x are533

invariant for gradient descent on f .534

Proof. If yt = ±xt, then535

yt+1 = yt − η ℓ′(xtyt)xt = ±xt ∓ η ℓ′(x2
t )xt ,

xt+1 = xt − η ℓ′(xtyt) yt = xt − η ℓ′(x2
t )xt ,

and hence yt+1 = ±xt+1. Note that the iterates (xt)t≥0 are the iterates of GD with step size η on the536

one-dimensional loss function x 7→ 1
2 ℓ(x

2).537

We focus instead on initializing away from these two lines. We now state our assumptions on ℓ.538

We gather together some elementary properties of ℓ.539

Lemma 5 (properties of ℓ). Suppose that Assumption (A1) holds.540

1. ℓ is minimized at the origin and ℓ′(0) = 0.541

2. Suppose that ℓ is four times continuously differentiable near the origin. If Assumption (A2) holds,542

then ℓ(4)(0) ≤ 0. Conversely, if ℓ(4)(0) < 0, then Assumption (A2) holds for β = 2.543
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Proof. The first statement is straightforward. The second statement follows from Taylor expansion:544

for s ̸= 0 near the origin,545

ℓ′(s)
s

=
ℓ′(0) + ℓ′′(0) s+

∫ s

0
(s− r) ℓ′′′(r) dr

s
= 1 +

∫ s

0

(
1− r

s

)
ℓ′′′(r) dr . (9)

Since ℓ′′′ is odd, then Assumption (A2) and (9) imply that ℓ′′′ is non-positive on (0, ε) for some546

ε > 0, which in turn implies ℓ(4)(0) ≤ 0. Conversely, if ℓ(4)(0) < 0, then there exists ε > 0 such547

that ℓ′′′(s) ≤ −εs for s ∈ (0, ε). From (9), we see that ℓ′(s)/s ≤ 1− ε
∫ s

0
(s− r) dr ≤ 1− εs2/2.548

By symmetry, we conclude that Assumption (A2) holds with β = 2 and some c > 0.549

We give some simple examples of losses satisfying our assumptions.550

Example 1. The examples below showcase several functions ℓ that satisfy Assumptions (A1) and (A2)551

with different values of β.552

• Rescaled and symmetrized logistic loss. ℓrsym(s) := 1
2 ℓlogi(−2s) + 1

2 ℓlogi(+2s).553

Note ℓ′rsym(s) = tanh(s), thus ℓ′rsym(s)/s ≤ 1 and ℓ′rsym(s)/s ≤ 1− 1
4 |s|2, for |s| < 1

4 .554

• Square root loss. ℓsqrt(s) :=
√
1 + s2.555

Note ℓ′sqrt(s) =
s√

1+s2
, thus ℓ′sqrt(s)/s ≤ 1 and ℓ′sqrt(s)/s ≤ 1− 2

5 |s|2, for |s| < 2
5 .556

• Huber loss. ℓHub(s) :=
s2

2 1{s ∈ [−1, 1]}+
(
|s| − 1

2

)
1{s /∈ [−1, 1]}.557

Note ℓ′Hub(s) = s1{s ∈ [−1, 1]} + sgn(s)1{s /∈ [−1, 1]}, thus ℓ′Hub(s)/s ≤ 1, i.e., we have558

Assumption (A2) with β = +∞.559

• Higher-order. For β > 1 let cβ := 1
β+1

(
β

β+1

)β
and rβ := β+1

β . We define ℓβ implicitly via its
derivative

ℓ′β(s) := s
(
1− cβ |s|β

)
1{s2 < r2β}+ sgn(s)1{s2 ≥ r2β} .

By definition, ℓ′β(s)/s ≤ 1 and ℓ′β(s)/s ≤ 1− cℓ |s|β , where cℓ = cβ ∧ rβ .560

We now prove our main results from §2.3 in order.561

B.1 Approximate conservation along GD562

We begin by stating and proving the approximate conservation of y2 − x2 for the GD dynamics.563

Lemma 6 (approximately conserved quantity). Let (x̃, ỹ) ∈ R2 be such that ỹ > x̃ > 0 with
ỹ2 − x̃2 = 1. Suppose that we run GD on f with step size η with initial point (x0, y0) :=

√
γ
η (x̃, ỹ),

for some γ > 0. Then, there exists t0 = O( 1η ) such that supt≥t0 |xt| ≤ O(
√

(γ−1 ∨ γ) η) and

y2t0 − x2
t0 =

(
1−O(η)

)
(y20 − x2

0) ,

where the implied constant depends on x̃, ỹ, and ℓ.564

Proof. Let Dt := y2t − x2
t and note that565

Dt+1 =
(
yt − η ℓ′(xtyt)xt

)2 −
(
xt − η ℓ′(xtyt) yt

)2

=
(
1− η2 ℓ′(xtyt)

2
)
Dt .

Since ℓ is 1-Lipschitz, then Dt+1 = (1−O(η2))Dt.566

This shows that for t ≲ 1/η2, we have y2t − x2
t = Dt ≳ D0 = y20 − x2

0 ≍ γ/η. Since ℓ′′(0) = 1,567

there exist constants c0, c1 > 0 such that ℓ′(|xy|) ≥ ℓ′(c0) ≥ c1 whenever |xy| ≥ c0. Hence, for all568

t ≥ 1 such that t ≲ 1/η2, xt > 0, and |xtyt| ≥ c0, we have y2t ≳ γ/η and569

xt+1 = xt − η ℓ′(xtyt) yt = xt −Θ(ηyt) = xt −Θ
(√

γη
)
. (10)

Since x0 ≍
√
γ/η, this shows that after at most O(1/η) iterations, we must have either xt < 0 or570

|xtyt| ≤ c0 for the first time. In the first case, (10) shows that |xt| ≲ √
γη. In the second case, since571

y2t ≳ γ/η, we have |xt| ≲
√

η/γ. Let t0 denote the iteration at which this occurs.572

Next, for iterations t ≥ t0, we use the dynamics (10) for x and the fact that ℓ′(xtyt) has the same sign573

as xt to conclude that there are two possibilities: either xt+1 has the same sign as xt, in which case574

|xt+1| ≤ |xt|, or xt+1 has the opposite sign as xt, in which case |xt+1| ≤ η |ℓ′(xtyt)| yt ≤ ηyt ≤575

O(
√
γη). This implies supt≥t0 |xt| ≤ O(

√
(γ−1 ∨ γ) η) as asserted.576
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B.2 Gradient flow regime577

In this section, we prove Theorem 1.578

Proof of Theorem 1. From Lemma 6, there exists an iteration t0 such that |xt0 | ≲
√

η/(2− δ) and579

2− δ

η
−O(2− δ) ≤ y2t0 ≤ 2− δ

η
+ x2

t0 ≤ 2− δ

η
+O

( η

2− δ

)
.

