
A Proofs from Section 2448

Algorithm 4: Output α̂ ∈
[
G−1(1− η1)− ε

3 , G
−1 (1− η1 + η2) +

ε
3

]
with probability 1− δ

2

1 input: arm set S = (a1, a2, . . . ) and parameters (η1, η2, ε, δ) ∈ (0, 1) with η2 < η1.
2 initialize: K = Cη1 log(1/δ)

η2
2

.
3 for i = 1, 2, . . . ,K do
4 Collect n = C log(1/η2)

ε2 samples of arm i. Set p̂i = p̂i(n) to be the average observed reward.
5 end
6 Let α̂ be the k-th largest value in {p̂1, . . . , p̂K} for k = ⌈K

(
η1 − η2

2

)
⌉.

7 Return α̂

We show the following generalization of Proposition 2.1.449

Proposition A.1. Fix 0 ≤ η1, η2, ε, δ ≤ 1 with η2 ≤ η1. With probability at least 1− δ
2 , the output450

α̂ of Alg. 4 satisfies451

α̂ ∈
[
G−1(1− η1)−

ε

3
, G−1 (1− η1 + η2) +

ε

3

]
.

Moreover, Alg. 4 has sample complexity452

O

(
η1 log(1/η2) log(1/δ)

η22ε
2

)
.

Proof. The sample complexity is clear so we focus on the first statement. First observe that by a453

Chernoff estimate, for each i ∈ [K],454

P
[
|pi − p̂i| ≥

ε

3

]
≤ η2

8
. (A.1)

Let N(ε) be the number of i ∈ [K] such that |pi − p̂i| ≥ ε
3 . Applying a second Chernoff estimate455

(of multiplicative form, see e.g. Theorem 4.5 in [MU17]) on these events as i varies and noting that456

Kη2 ≥ C log(1/δ), (A.1) implies457

P
[
N(ε) ≤ Kη2

6

]
≥ 1− δ

8
. (A.2)

We next show that with probability at least 1− δ
4 ,458

α̂ ≤ α+
ε

3
≡ G−1 (1− η1 + η2) +

ε

3
. (A.3)

With pi the (true) mean reward from arm ai, let459

Nα ≡ |{i ∈ [K] : pi > α}|
denote the number of the K tested arms which satisfy pi > α. By definition, Nα is stochastically460

dominated by a Bin
(
K, η1 − 9η2

10

)
random variable, and η1 − 3η2

4 = Θ(η1) since η2 ≤ η1. Note461

that462

η1 −
9η2
10
≍ η1 −

3η2
4
≍ η1,

η1 − 9η2

10

η1 − 3η2

4

≥ 1 +
η2
20η1

.

Therefore another multiplicative Chernoff estimate implies463

P
[
Nα ≤ K

(
η1 −

3η2
4

)]
≥ e−Ω(Kη2

2/η1) ≥ 1− δ

8
.

When both N(ε) ≤ Kη2

6 and Nα ≤ K
(
η1 − 3η2

4

)
hold, it follows by definition that α̂ ≤ α + ε

3 .464

Hence recalling (A.2) above, we conclude that465

P
[
α̂ ≤ α+

ε

3

]
≥ 1− δ

4
,
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establishing (A.3). The other direction is similar. With α = G−1(1− η1) as usual, we set466

Nα ≡ |{i ∈ [K] : pi ≥ α}| . (A.4)

This time, Nα stochastically dominates a Bin(K, η1) random variable. Yet another Chernoff esti-467

mate yields468

P
[
Nα ≥ K

(
η1 −

η2
4

)]
≥ 1− δ

8
.

Using (A.2) in the same way as above, we find469

P
[
α̂ ≥ α− ε

3

]
≥ 1− δ

4
.

This concludes the proof.470

Proof of Theorem 2.1. First we analyze the expected sample complexity. On the event that471

α̂ ∈
[
G−1(1− η)− ε

3
, G−1

(
1− η

2

)
+

ε

3

]
(A.5)

we claim that Alg. 2 terminates with probability η/4 for each ai. Indeed, if472

p̂i ≥ G−1
(
1− η

2

)
then termination always happens by definition. This has probability at least 1/4 if pi ≥ G−1

(
1− η

2

)
473

by Theorem 1 in [GM14], and the latter condition has probability at least η/2 by definition. It474

follows that when (A.5) holds, the expected sample complexity of Alg. 2 is O
(

log(1/ηδ)
ηε2

)
. On475

the other hand, (A.5) fails to hold with probability less than δ. Because of the explicit termina-476

tion condition in Alg. 2, this yields a additional sample complexity contribution of smaller order477

O
(
δ log(1/δ) log(1/ηδ)ηε2

)
. Finally Alg. 4 has sample complexity478

O

(
log(1/η) log(1/δ)

ηε2

)
which clearly forms the dominant contribution. This completes the proof of the sample complexity479

bound and we now turn to proving correctness with probability 1 − δ. First, it is easy to see that480

Alg. 4 outputs some arm ai with probability at least 1 − δ
2 . It therefore suffices to show that for481

any fixed α̂ satisfying (A.5), conditioned on the event p̂i ≥ α̂ − ε
3 , the conditional probability that482

pi ≥ α− ε is at least 1− δ
2 .483

We do this using Bayes’ rule. If pi ≥ G−1(1− η
2 ), then as above Theorem 1 in [GM14] implies484

P
[
p̂i ≥ α̂− ε

3

]
≥ P[p̂i ≥ pi] ≥ 1/4.