In particular, C := |xt0yt0 | ≲ 1.580

We prove by induction the following facts: for t ≥ t0,581

1. |xtyt| ≤ C.582

2. |xt| ≤ |xt0 | exp(−Ω(α (t− t0))), where α := min{δ, 2− δ}.583

Suppose that these conditions hold up to iteration t ≥ t0. By Assumption (A2), we have |ℓ′(s)| ≤ |s|584

for all s ̸= 0. Therefore,585

yt+1 = yt − η ℓ′(xtyt)xt ≥ (1− ηx2
t ) yt

≥ exp
(
−O

( η2

2− δ

)
exp

(
−Ω(α (t− t0))

))
yt

≥ exp
(
−O

( η2

2− δ

) t∑

s=t0

exp
(
−Ω(α (s− t0))

))
yt0 ≥ exp

(
−O

( η2

α (2− δ)

))
yt0 ,

y2t+1 ≥ 2− δ

η
−O(2− δ)−O

( η
α

)
. (11)

In particular, 1
2

2−δ
η ≤ y2t ≤ 2−δ/2

η throughout. In order for these assertions to hold, we require586

η2 ≲ α (2− δ), i.e., η ≲ min{
√
δ, 2− δ}.587

Next, we would like to show that t 7→ |xt| is decaying exponentially fast. Since588

|xt+1| = |xt − η ℓ′(xtyt) yt| =
∣∣ |xt| − η ℓ′(|xt| yt) yt

∣∣ ,
it suffices to consider the case when xt > 0. Assumption (A2) implies that589

xt+1 ≥ (1− ηy2t )xt ≥ −
(
1− δ

2

)
xt .

For the upper bound, we split into two cases. We begin by observing that since ℓ is twice continuously590

differentiable near the origin with ℓ′′(0) = 1, there is a constant ε0 such that |s| < ε0 implies591

|ℓ′(s)| ≥ 1
2 |s|. If st := xtyt ≤ ε0, then592

xt+1 ≤
(
1− η

2
y2t
)
xt ≤

(
1− 2− δ

4

)
xt .

Otherwise, if st ≥ ε0, then593

xt+1 ≤ xt − η ℓ′(ε0) yt ≤ xt − η ℓ′(ε0)
y2t
st

≤ xt − η ℓ′(ε0)
2− δ

2Cη
xt ≤

(
1− Ω(2− δ)

)
xt .

Combining these inequalities, we obtain594

|xt+1| ≤ |xt| exp
(
−Ω(α)

)
.

This verifies the second statement in the induction. The first statement follows because both t 7→ |xt|595

and t 7→ yt are decreasing.596

This shows in particular that |xt| ↘ 0, i.e., we have global convergence. To conclude the proof,597

observe that (11) gives a bound on the final sharpness.598

Remark 1. The proof also gives us estimates on the convergence rate. Namely, from Lemma 6, the599

initial phase in which we approach the y-axis takes O( 1η ) iterations. For the convergence phase, in600

order to achieve ε error, we need |xt| ≲
√
εη√
2−δ

; hence, the convergence phase needs only O( 1
α log 1

ε )601

iterations. Note that the rate of convergence in the latter phase does not depend on the step size η.602
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B.3 EoS regime: proof outline603

We give a brief outline of the proof of Theorem 2: As before, Lemma 6 shows that GD reaches the604

y-axis approximately at (0,
√
y20 − x2

0). At this point, x starts bouncing while y steadily decreases,605

and we argue that unless xt = 0 or y2t ≤ 2/η, the GD dynamics cannot stabilize (see Lemma 7).606

To bound the gap 2/η − y2∞, we look at the first iteration t such that y2t crosses 2/η. By making use607

of Assumption (A2), we simultaneously control both the convergence rate of |xt| to zero and the608

decrease in y2t in order to prove that609

y2∞ ≥ 2

η
−O(|xtyt|) , (12)

see Proposition 1. Therefore, to establish Theorem 2, we must bound |xtyt| at iteration t.610

Controlling the size of |xtyt|, however, is surprisingly delicate as it requires a fine-grained under-611

standing of the bouncing phase. The insight that guides the proof is the observation that during the612

bouncing phase, the GD iterates lie close to a certain envelope (Figure 12). This envelope is predicted613

by the quasi-static heuristic as described in [Ma+22]. Namely, suppose that after one iteration of614

GD, we have perfect bouncing: xt+1 = −xt. Substituting this into the GD dynamics, we obtain the615

equation616

η ℓ′(xtyt) yt = 2xt . (13)

According to Assumption (A2), we have ℓ′(xtyt) = xtyt (1 − Ω(|xtyt|β)), Together with (13), if617

y2t = (2 + δt)/η ≥ 2/η, where δt is sufficiently small, it suggests that618

|xtyt| ≲ δ
1/β
t . (14)

The quasi-static prediction (14) fails when δt is too small. Nevertheless, we show that it remains619

accurate as long as δt ≳ ηβ/(β−1), and consequently we obtain |xtyt| ≲ η1/(β−1). Combined620

with (12), it yields Theorem 2.621

B.4 EoS regime: crossing the threshold and the convergence phase622

In this section, we prove Theorem 2.623

We first show that y2t must cross 2
η in order for GD to converge, and we bound the size of the jump624

across 2
η once this happens.625

Throughout this section and the next, we use the following notation:626

• st := xtyt;627

• rt := ℓ′(st)/st.628

In this notation, we can write the GD equations as629

xt+1 = (1− ηrty
2
t )xt ,

yt+1 = (1− ηrtx
2
t ) yt .