This event hence contributes probability at least η/4 to the event pi ≥ G−1(1 − η). On the other485

hand, if pi ≤ G−1(1− η)− ε ≤ α̂− 2ε
3 , then486

P
[
p̂i ≥ α̂− ε

3

]
≤ P

[
p̂i ≥ pi +

ε

3

]
≤ ηδ/8

for an absolute constant C. Combining these via Bayes’ rule implies the desired result.487

B Lower Bound for Fixed Budget488

Fixed Budget with Unknown α489

Before giving the proof, we give some qualtiative discussion of the role of unknown α. We consider490

Theorem 3.2 to be a definitive lower bound, since e.g. being given the value of α only makes the491

result stronger. When α is unknown, it is possible to give an essentially matching algorithm, but492

more care is required when stating the result. This is inherent and stems from the fact that the value493

α = G−1
µ (1− η) can be difficult or even impossible to estimate, yet determines the constant cα,β in494

the desired rate.495
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Let us illustrate the issue by a counterexample. Consider µN defined by:496

Pp∼µN [p = 0.4] =
1

2
+ e−10N ,

Pp∼µN [p = 0.2] =
1

2
− e−10N .

(B.1)

Similarly define µ̃N by:497

Pp∼µ̃N [p = 0.4] =
1

2
− e−10N ,

Pp∼µ̃N [p = 0.3] = 2e−10N ,

Pp∼µ̃N [p = 0.2] =
1

2
− e−10N .

(B.2)

Then µN and µ̃N are not distinguishable using N samples, yet G−1
µ (1/2) = 0.4 while G−1

µ̃ (1/2) =498

0.3. Using non-distinguishability it follows that the lower bound of Theorem 3.2 applies to µ̃N with499

threshold α = G−1
µN

(1/2) = 0.4, as opposed to the direct application using G−1
µ̃N

(1/2) = 0.3. It is500

not hard to show using monotonicity of 1√
x(1−x)

that501

c0.4,0.4−ε < c0.3,0.3−ε

for all ε ≤ 0.3. As a result, it is information-theoretically impossible to achieve the rate (3.1) for502

µ̃N if the target quantile value α is not given. The core reason is that the value G−1
µ̃ (1/2) = 0.3 is503

too sensitive to the choice η = 1/2 of quantile.504

Fortunately, this issue is more of an annoyance than a real difficulty. It can be fixed in several ways.505

In Theorems B.1, B.2, and B.3 below we give three concrete formulations under which the guarantee506

(3.1) can be achieved, as mentioned in the main body.507

Theorem B.1. For fixed η1, η2, ε, there is a sequence (AN )N≥1 of N -sample algorithms outputting508

ai∗ such that the following holds for any sequence (µN )N≥1 of reservoir distributions. Letting509

αN =
1

η1 − η2
·
∫ 1−η2

1−η1

G−1
µN

(x)dx

be a quantile average of µN , we have510

lim sup
N→∞

(− logP[pi∗ < αN − ε]) · log2 N
cαN ,αN−ε N

≥ 1. (B.3)

Theorem B.2. For fixed η, ε, there is a sequence (AN )N≥1 of N -sample algorithms outputting ai∗511

such that for any sequence of reservoir distributions µN satisfying512

αN ≡ G−1
µN

(1− η) ≥ 1 + ε

2
,

we have513

lim sup
N→∞

(− logP[pi∗ < G−1
µN

(1− η)− ε]) · log2 N
cαN ,αN−ε N

≥ 1. (B.4)

Theorem B.3. For any fixed ε1 > ε, there is a sequence (AN )N≥1 of N -sample algorithms out-514

putting ai∗ such that for any fixed reservoir distribution µ with µ∗ > ε,515

lim sup
N→∞

(− logP[pi∗ < µ∗ − ε1) · log2 N
N

≥ cµ∗,µ∗−ε. (B.5)

We emphasize that the rate (3.1) is optimal in all cases since the lower bound of Theorem 3.2 is516

for an easier problem. The first formulation above may be the most principled choice. The idea517

is that an averaged quantile depends continuously on µ, and can in fact be estimated by applying518

Proposition A.1 for several pairs (η1, η2) and computing a Riemann sum. The second formulation519

requires only the mild condition that α ≥ 1+ε
2 and uses monotonicity of cα,α−ε on this set. (In other520

words, if the average reward values p appearing in (B.1), (B.2) were larger than 0.5, there would be521

no counterexample.) The third formulation allows us to almost send η all the way down to 0. It uses522

the fact that523

µ∗ − (ε1 − ε) ≤ G−1
µ (1− η′)

for some η′ = η′(µ, ε1, ε) > 0. These results show that (3.1) is achievable even without knowledge524

of α, up to a choice of technical modification to sidestep the counterexample discussed above.525
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Remark B.1. In fact uniformity in (α, β) holds in the following sense. For any sequence526

(αN , βN )N≥1 of pairs with min
(
βN , αN − βN , 1 − αN

)
uniformly bounded below, there is a527

sequence (AN )N≥1 of N -sample algorithms such that for any η ∈ (0, 1) and any sequence of528

reservoir distributions µN with G−1
µN

(1− η) ≥ αN ,529

lim sup
N→∞

(− logP[pi∗ < βN ]) · log2 N
cαN ,βN

N
≤ 1. (B.6)

This can be shown identically to Theorem 3.1, though we don’t give the proof in this generality. It is530

useful for the reduction arguments in Theorems B.1, B.2, and B.3.531

B.1 Preparation for the Proof532

Here we prove Theorem 3.2. For any α, β, η, ϱ > 0 we construct a reservoir µ = µα,β,η,ϱ such that533

lim inf
N→∞

(− logPµ[pi∗ < β]) · log2 N
N

≤ cα,β + λ(ϱ) (B.7)

holds for any sequence of N -sample algorithms AN , and where limϱ→0 λ(ϱ) = 0 for fixed α, β, η.534

B.2 Admissible Reservoirs and Bayesian Perspective535

In proving Theorem 3.2, we will use reservoir distributions µ of a specific form. Namely, we require536

each µ to be supported on an interval [γ, γ], where537

0 < β − ϱ < γ < β < α < γ < α+ ϱ < 1.

In fact we define γ, γ explicitly (recall that ϱ > 0 is a small constant which we eventually send to 0)538

by539

θ(γ) = θ(β)− ϱ2;

θ(γ) = θ(α) + ϱ2.
(B.8)

We say µ is (γ, γ, f , f) admissible if µ has density µ(dx) = f(x)dx for a Borel measurable function540

f and satisfies for constants 0 < f < f <∞,541

f(x) ∈ [f, f ], ∀x ∈ [γ, γ].

Towards proving Theorem 3.2, we fix throughout this section some (γ, γ, f , f) admissible µ such542

that G−1
µ (α) = η holds, for appropriate constants (f, f) depending only on (η, ε, α, β, γ, γ). It is543

easy to see that this is always possible.544

An admissible µ is roughly comparable to the uniform distribution on an interval. Using admissible545

reservoirs gives each ai the potential to slowly degrade in observed quality over time. We remark546

that while it is more convenient to work with reservoirs supported away from the boundaries, i.e. in547

[γ, γ] ⊆ (0, 1), we do not expect this to be essential.548

It will be helpful throughout this section to take a Bayesian point of view. We treat µN as known549

to AN , since AN is in fact allowed to depend on µN . Thus at each time t, each pi has a posterior550

probability distribution which we denote by µi,t. Note that each µi,t depends only on (ni,t, p̂i,t) and551

is initialized at µi,0 = µ. We denote by552

µt = (µ1,t, µ2,t, . . . ) (B.9)

the sequence of posterior distributions µi,t. Since arms are independent, µt is the full time-t poste-553

rior of the algorithm.554

B.3 Batched Algorithms and Adversaries555

In pure exploration problems, it is possible to significantly simplify the structure of any algorithm556

at the cost of a small multiplicative increase in the sample complexity. We carry this out using the557

notion of a batch-compressed algorithm.558
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Definition B.1. Given an increasing sequence B = (b1, b2, . . . ) of positive integers, an algorithm559

A is B-batch-compressed if A can only act by increasing the number of times ni that ai has been560

sampled from bk to bk+1, so that ni ∈ B holds at all times. B is ϱ-slowly increasing if561

bk+1

bk + 1
≤ 1 + ϱ, ∀k ≥ 1.

Finally if A is B-batch-compressed and B is ϱ-slowly increasing, we say that A is ϱ-batch-562

compressed.563

Unlike the batched algorithms studied in [PRCS16, GHRZ19], batch-compression is only important564

for us as an analysis technique. Indeed the following proposition shows that it does not fundamen-565

tally affect pure exploration algorithms.566

Proposition B.2. If B is ϱ-slowly increasing, then for any N -sample algorithm A, there exists an567