We also make a remark regarding Assumption (A2). If β < +∞, then Assumption (A2) is equivalent630

to the following seemingly strongly assumption: for all r > 0, there exists a constant c(r) > 0 such631

that632

ℓ′(s)
s

≤ 1− c(r) |s|β , for all 0 < |s| ≤ r . (A2+)

Indeed, Assumption (A2) states that (A2+) holds for some r > 0. To verify that (A2+) holds for633

some larger r′ > r, we can split into two cases. If |s| ≤ r, then ℓ′(s)/s ≤ 1− c |s|β . Otherwise, if634

|s| > r, then ℓ′(r)/r < 1 and the 1-Lipschitzness of ℓ′ imply that ℓ′(s)/s < 1 for r ≤ |s| ≤ r′, and635

hence ℓ′(s)/s ≤ 1− c′ |s|β , for a sufficiently small constant c′ > 0; thus we can take c(r′) = c ∧ c′.636

Later, we will invoke (A2+) with r chosen to be a universal constant, so that c(r) can also be thought637

of as universal.638

We begin with the following result about the limiting value of yt.639
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Lemma 7 (threshold crossing). Let (x̃, ỹ) ∈ R2 satisfy ỹ > x̃ > 0 with ỹ2 − x̃2 = 1. Suppose we640

initialize GD with step size η with initial point (x0, y0) :=
√

2+δ
η (x̃, ỹ), where δ > 0 is a constant.641

Then either xt = 0 for some t or642

lim
t→∞

y2t ≤ 2

η
.

Proof. Assume throughout that xt ̸= 0 for all t. Recall the dynamics for y:643

yt+1 = yt − η ℓ′(xtyt)xt .

By assumption ℓ′(s)/s → 1 as s → 0, and ℓ′ is increasing, so this equation implies that if644

lim inft→∞ |xt| > 0 then y2t must eventually cross 2/η.645

Suppose for the sake of contradiction that there exists ε > 0 with y2t > (2 + ε)/η, for all t. Let646

ε′ > 0 be such that 1− (2 + ε) (1− ε′) < −1, i.e., ε′ < ε
2+ε . Then, there exists δ > 0 such |xt| ≤ δ647

implies rt > 1− ε′, hence648

|xt+1|
|xt|

= |1− ηrty
2
t | > |(2 + ε) (1− ε′)− 1| > 1 .

The above means that |xt| increases until it exceeds δ, i.e., lim inft→∞ |xt| ≥ δ. This is our desired649

contradiction and it implies that limt→∞ y2t ≤ 2/η.650

Lemma 8 (initial gap). Suppose that at some iteration t, we have651

y2t+1 <
2

η
≤ y2t .

Then, it holds that652

y2t+1 ≥ 2

η
− 2ηs2t .

Proof. We can bound653

y2t+1 = y2t − 2η ℓ′(xtyt)xtyt + η2 ℓ′(xtyt)
2
x2
t ≥ y2t − 2η |xtyt|2 ,

where we used the fact that |ℓ′(s)| ≤ |s| for all s ∈ R,654

The above lemma shows that the size of the jump across 2/η is controlled by the size of |st| at the655

time of the crossing. From Lemma 6, we know that |st| ≲ 1, where the implied constant depends on656

δ. Hence, the size of the jump is always O(η).657

We now provide an analysis of the convergence phase, i.e., after y2t crosses 2/η.658

Proposition 1 (convergence phase). Suppose that y2t < 2/η ≤ y2t−1
. Then, GD converges to (0, y∞)659

satisfying660

2

η
−O(|st|) ≤ y2∞ ≤ 2

η
.

Proof. Write y2t = (2− ρt)/η, so that ρt = 2− ηy2t . We write down the update equations for x and661

for ρ. First, by the same argument as in the proof of Theorem 1, we have662

|xt+1| ≤ |xt| exp
(
−Ω(ρt)

)
. (15)

Next, using rt ≤ 1,663

yt+1 = (1− ηrtx
2
t ) yt ≥ (1− ηx2

t ) yt ,

y2t+1 ≥ (1− 2ηx2
t ) y

2
t ,

which translates into664

ρt+1 ≤ ρt + 2η2x2
ty

2
t ≤ ρt + 4ηx2

t . (16)
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Using these two inequalities, we can conclude as follows. Let q > 0 be a parameter chosen later, and665

let t be the first iteration for which ρt ≥ q (if no such iteration exists, then ρt ≤ q for all t). Note that666

ρt ≤ q +O(η |xt|) due to (15) and (16). By (15), we conclude that for all t′ ≥ t,667

|xt′ | ≤ |xt| exp
(
−Ω(q (t′ − t))

)
≤ |xt| exp

(
−Ω(q (t′ − t))

)
.

Substituting this into (16),668

ρt′ ≤ ρt + 4η

t′−1∑

s=t

x2
s ≤ q +O(η |xt|) +O(η |xt|2)

t′−1∑

s=1

exp
(
−Ω(q (s− t))

)

≤ q +O(η |xt|) +O
(η |xt|2

q

)
.

By optimizing this bound over q, we find that for all t,669

ρt ≲
√
η |xt| ≲ η |st| .