B-batch-compressed ⌊N(1 + ϱ)⌋ algorithm A′ with the same output.568

Proof. We show how to simulate A using the B-batch-compressed A′, assuming that the sequence569

of rewards for each ai is fixed. Each time A samples arm i for the ni = (ak + 1)-st time for570

ak ∈ A, A′ samples arm i until ni = ak+1. Then A′ has all the information of A at all times, hence571

can simulate the behavior and output of A. Moreover by the definition of ϱ-slowly increasing, the572

sample complexity of A′ is larger than that of A by at most a factor (1 + ϱ).573

We will use the above with ϱ → 0 slowly as N → ∞. Then the sample complexity increase 1 + ϱ574

is absorbed into the 1 + o(1) factor in Theorem 3.2. As a result it suffices to establish (B.7) under575

the additional assumption that AN is ϱ-batch-compressed.576

B.4 Fisher Information Distance577

Determining the tight constant cα,β requires significant care. In particular the adversary must de-578

crease the empirical average rewards p̂i,t at a precise rate depending on ni,t. This rate turns out to579

involve the Fisher information distance. For a, b ∈ [0, 1] we define the Fisher information distance580

dF (a, b) between a and b to be581

dF (a, b) =

∣∣∣∣∣
∫ b

a

dx√
x(1− x)

∣∣∣∣∣ .
This agrees with the more general Fisher information metric when each a ∈ [0, 1] is identified with582

the corresponding Bernoulli distribution. We refer the reader to [Nie20] for a survey on informa-583

tion geometry. In short, the Fisher information yields a natural Riemannian metric on families of584

probability distributions which are parametrized by smooth manifolds. However we will use only585

elementary properties of dF .586

We parametrize [0, 1] using the function θ : [0, 1]→ [0, π] defined by587

θ(a) = dF (0, a) =

∫ a

0

dx√
x(1− x)

= arccos(1− 2a). (B.10)

In particular,588

dF (a, b) = | arccos(1− 2a)− arccos(1− 2b)| ≥ 2|a− b|

and so dF (0, 1) = π. The main property of θ that we will use is the resulting differential equation589

θ′(a) =
1√

θ(a)(1− θ(a))
. (B.11)

In our case, θ−1 parametrizes a “constant speed” path through the space of Bernoulli variables, view-590

ing the Fisher information. Correspondingly, our adversary will ensure that θ(p̂i(ni,t)) decreases591

linearly in log(ni,t).592
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B.5 Preliminary Lemmas from Moderate Deviations593

Recall that for positive integers a and b, the Beta(a, b) distribution has probability density function594

(a+ b− 1)!

(a− 1)!(b− 1)!
xa−1(1− x)b−1

for x ∈ [0, 1]. We now recall a moderate deviations principle for the binomial distribution and a595

central limit theorem for the beta distribution.596

Lemma 4 (Theorem 2.2 in [DA92]). For any 0 < q < q < 1 and constant ϱ > 0 there exists597

∆0(q, q, ϱ) and M0(q, q, ϱ) such that the following holds for all p ∈ [q, q]. For n ≥ n0() sufficiently598

large and any 1
∆0

√
n
≤ ∆ ≤ ∆0 we have599

e

(
− ∆2

2p(1−p)
−ϱ

)
n ≤ P

[
Bin(n, p)

n
≤ p− δ

]
≤ e

(
− ∆2

2p(1−p)
+ϱ

)
n
.

Lemma 5 (Lemma A.1 in [MNS16]). Let {an}n≥n0
be a sequence satisfying600

γ ≤ an
n
≤ γ.

Then the Beta(n−an+1, an+1) distribution on [0, 1] obeys a central limit theorem with mean an

n601

and standard deviation
√

(an/n)(1−(an/n))
n in the sense that for any bounded sequence (wn)n≥n0

602

of real numbers and with Φ the normal CDF,603

lim
n→∞

∣∣∣∣Φ(wn)− Px∼Beta(n−an+1,an+1)

[(
x− (an/n)

)
·
√

n

(an/n)(1− (an/n))
≤ wn

]∣∣∣∣ = 0.

In the next two lemmas, we lower bound the probability that p̂i,t changes significantly when the604

number ni,t of samples for ai increases by a factor (1 + ϱ).605

Lemma 6. Assume µ is (γ, γ, f , f)-admissible. Suppose that arm i’s average reward p̂i,t after606

n = ni,t samples satisfies607

p̂i,t ∈ [β, γ]. (B.12)

Then for n ≥ C(γ, γ, f , f , β) sufficiently large,608

Px∼µi,n
[
x ≤ p̂i,t

]
≥

f

3f
. (B.13)

Proof. Let Ri,t = np̂i,t be the total reward from arm i so far. The posterior distribution µi,t for pi609

takes the form610

µi,t(dx) =
xRi,t(1− x)n−Ri,tf(x)dx∫ γ

γ
xRi,t(1− x)n−Ri,tf(x)dx

.

For x ∈ [γ, γ] we estimate611

xRi,t(1− x)n−Ri,tf(x)∫ γ

γ
xRi,t(1− x)n−Ri,tf(x)dx

≥ (f/f) · xRi,t(1− x)n−Ri,t∫ 1

0
xRi,t(1− x)n−Ri,tdx

.

The right-hand side is the density of a beta variable with parameters (Ri,t + 1, n − Ri,t + 1). We612

conclude that613

Px∼µi,t
[
x ∈ [γ, p̂i,t]

]
≥ (f/f) · Pz∼Beta(n−Ri,t+1,Ri,t+1)

[
z ∈ [γ, p̂i,t]

]
For n sufficiently large, it follows from Lemma 5 and (B.12) that614

Pz∼Beta(n−Ri,t+1,Ri,t+1)
[
z ∈ [γ, p̂i,t]

]
≥ 1

3
.

Therefore Pµi,t [pi ≤ p̂i,t] ≥ 1
3 , proving (B.13).615
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Lemma 7. Assume µ is (γ, γ, f , f)-admissible and that (B.12) holds. For n = ni,t, let ñ ≥ 1616

satisfy |ñ− ϱn| ≤ 2. Let617

p̃i =
Ri,n+ñ −Ri,n

ñ

be the average reward from the (n + 1)-th through (n + ñ)-th samples of arm i. Then as n → ∞,618

for any sequence ∆n = Θ(1/ log n),619

Pt[p̃i ≤ θ−1(θ(p̂i,t)− δ)] ≥ exp

(
−nϱ∆2

n(1 + on(1))

2

)
. (B.14)

Proof. Stochastic monotonicity implies that620

P
[
Bin(ñ, p)

ñ
≤ θ−1

(
θ(p̂i,t)−∆n

)]
is a decreasing function of p ∈ [0, 1]. Combining with Lemma 6, it follows that621

Pt[E] =

∫
P
[
Bin(ñ, x)

ñ
≤ θ−1

(
θ(p̂i,t)−∆n

)]
dµi,t(x)

≥ Pµi,t [pi ≤ p̂i,t] · P
[
Bin(ñ, p̂i,t)

ñ
≤ θ−1

(
θ(p̂i,t)−∆n

)]
≥

f

3f
· P
[
Bin(ñ, p̂i,t)

ñ
≤ θ−1

(
θ(p̂i,t)−∆n

)]
.

Since θ is smooth with smooth inverse on [γ, γ] and ∆n ≤ on(1), we have622

p̂i,t − θ−1
(
θ(p̂i,t)−∆n

)
= (1± on(1))∆n · (θ−1)′

(
θ(p̂i,t)

)
=

(1± on(1)) ·∆n

θ′(θ−1(p̂i,t))

= (1± on(1)) ·∆n

√
p̂i,t(1− p̂i,t).

The result now follows from Lemma 4, where we absorb the factor f/(3f) into the on(1).623

B.6 Proof of Theorem 3.2624

Recall the definition (B.8) of γ and γ. We require A to be B-batch-compressed for B = B(N, ϱ)625

containing:626

1. All positive integers at most N2ϱ.627

2. All positive multiples of ⌊Nϱ⌋ at most N6ϱ.628

3. Integers of the form ⌊N6ϱ(1 + ϱ)j⌋ for j ≥ 0.629

It is easy to see that B thus defined is ϱ-slowly increasing for any ϱ > 0 and N sufficiently large.630

We denote bk = ⌊N6ϱ(1 + ϱ)k⌋ so that |bk+1 − (1 + ϱ)bk| ≤ 2. (This choice of indexing differs631

from that of Definition B.1, which will not be used in the sequel.)632

We next construct our randomness distorting adversary A = A(N, ϱ). For each arm i, the adversary633

A acts as follows depending on the current number of samples ni,t.634

1. If ni,t ≤ N2ϱ, then A does nothing.635

2. When N2ϱ ≤ ni,t < N6ϱ increases by Nϱ, A declares that the average reward of this batch636

of Nϱ samples is at most γ −N−ϱ.637

3. When ni,t increases from bk ≥ N6ϱ to bk+1:638

(a) If p̂i(bk) > β holds, then A declares that639

θ(p̂i(bk+1)) ≤ θ(p̂i(bk))−
ϱ(1 + 10ϱ)dF (α, β)

logN
. (B.15)
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(b) If p̂i(bk) ≤ β holds, then A declares that640

p̂i(bk+1) ≤ β.

4. When the A chooses the arm ai∗ to output, A declares that pi∗ < β.641

Due to step 4, the declarations made by A ensure that pi∗ < β. Recalling Lemma 4 and Proposi-642

tion B.2, it remains to show the upper bound643

strength(A) ≤ (cα,β + C∗ϱ)N

log2(N)

for a constant C∗ = C∗(γ, γ, f , f , β, α) independent of ϱ (and N ). We show this bound in several644

parts. Recalling (3.3), we refer to the cost of a step above as the contribution to Cost from the645

corresponding declarations by A. The most important parts are Lemmas 10 and 11, which bound646

the cost of the main step 3a and form the dominant contribution to Cost. Note that throughout the647

analysis below, all cost upper bounds hold almost surely and we assume that all of A’s declarations648

hold true.649

Lemma 8. The total cost from step 2 is at most C∗N
1−ϱ, for N ≥ C(γ, γ, f , f , β, α, ϱ) sufficiently650

large.651

Proof. The probability for each such declaration by A is at least652

P[Bin(N2ϱ, γ) ≤ γN2ϱ −Nϱ] (B.16)

since pi ≤ γ almost surely. Recall that a Bin(N2ϱ, γ) random variable obeys a central limit theorem653

centered at γN2ϱ with standard deviation at least C(γ)Nϱ. Therefore the probability in (B.16) is654

at least 1
3 for N is sufficiently large depending on ϱ. Hence each such declaration costs at most655