Translating this result back into y2t yields the result.670

Let us take stock of what we have established thus far.671

• According to Lemma 6, |st| is bounded for all t by a constant.672

• Then, from Lemma 7 and Lemma 8, we must have either y2t → 2/η, or 2/η −O(η) ≤ y2t ≤ 2/η673

for some iteration t.674

• In the latter case, Proposition 1 shows that the limiting sharpness is 2/η −O(1).675

Note also that the analyses thus far have not made use of Assumption (A2), i.e., we have established676

the β = +∞ case of Theorem 2. Moreover, for all β > 1, the asymptotic 2/η − O(1) still shows677

that the limiting sharpness is close to 2/η, albeit with suboptimal rate. The reader who is satisfied678

with this result can then skip ahead to subsequent sections. The remainder of this section and the next679

section are devoted to substantial refinements of the analysis.680

To see where improvements are possible, note that both Lemma 8 and Proposition 1 rely on the681

size of |st| at the crossing. Our crude bound of |st| ≲ 1 does not capture the behavior observed682

in experiments, in which |st| ≲ η1/(β−1). By substituting this improved bound into Lemma 7, we683

would deduce that the gap at the crossing is O(η1+2/(β−1)), and then Proposition 1 would imply that684

the limiting sharpness is 2/η−O(η1/(β−1)). Another weakness of our proof is that it provides nearly685

no information about the dynamics during the bouncing phase, which constitutes an incomplete686

understanding of the EoS phenomenon. In particular, we experimentally observe that during the687

bouncing phase, the iterates lie very close to the quasi-static envelope (Figure 12). In the next section,688

we will rigorously prove all of these observations.689

Before doing so, however, we show that Proposition 1 can be refined by using Assumption (A2),690

which could be of interest in its own right. It shows that even if the convergence phase begins691

with a large value of |st|, the limiting sharpness can be much closer to 2/η than what Proposition 1692

suggests. The following proposition combined with Lemma 6 implies Theorem 2 for all β > 2, but it693

is insufficient for the case 1 < β ≤ 2. From now on, we assume β < +∞.694

Proposition 2 (convergence phase; refined). Suppose that y2t < 2/η ≤ y2t−1
. Then, GD converges to695

(0, y∞) satisfying696

2

η
≥ y2∞ ≥ 2

η
−O(η |st|2)−





O(η1/(β−1)) , β > 2 ,

O(η log(|st|/η)) , β = 2 ,

O(η |st|2−β) , β < 2 .

Proof. Let y2t = (2− ρt)/η as before. We quantify the decrease of |xt| in terms of ρt and conversely
the increase of ρt in terms of |xt| by tracking the half-life of |xt|, i.e., the number of iterations it takes
|xt| to halve. We call these epochs: at the i-th epoch, we have

2−(i+1)√η < |xt| ≤ 2−i√η .

Let i0 be the index of the first epoch, i.e., i0 = ⌊log2(
√
η/|xt|)⌋. Due to Lemma 6, we know that697

i0 ≥ −O(1). From (15), |xt| is monotonically decreasing and consequently |st| is decreasing as698
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well. Also, our bound on the limiting sharpness implies that y2t > 1/η for all t, provided that η is699

sufficiently small.700

Let us now compute the dynamics of ρt and |xt|. At epoch i, |xt| > 2−(i+1)√η hence |st| > 2−(i+1).701

Assumption (A2+) with r = |st| ≲ 1 implies that702

ℓ′(st)
st

≤ 1− c 2−β (i+1) , (17)

where c = c(|st|). This allows to refine (15) on the decrease of |xt| to703

|xt+1|
|xt|

= ηrty
2
t − 1 ≤ (2− ρt) (1− c 2−β (i+1))− 1

≤ 1− ρt − c 2−β (i+1) ,

where the first inequality follows from (17) and the second from ρt = 2 − ηy2t < 1. In turn, this704

inequality shows that the i-th phase only requires O(2βi) iterations.705

Hence, if t(i) denotes the start of the i-th epoch, then (16) shows that706

ρt(i+1) ≤ ρt(i) + 4η2 · 2−2i ·O(2βi) ≤ ρt(i) +O(η2 2(β−2) i) .

Summing this up, we have707

ρt(i) ≤ ρt + η2 ×





O(2(β−2) i) , β > 2 ,

O(i− i0) , β = 2 ,

O(2(β−2) i0) = O(|st|2−β) , β < 2 .

In the case of β < 2, the final sharpness satisfies 2/η −O(ρt/η)−O(η |st|2−β) ≤ y2∞ ≤ 2/η.708

In the other two cases, suppose that we use this argument until epoch i⋆ such that 2−i⋆ ≍ ηγ . Then,709

we have |xt(i⋆)| ≍ ηγ+1/2, |st(i⋆)| ≍ ηγ , and by using the argument from Proposition 1 from iteration710

t(i⋆) onward we obtain711

ρ∞ = ρt(i⋆) + ρ∞ − ρt(i⋆) ≤ ρt +O(ηγ+1) + η2 ×
{
O(2(β−2) i⋆) = O(η−γ (β−2)) , β > 2 ,

O(i⋆ − i0) , β = 2 .

We optimize over the choice of γ, obtaining γ = 1/(β − 1) and thus712

ρ∞ ≤ ρt +

{
O(η1+1/(β−1)) , β > 2 ,

O(η2 log(|st|/η)) , β = 2 .

By collecting together the three cases and using Lemma 8 to bound ρt, we finish the proof.713

Using the crude bound |st0 | ≲ 1 from Lemma 6, it yields714

2

η
≥ y2∞ ≥ 2

η
−O(η)−





O(η1/(β−1)) , β > 2 ,

O(η log(1/η)) , β = 2 ,

O(η) , β < 2 ,

which is optimal for β > 2.715

B.5 EoS regime: quasi-static analysis716

We supplement Assumption (A2) with a corresponding lower bound on ℓ′(s)/s:717

there exists C > 0 such that
ℓ′(s)
s

≥ 1− C |s|β for all s ̸= 0 . (A3)

Under these assumptions, we prove the following result which is also of interest as it provides detailed718

information for the bouncing phase of the EoS.719
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Theorem 5 (quasi-static principle). Suppose we run GD on f with step size η > 0, where f(x, y) :=720

ℓ(xy) and ℓ satisfies Assumptions (A1), (A2), and (A3). Write y2t := (2 + δt)/η and suppose that at721

some iteration t0, we have |xt0yt0 | ≍ δ
1/β
t0 and δt0 ≲ 1. Then, for all t ≥ t0 with δt ≳ ηβ/(β−1), we722

have723

|xtyt| ≍ δ
1/β
t ,

where all implied constants depend on ℓ but not on η.724

In this section, we show that the GD iterates lie close to the quasi-static trajectory and give the full725

proof of Theorem 2. Recall from (13) that the quasi-static analysis predicts726

ηrty
2
t ≈ 2 , (18)

and that during the bouncing phase, this closely agrees with experimental observations (Figure 12).727