C∗ for N sufficiently large. Moreover such declarations can occur only N1−ϱ times because each656

one involves Nϱ samples, and the base algorithm A is an N -sample algorithm. This completes the657

proof.658

Lemma 9. The total cost from step 3b is at most C∗N
1−6ϱ as long as N ≥ C(γ, γ, f , f , ϱ).659

Proof. It suffices to show that the cost per step 3b declaration is at most C∗. This follows from660

(B.13) and stochastic monotonicity.661

Lemma 10. The total cost from step 3a is at most662

N

log2(N)
· (cα,β + C∗ϱ+ oN (1)).

Proof. We claim that the cost from a single instance of step 3a when increasing from bk to bk+1663

samples is at most664 (
(bk+1 − bk)

log2(N)

)
(cα,β + C∗ϱ+ oN (1)).

This implies the desired result since AN is an N -sample algorithm. Taking ∆ = (1 +665

10ϱ)dF (α, β)/ log(N) in Lemma 7, we find that the declared event has probability at least666

exp

(
− (bk+1 − bk)(1 + 10ϱ)2dF (α, β)

2(1 + oN (1))

2 log2(N)

)
≥ exp

(
− (bk+1 − bk)

log2(N)

(
cα,β + C∗ϱ+ oN (1)

))
.

This implies the desired claim and completes the proof.667

Lemma 11. For any ai sampled b0 = ⌊N6ϱ⌋ times, p̂i(b0) ≤ γ.668

Proof. By definition of A,669

p̂i(b0) ≤
N2ϱ + (N6ϱ −N2ϱ)(γ −N−ϱ)

N6ϱ

= γ − 1

Nϱ
+

(1− γ)

N4ϱ
+

1

N5ϱ

≤ γ.
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In the last step we used the fact that670

1

Nϱ
≥ (1− γ)

N4ϱ
+

1

N5ϱ

for any ϱ > 0 if N is sufficiently large.671

Lemma 12. For ϱ ∈ (0, 1/100), if ni,t ≥ N1−ϱ and the declarations of A hold, then p̂i,t ≤ β.672

Proof. We analyze the rate at which the adversary forces θ(p̂i(bk)) to decrease. From (B.15) and673

(11) it follows that for k with bk ≥ N1−ϱ, we have674

θ(p̂i(bk)) ≤ θ(γ)−
ϱ(1 + 10ϱ)dF (α, β) log1+ϱ(N

1−8ϱ)

logN

= θ(γ)− ϱ(1 + 10ϱ)(1− 8ϱ)dF (α, β)

log(1 + ϱ)

≤ θ(γ)− (1 + ϱ)dF (α, β)

(B.8)
< θ(β).

Here we used the fact that log(1 + ϱ) ≤ ϱ and (1 + 10ϱ)(1 − 8ϱ) ≥ 1 for ϱ ∈ (0, 1/100). Since θ675

is increasing, this shows that p̂i,t = p̂i(bk) < β for bk ≥ N1−ϱ, completing the proof.676

Lemma 13. The cost from step 4 is at most C∗
(
N1−ϱ + 1

)
.677

Proof. First, if p̂i∗,N ≤ β then the cost from step 4 is at most C∗. On the other hand if p̂i∗,N > β,678

then Lemma 11 implies ni∗,N ≤ N1−ϱ. Since the prior µ is supported in [γ, γ], the likelihood ratio679

of updates from N1−ϱ samples is almost surely bounded by eC∗N
1−ϱ

. Therefore680

Px∼µi,N [x < β] ≥ e−C∗N
1−ϱ

Px∼µ[x < β]

≥ e−C∗N
1−ϱ (β − γ)f

f
.

This completes the proof.681

We now combine the lemmas above to conclude Theorem 3.1 via (B.7).682

Proof of Theorem 3.1. Let C ′
∗ be a larger constant depending on the same parameters. Then by683

Lemmas 8, 9, and 13, the total cost from Steps 2, 3b, 4 combines to C ′
∗N

1−ϱ) ≤ oN (N/ log2 N).684

The main cost contribution of685

N

log2 N
(cα,β + C∗ϱ+ oN (1)).

comes from Lemma 10, and all other terms are of strictly smaller order. We have thus constructed a686

reservoir sequence (µN (ϱ))N≥1 satisfying (B.7) for arbitrary ϱ > 0, completing the proof.687

C An Optimal Algorithm with Fixed Budget688

Here we provide an asymptotically optimal algorithm which establishes Theorems B.1, B.2, and B.3.689

In the next subsection in which we show how to reduce the other results mentioned to Theorem 3.1690

(in which α is given) using Proposition A.1. Our main focus will then be to prove Theorem 3.1.691

We will fix ϱ > 0 small and construct a sequence of N -sample algorithms (A(N, ϱ)) satisfying the692

slightly relaxed guarantee693

lim inf
N→∞

(− log(PµN (ϱ)[pi∗ < β])) · log2 N
N

≥ cα,β − λ(ϱ) (C.1)

for a (possibly different) function λ satisfying limϱ→0 λ(ϱ) = 0 (for fixed α, β, η). Here (µN )N≥1 is694

any sequence of reservoir distributions satisfying G−1
µN

(1− η) = α. An elementary diagonalization695

argument then implies Theorem 3.1. Thus it suffices to construct algorithms satisfying (C.1) for any696

desired ϱ > 0.697
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C.1 Reduction to Known α698

We explain why Theorems B.1, B.2, and B.3 all follow from Theorem 3.1 (more precisely, the699

uniform statement given in Remark B.1). We begin with Theorem B.1, where700

αN =
1

η1 − η2
·
∫ 1−η2

1−η1

G−1
µN

(x)dx.

Let J = ⌈ 6
ε(η1−η2)

⌉ and define701

η(j) =
(J − j)η1 + jη2

J
, j ∈ [J ].

It is easy to see that η(j+1)−η(j) ≤ η(j) for all j. We next apply Alg. 4 on (η(j), η(j+1)−η(j), ε′, δ′)702

for 0 ≤ j ≤ J − 1, with:703

ε′ = log−1/3(N),

δ′ = e
− 10N

log2(N) /J.

This requires sample complexity704

NA ≤
C(η1, η2)N log log(N)

log(N)
≤ oN (N). (C.2)

Let α̂j be the resulting output. With probability 1− Jδ, we have for each 0 ≤ j ≤ J − 1,705

α̂j ∈
[
G−1(1− η(j))− ε

3
, G−1

(
1− η(j+1)

)
+

ε

3

]
. (C.3)

Note that the function G−1
µ is increasing and [0, 1]-valued. Therefore if (C.3) holds for each j, then706 ∣∣∣∣∣∣ 1J ·
J−1∑
j=0

α̂j −
1

η1 − η2
·
∫ 1−η2

1−η1

G−1
µN

(x)dx

∣∣∣∣∣∣ ≤ ε

3
+

1

J
≤ ε

2
.

Therefore the estimator707

α̂A =
1

J
·
J−1∑
j=0

α̂j

satisfies708

P
[∣∣∣∣α̂A −

1

η1 − η2
·
∫ 1−η2

1−η1

G−1
µN

(x)dx

∣∣∣∣ ≤ ε/2

]
≥ 1− Jδ′ = 1− e

− 10N
log2(N) .

Finally, cα,α−ε ≤ π < 10 for any α, ε ∈ [0, 1] (see (B.10)). Therefore the δ′ = e
− 10N

log2(N) failure709

probability above has a negligible contribution in Theorem B.1. It follows that applying Theorem 3.1710

with α = α̂A as above and N ′ = N −NA implies Theorem B.1.711

We now turn to Theorem B.2, where µN is required to satisfy G−1
µN

(1 − η) ≥ 1+ε
2 . We run Alg. 4712

with parameters713

η1 = η,

η2 = log−1/3(N),

ε′ = log−1/3(N),

δ′ = e
− 10N

log2(N) .

The sample complexity NB again satisfies NB ≤ o(N) exactly as in (C.2). Let α̂B + ε′ be the714

resulting output. Then with probability at least 1− e
− 10N

log2(N) ,715

α̂B ≥ G−1
µN

(1− η)− 2ε′

and so with ε′′ = ε− 2ε′, we have716

α̂B − ε′′ ≥ G−1
µN

(1− η)− ε.
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Moreover, also with probability at least 1− e
− 10N

log2(N) ,717

α̂B ≤ G−1
µN

(1− η + η2).

It follows that applying the algorithm of Theorem 3.1 with718

(N,α, η, ε) = (N −NB , α̂B , η − η2, ε− 2ε′)

suffices to recover Theorem B.2, since η2 and ε′ tend to 0 as N → ∞. As in our discussion of719

Theorem B.1 above, the failure probability e
− 10N

log2(N) is negligible compared to the relevant rate in720

Theorem B.2.721

Finally, Theorem B.3 relies on the simple fact722

lim
η→0

G−1
µ (1− η) = µ. (C.4)

Recall that µ∗ ∈ [0, 1] denotes the maximum value in the support of µ. We run Alg. 4 on723

(η1, η2, ε
′, δ′) where:724

η1 = log−1/3(N),

η2 = η1/2,

ε′ = ε1 − ε,

δ′ = e
− 10N

log2(N) .

It follows from Proposition A.1 that the resulting output α̂C + ε1−ε
2 is computed using725

O
(

N log log(N)
log(N)

)
≤ o(N) samples as in the previous cases. Moreover for N sufficiently large:726

P
[
α̂C +

ε1 − ε

2
≥ µ∗ − ε′

3
− oN (1)

]
(C.4)
≥ P

[
α̂C +

ε1 − ε

2
≥ G−1

µ (1− η1)−
ε′

3

]
≥ 1− δ′

= 1− e
− 10N

log2(N) .