We consider the phase where y2t has not yet crossed the threshold 2/η and we write y2t := (2+ δt)/η,728

thinking of δt as small. Then, (18) can be written (2 + δt) rt ≈ 2. If we have the behavior729

ℓ′(s)/s = 1−Θ(|st|β) near the origin, then rt ≈ 1−Θ(δt) implies that730

|st|β ≈ δt . (19)

Our goal is to rigorously establish (19). However, we first make two observations. First, in order to731

establish Theorem 2, we only need to prove an upper bound on |st|, which only requires Assump-732

tion (A2) (to prove a lower bound on |st|, we need a corresponding lower bound on ℓ′(s)/s). Second,733

even if we relax (19) to read |st|β ≲ δt, this fails to hold when δt is too small, because the error734

terms (the deviation of the dynamics from the quasi-static trajectory) begin to dominate. With this in735

mind, we shall instead prove |st|β ≲ δt + C ′ ηγ , where the added ηγ handles the error terms and the736

exponent γ > 0 emerges from the proof.737

Proposition 3 (quasi-static analysis; upper bound). For all t such that 0 ≤ δt−1 ≲ 1/(β ∨ 1) (for a738

sufficiently small implied constant), it holds that739

|st|β ≤ C (δt + C ′ ηβ/(β−1)) ,

where C,C ′ > 0 are constants which may depend on the problem parameters but not on η.740

We first show that Theorem 2 now follows.741

Proof of Theorem 2. As previously noted, the β = +∞ case is handled by the arguments of the742

previous section, so we focus on β < +∞. From Lemma 7, we either have y2t → 2/η and |xt| → 0,743

in which case we are done, or there is an iteration t such that y2t < 2/η ≤ y2t−1
. From Proposition 3,744

since δt−1 ≥ 0 and δt ≤ 0, it follows that |st|β ≲ η1/(β−1). The theorem now follows, either745

from Proposition 1 or from the refined Proposition 2.746

We now prove Proposition 3. In the proof, we use asymptotic notation O(·), ≲, etc. in order to hide747

constants that depend on ℓ (including β), but not on δt and η. However, the proof also involves748

choosing parameters C,C ′ > 0, and we keep the dependence on these parameters explicit for clarity.749

Proof of Proposition 3. The proof goes by induction; namely, if |st|β ≤ C (δt + C ′ηγ) and δt ≥ 0750

at some iteration t, we prove that the same holds one iteration later, where the constants C,C ′ > 0 as751

well as the exponent γ > 0 are chosen later in the proof.752

For the base case, observe that the approximate conservation lemma (Lemma 6) gives |st| ≲ 1, and753

δt ≳ 1/(β ∨ 1) at the beginning of the induction, so the bound is satisfied initially if we choose C754

sufficiently large enough.755

Throughout, we also write δ̂t := δt + C ′ηγ as a convenient shorthand. The strategy is to prove the756

following two statements:757

1. If |st|β = Ctδ̂t for some Ct >
C
2 , then |st+1|β ≤ Ct+1δ̂t+1 for some Ct+1 ≤ Ct.758

2. If |st|β = Ctδ̂t for some Ct ≤ C
2 , then |st+1|β ≤ Cδ̂t+1.759
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Proof of 1. The dynamics for x give760

|xt+1| = |1− ηy2t rt| |xt| .

By Assumption (A2+) and |st| ≲ 1,761

rt ≤ 1− Ω(|st|β) = 1− Ω(Cδ̂t)

and hence762

ηy2t rt = (2 + δt)
(
1− Ω(Cδ̂t)

)
= 2− Ω(Cδ̂t)

for large C. Also, ℓ′′(0) = 1 and a similar argument as in the proof of Theorem 1 yields the reverse763

inequality ηy2t rt ≳ 1. We conclude that764

|xt+1| =
(
1− Ω(Cδ̂t)

)
|xt|

and hence765

|st+1|β ≤
(
1− Ω(Cδ̂t)

)
|st|β = Ct

(
1− Ω(Cδ̂t)

)
δ̂t .

Since we need a bound in terms of δ̂t+1, we use the dynamics of y,766

yt+1 = (1− ηx2
t rt) yt ≥ (1− ηx2

t ) yt ,

y2t+1 ≥ (1− 2ηx2
t ) y

2
t ,

δt+1 = ηy2t+1 − 2 ≥ δt − 2η2s2t ≥ δt − 2η2 (Cδ̂t)
2/β

. (20)

Substituting this in,767

|st+1|β ≤ Ct

(
1− Ω(Cδ̂t)

) (
δ̂t+1 + 2η2 (Cδ̂t)

2/β)

= Ctδ̂t+1 − Ω(C2δ̂tδ̂t+1) + 2Cη2 (Cδ̂t)
2/β

. (21)

Let us show that768

δ̂t+1 ≥ 3

4
δ̂t . (22)

From (20), we have δ̂t+1 ≥ δ̂t − 2η2 (Cδ̂t)
2/β

, so we want to prove that η2 (Cδ̂t)
2/β ≤ δ̂t/8. If769

β ≤ 2 this is obvious by taking η small, and if β > 2 then this is equivalent to C2/βη2 ≲ δ̂
1−2/β
t .770

It suffices to have C2/βη2 ≲ (C ′)1−2/β
ηγ (1−2/β), which is achieved by taking C ′ large relative to771

C and by taking γ ≤ 2/(1− 2/β); this constraint on γ will be satisfied by our eventual choice of772

γ = β/(β − 1).773

Returning to (21), in order to finish the proof and in light of (22), we want to show that C2δ̂2t ≳774

C1+2/βη2δ̂
2/β
t . Rearranging, it suffices to have δ̂

2−2/β
t ≳ C2/β−1η2, or δ̂1−1/β

t ≳ C1/β−1/2η.775

Since by definition δ̂t ≥ C ′ηγ , by choosing C ′ large it suffices to have γ ≤ 1/(1−1/β) = β/(β−1),776

which leads to our choice of γ.777

Proof of 2. Using the simple bound ηy2t rt ≤ 2 + δt, we have778

|st+1| ≤ (1 + δt) |st| ,

|st+1|β ≤ exp(βδt) |st|β = Ct exp(βδt) δ̂t ≤
4

3
Ct exp(βδt) δ̂t+1

where we used (22). If exp(βδt) ≤ 4/3, which holds if δt ≲ 1/β, then from Ct ≤ C/2 we obtain779

|st+1|β ≤ Cδ̂t+1 as desired.780

By following the same proof outline but reversing the inequalities, we can also show a corresponding781

lower bound on |st|β , as long as δt ≳ ηβ/(β−1). Although this is not needed to establish Theorem 2,782

it is of interest in its own right, as it shows (together with Proposition 3) that the iterates of GD do in783

fact track the quasi-static trajectory.784
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Proposition 4 (quasi-static analysis; lower bound). Suppose additionally that (A3) holds and that785

β < +∞. Also, suppose that at some iteration t0, we have δt0 ≲ 1 and that786

|st| ≥ c δ
1/β
t (23)

holds at iteration t = t0, where c is a sufficiently small constant (depending on the problem parameters787

but not on η). Then, (23) also holds for all iterations t ≥ t0 such that δt ≳ ηβ/(β−1).788

Proof. The proof mirrors that of Proposition 3. Let δt ≳ ηβ/(β−1) for a sufficiently large implied789

constant. We prove the following two statements:790

1. If |st| = ct δ
1/β
t for some ct < 2c, then |st+1| ≥ ct+1 δ

1/β
t+1 for some ct+1 ≥ ct.791

2. If |st| = ct δ
1/β
t for some ct ≥ 2c, then |st+1| ≥ c δ

1/β
t+1.792

Throughout the proof, due to Proposition 3, we also have |st| ≲ δ
1/β
t .793

Proof of 1. The dynamics for x give794

|xt+1| = |1− ηy2t rt| |xt| .

By Assumption (A3),795

rt ≥ 1−O(|st|β) ≥ 1−O(c δt) .

If c is sufficiently small, then796

ηy2t rt ≥ (2 + δt)
(
1−O(c δt)

)
≥ 2 + Ω(δt) .

Therefore, we obtain797

|xt+1| ≥
(
1 + Ω(δt)

)
|xt| .

On the other hand,798

yt+1 ≥ (1− ηx2
t ) yt ≥

(
1−O(η2s2t )

)
yt ≥

(
1−O(η2δ

2/β
t )

)
yt (24)

and hence799

|st+1| ≥
(
1 + Ω(δt)

) (
1−O(η2δ

2/β
t )

)
|st| ≥ ct

(
1 + Ω(δt)−O(η2δ

2/β
t )

)
δ
1/β
t

≥ ct
(
1 + Ω(δt)−O(η2δ

2/β
t )

)
δ
1/β
t+1 .

To conclude, we must prove that η2δ2/βt ≲ δt, but since δt ≳ ηβ/(β−1) (with sufficiently large800

implied constant), then this holds, as was checked in the proof of Proposition 3.801

Proof of 2. Using Assumption (A3),802

1−O(δt) ≤ 1−O(|st|β) ≤ rt ≤ 1 .

Therefore,803

2−O(δt) ≤ (2 + δt)
(
1−O(δt)

)
≤ ηy2t rt ≤ 2 + δt

and804

−1 +O(δt) ≥ 1− ηy2t rt ≥ −1− δt .

Together with the dynamics for x and (24),805

|st+1| ≥
(
1−O(δt)

) (
1−O(η2δ

2/β
t )

)
|st| ≥ ct

(
1−O(δt)

) (
1−O(η2δ

2/β
t )

)
δ
1/β
t+1 .

Since ct ≥ 2c, if δt and η are sufficiently small it implies |st+1| ≥ c δ
1/β
t+1.806
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Figure 9: (Left) Log-log plot of the sharpness gap as a function of η, for ℓβ in Example 1 and β = 3
2
, 2, 3, 10.

(Right) Log-log plot of the iteration count for the bouncing region with y2
t ∈ [ 2

η
, 3
η
] as a function of η, for ℓβ

in Example 1 and β = 4
3
, 3

2
, 2, 4. The dashed lines show the predicted sharpness gap and iteration count

with an offset computed via linear regression of the data for η < e−2.

Convergence rate estimates. Our analysis also provides estimates for the convergence rate of GD in807

both regimes. Namely, in the gradient flow regime, we show that GD converges in O(1/η) iterations,808

whereas in the EoS regime, GD typically spends Ω(1/η(β/(β−1))∨2) iterations (Ω(log(1/η)/η2)809

iterations when β = 2) in the bouncing phase (Figure 9). Hence, the existence of the bouncing phase810

dramatically slows down the convergence of GD.811

Remark 2. Suppose that at iteration t0, we have δt0 ≍ 1. Then, the assumption of Proposition 4 is812

that |st0 | ≳ 1. If this is not satisfied, i.e., |st0 | ≪ 1, then the first claim in the proof of Proposition 4813

shows that |st0+1| ≥ (1 + Ω(δt)) |st0 | = (1 + Ω(1)) |st0 |. Therefore, after t′ = O(log(1/|st0 |))814

iterations, we obtain |st0+t′ | ≳ 1 and then Proposition 4 applies thereafter.815

Remark 3. From the quasi-static analysis, we can also derive bounds on the length of the bouncing816

phase. Namely, suppose that t0 is such that δt0 ≍ 1 and for all t ≥ t0, we have |st| = δ
1/β
t . If δt0 is817

sufficiently small so that rt ≳ 1 for all t ≥ t0, then the equation for y yields818

δt+1 ≤ δt −Θ(η2s2t ) = δt −Θ(η2δ
2/β
t ) .

We declare the k-th phase to consist of iterations t such that 2−k ≤ δt ≤ 2−(k−1). During this phase,819

δt+1 ≤ δt −Θ(η2 2−2k/β), so the number of iterations in phase k is ≍ 2k (2/β−1)/η2. We sum over820

the phases until δt ≍ ηβ/(β−1), since after this point the quasi-static analysis fails and y2t crosses821

over 2/η shortly afterwards. This yields822

1

η2

∑

k∈Z
ηβ/(β−1)≲2−k≲1

2k (2/β−1) ≍





1/η2 , β > 2 ,

log(1/η)/η2 , β = 2 ,

1/ηβ/(β−1) , β < 2 .

The time spent in the bouncing phase increases dramatically as β ↘ 1.823

C Deferred derivations of mean model824

In this section, we provide the details for the derivations of the mean model in §3.1. Recall

f(x; a−, a+, b) = a−
d∑

i=1

ReLU
(
−x[i] + b

)
+ a+

d∑

i=1

ReLU
(
+x[i] + b

)
,

where x = λyej + ξ.825
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We first approximate
d∑

i=1

ReLU
(
±x[i] + b

)
≈

d∑

i=1

ReLU
(
±ξ[i] + b

)
.

In other words, we can ignore the contribution of the signal λyej . This approximation holds because826

(i) initially, the bias b is not yet negative enough to threshold out the noise, and hence the summation827 ∑d
i=1 ReLU(±ξ[i] + b) is of size O(d), and (ii) the difference between the left- and right-hand828

sides above is simply ReLU(±λy ± ξ[j] + b)−ReLU(±ξ[j] + b), which is of size O(1) and hence829

negligible compared to the full summation.830

Next, letting g(b) := Ez∼N (0,1) ReLU(z + b) be the ‘smoothed’ ReLU (see Figure 5), concentration831

of measure implies832

•
∑d

i=1 ReLU
(
±ξ[i] + b

)
≈ dEξ∼N (0,1) ReLU(ξ + b) =: d g(b) and833

•
∑d

i=1 1{±x[i] + b ≥ 0} ≈ dEξ∼N (0,1) 1{ξ + b ≥ 0} = d g′(b).834

Indeed, the summations above are sums of d i.i.d. non-negative random variables, and hence its835

mean is Ω(d) (as long as b ≥ −O(1)) and its standard deviation is O(
√
d). Now, using these836

approximations, one can rewrite the GD dynamics on the population loss E[ℓlogi(yf(x; a−, a+, b))].837

Using these approximations, the output of the ReLU network (2) can be written as

f(x; a−, a+, b) ≈ d (a− + a+) g(b) ,

which in turn leads to an approximation of the GD dynamics on the population loss (a−, a+, b) 7→838

E[ℓlogi(yf(x; a−, a+, b))]:839

a±t+1 = a±t − η E
[
ℓ′logi

(
y f(x; a−t , a

+
t , bt)︸ ︷︷ ︸

≈ d (a−
t +a+

t ) g(bt)

) d∑

i=1

ReLU
(
±x[i] + bt

)

︸ ︷︷ ︸
≈ d g(bt)

]

≈ a±t − η ℓ′sym
(
d (a−t + a+t ) g(bt)

)
d g(bt) ,

bt+1 = bt − η E
[
ℓ′logi(y f(x; a

−
t , a

+
t , bt)︸ ︷︷ ︸

≈ d (a−
t +a+

t ) g(bt)

)

×
(
a−t

d∑

i=1

1{−x[i] + bt ≥ 0}
︸ ︷︷ ︸

≈ d g′(bt)

+ a+t

d∑

i=1

1{+x[i] + bt ≥ 0}
︸ ︷︷ ︸

≈ d g′(bt)

)]

≈ bt − η ℓ′sym
(
d (a−t + a+t ) g(bt)

)
d (a−t + a+t ) g

′(bt) ,

where ℓsym(s) := 1
2 (log(1+ exp(−s))+ log(1+ exp(+s))) is the symmetrized logistic loss. Hence840

we arrive at the following dynamics on a± and b that we call the mean model:841

a±t+1 = a±t − η ℓ′sym
(
d (a−t + a+t ) g(bt)

)
d g(bt) ,

bt+1 = bt − η ℓ′sym
(
d (a−t + a+t ) g(bt)

)
d (a+t + a−t ) g

′(bt) .

Now, we can write the above dynamics more compactly in terms of the parameter At := d (a−t + a+t ).842

At+1 = At − 2d2η ℓ′sym(Atg(bt)) g(bt) ,

bt+1 = bt − η ℓ′sym(Atg(bt))Atg
′(bt) .

D Proofs for the mean model843

In this section, we prove the main theorems for the mean model. We first recall the mean model for844

the reader’s convenience.845

At+1 = At − 2d2η ℓ′(Atg(bt)) g(bt) ,

bt+1 = bt − η ℓ′(Atg(bt))Atg
′(bt) .
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D.1 Deferred proofs846

In this section, we collect together deferred proofs from §3.2.847

Proof of Lemma 2. By definition, g(b) =
∫∞
−b

(ξ + b)φ(ξ) dξ =
∫∞
−b

ξ φ(ξ) dξ + b Φ(b). Recalling848

φ′(ξ) = −ξ φ(ξ), the first term equals φ(b). Moreover, g′(b) = −b φ(b)+Φ(b)+b φ(b) = Φ(b).849

Proof of Lemma 3. Note that ∂t( 12 A
2) = AȦ = −2d2 ℓ′(Ag(b))Ag(b) and also that ∂tκ(b) =850

−ℓ′(Ag(b))κ′(b)Ag′(b) = −ℓ′(Ag(b))Ag(b) since κ′ = g/g′. Hence, ∂t
(
1
2A

2 − 2d2κ(b)
)
= 0851

and the proof is completed.852

D.2 Gradient flow regime853

Proof of Theorem 3. The following proof is analogous to the proof of Theorem 1. We first list several854

facts we use in the proof:855

(i) |g′(b)| = |Φ(b)| ≤ 1 for all b ∈ R.856

(ii) ℓ′(s) = 1
2

exp(s)−1
exp(s)+1 . Hence, |ℓ′(s)| ≤ 1

2 for all s ∈ R, and we have857

ℓ′(s)
s

≥ 1

8
×

{
1 , if |s| ≤ 2 ,

2/|s| , if |s| > 2 .

(iii) ℓ′′(0) = 1/4.858

(iv) ℓ′′′(s) = − exp(s) (exp(s)−1)

(exp(s)+1)3
. Hence, ℓ′′′(s) < 0 for s > 0 and ℓ′′′(s) > 0 for s < 0. In particular,859

|ℓ′(s)| ≤ 1
4 |s| for all s ∈ R.860

Throughout the proof, we assume that A0 > 0 without loss of generality. We prove by induction the861

following claim: for t ≥ 0 and862

γ :=
1

200
min

{
δ, 8− δ,

8− δ

A0

}
,

it holds that863

|At| ≤ A0 exp(−γt) .

This clearly holds at initialization.864

Suppose that the claim holds up to iteration t. Using the bounds on |g′| and |ℓ′|, it follows that865

bt+1 ≥ bt − |ℓ′(Atg(bt))| |At| g′(bt) ≥ bt −
1

2
η |At|

≥ bt −
1

2
ηA0 exp(−γt) ≥ · · · ≥ b0 −

1

2
ηA0

t∑

s=0

exp(−γs) ≥ −ηA0

γ
.

In particular, bt ≥ −1 and g(bt) > 0.08, since η ≤ γ
A0

. Also, the bound shows that if the claim holds866

for all t, then we obtain the desired conclusion.867

It remains to establish the inductive claim; assume that it holds up to iteration t. For the dynamics of868

A, by symmetry we may suppose that At > 0. From ℓ′(Atg(bt)) ≤ Atg(bt)/4 and g(bt) ≤ g(0) =869
1√
2π

,870

At+1 = At − 2ηd2 ℓ′(Atg(bt)) g(bt) ≥
(
1− ηd2

2
g(bt)

2
)
At

≥
(
1− ηd2

2
g(0)

2
)
At = −

(
1− δ

4

)
At .

This shows that At+1 ≥ −(1− γ)At. Next, we show that At+1 ≤ (1− γ)At. First, if Atg(bt) ≤ 2,871

At+1 = At − 2ηd2 ℓ′(Atg(bt)) g(bt) ≤ At −
1

4
ηd2 At g(bt)

2

=
(
1− (8− δ)π

4
g(bt)

2
)
At ≤

(
1− (8− δ)

4
π · 0.082

)
At ≤ (1− γ)At ,
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since we have g(bt) > 0.08. Next, if Atg(bt) ≥ 2, then872

At+1 = At − 2ηd2 ℓ′(Atg(bt)) g(bt) ≤ At −
1

2
ηd2 g(bt) =

(
1− (8− δ)π

2

g(bt)

At

)
At

≤
(
1− (8− δ)π

2
· 0.08
A0

)
At ≤ (1− γ)At .

This shows that |At+1| ≤ (1− γ) |At| for the case At > 0. A similar conclusion is obtained for the873

case At < 0. The induction is complete.874

D.3 EoS regime875

Proof of Theorem 4. The following proof is analogous to the proof of Lemma 7. Assume throughout876

that At ̸= 0 for all t. Recall the dynamics for b:877

bt+1 = bt − η ℓ′(Atg(bt))Atg
′(bt) .

Since ℓ′(s)/s → 1/4 as s → 0, and ℓ′ is increasing, this equation implies that if lim inft→∞ |At| > 0878

then bt must keep decreasing until 1
2 d

2g(bt)
2
< 2/η.879

Suppose for the sake of contradiction that there exists ε > 0 with 1
2 d

2g(bt)
2 > (2 + ε)/η, for all880

t. Let ε′ > 0 be such that 1− (2 + ε) (1− ε′) < −1, i.e., ε′ < ε
2+ε . Then, there exists δ > 0 such881

|At| ≤ δ implies ℓ′(Atg(bt))/(Atg(bt)) >
1
4 (1− ε′), hence882

|At+1|
|At|

=
∣∣∣1− 4 · 1

4
(1− ε′) · 1

2
ηd2 g(bt)

2
∣∣∣ > |(2 + ε) (1− ε′)− 1| > 1 .

The above means that |At| increases until it exceeds δ, i.e., lim inft→∞ |At| ≥ δ. This is our desired883

contradiction and it implies that limt→∞ 1
2 d

2g(bt)
2 ≤ 2/η.884

Remark 4. A straightforward calculation yields that when (a−⋆ , a
+
⋆ , b⋆) is a global minimizer (i.e.,885

a−⋆ + a+⋆ = 0), then λmax

(
∇2f(a−⋆ , a

+
⋆ , b⋆)

)
= 1

2 d
2 g(b⋆)

2. The mean model initialized at (A0, 0)886

approximately reaches (0, 0) whose sharpness is d2 g(0)
2
/2 = d2/4π. Hence, the bias learning887

regime 2/η < d2/(4π) precisely corresponds to the EoS regime, 2/η < λmax

(
∇2f(a−⋆ , a

+
⋆ , b⋆)

)
.888
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Figure 10: Under the same setting as Figure 1, we compare the mean model with the GD dynamics of the
ReLU network. The mean model is plotted with black dashed line. Note that the mean model tracks the GD
dynamics quite well during the initial phase of training.
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Figure 11: Understanding our main question is surprisingly related to the EoS. Under the same setting as
Figure 1, we report the largest eigenvalue of the Hessian (“sharpness”), and observe that GD iterates lie in the
EoS during the initial phase of training when there is a fast drop in the bias.
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Figure 12: Two regimes for GD. We run GD on the square root loss with step size 1
4

. The gradient flow regime
is illustrated on the left for (x0, y0) = (3, 4). GD (blue) tracks the gradient flow (green) when η < 2/(y2

0 −x2
0).

Otherwise, as illustrated on the right for (x0, y0) = (3, 6), GD is in the EoS regime and goes through a gradient
flow phase (blue), an intermediate bouncing phase (orange) that tracks the quasi-static envelope (purple), and a
converging phase (red).
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