Since ε1 > ε, this means for N ≥ N0(µ, c
′, . . . ) large enough,727

P [α̂C ≥ µ∗ − (ε1 − ε)] ≥ 1− e
− 10N

log2(N) .

Note that Alg. 4 also ensures that with probability 1− e
− 10N

log2(N) ,728

α̂C ≤ µ∗ +
ε′

3
− ε1 − ε

2
= µ∗ − ε1 − ε

6

≤ G−1
µ (1− η′)

for some η′(µ, ε1, ε) > 0. It follows that applying Theorem 3.1 with729

(N,α, η, ε) = (N −N ′, α̂C , η
′, ε)

implies Theorem B.3.730

C.2 The Fixed Budget Algorithm731

We now present Algorithm 3 for the fixed budget problem (recall the informal discussion in Sec-732

tion 3). Algorithm 3 studies one arm ai at a time, moving to ai+1 if ai is rejected. Similarly to the733

previous section, some details are needed while nt,i is small, since large deviation asymptotics may734

not have kicked in yet. As explained at the start of the section, we choose a small constant ϱ > 0.735

In fact, we will eventually choose small constants736

0 < ϱ≪ ϱ1 ≪ ϱ2 ≪ ϱ3 ≪ ϱ4 ≪ ϱ5 ≪ 1

which all tend to 0 as ϱ→ 0. These constants will be defined throughout the proof. More formally,737

these values can be obtained by choosing ϱ5 > 0 arbitrarily small, then ϱ4 > 0 sufficiently small738

depending on ϱ5, and so on.739
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Algorithm 3 operates in a batch-compressed way, for a sequence (b1, b2, . . . ) defined as follows:740

b0 = ⌈ϱ1 log2(N)⌉,
k0 = ⌈log1+ϱ

(
log4(N)/b0

)
⌉

bk = b0(1 + ϱ)k, k ≤ k0

bk0+j = ⌈(1 + ϱ)jbk0⌉, j ≥ 1

τk = α− ϱ− k√
logN

, k ≤ k0

τk0+j = θ(α− 2ϱ)− j · dF (α, β)ϱ(1− ϱ2)

logN
, j ≥ 1.

Note in particular that bk0
≥ log4(N). We denote by p̂i,t the empirical average reward collected by741

ai from its first t samples.742

Algorithm 5: Output arm with pi ≥ β using N samples with high probability
1 input: an infinite sequence of arms i = 1, 2, . . .
2 initialize: i = 0
3 while fewer than N samples have been collected do
4 i← i+ 1
5 Collect b0 samples of arm i.
6 if p̂i,b0 ≤ α− ϱ then
7 Reject arm i
8 end
9 for k = 1, 2, . . . , k0 do

10 Collect bk − bk−1 samples of arm i for a total of bk samples.
11 if p̂i,bk ≤ α− ϱ− k√

logN
then

12 Reject arm i;
13 end
14 end
15 for j = 1, 2, . . . do
16 Collect bk0+j − bk0+j−1 samples of arm i for a total of bk0+j .
17 if θ(p̂i,bk0+j

) ≤ θ(α− 2ϱ)− j · dF (α,β)ϱ(1−ϱ2)
logN then

18 Reject arm i
19 end
20 end
21 end
22 Return arm i.

The role of the values bj is as follows. When an arm ai reaches bk samples for some k ≥ 0,743

it is checked for possible rejection by comparing its empirical average reward to the threshold τk.744

Algorithm 3 rejects arm i and moves to arm ai+1 if the empirical average p̂i,bk of arm ai drops below745

a moving threshold τk. The threshold τk begins close to α and gradually decreases until reaching746

β + ϱ by the time τk ≥ Ω(N).747

So for, our informal description of Alg. 3 also applies to the algorithm proposed in [GM20]. We now748

highlight two important differences. The first is that our algorithm is defined more carefully during749

the “early” phases when an arm has been sampled at most NO(ϱ) times. This is crucial for carrying750

out a rigorous analysis. The second difference is that in the main phase, we increase the sample size751

for a given arm in powers of 1+ϱ rather than powers of 2, and also move the rejection thresholds τk752

based on the Fisher information distance via the function θ. The latter ingredients allow us to obtain753

the optimal constant factor.754

We begin the analysis of Alg 3 by proving Lemma 3.755

Proof of Lemma 3. Let Mj =
∏

1≤i≤j Yi and observe that M c
j is a positive supermartingale with756

M0 = 0. The result follows by Doob’s maximal inequality.757
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We will apply Lemma 3 in the following way. Let Xi be the number of samples used by arm758

ai before rejection, and Ii ∈ {0, 1} be the indicator of the event that ai is ever rejected, even if759

Algorithm 3 were to continue past time N and sample arm i an infinite number of times. We set760

Yi = eXi · Ii,

With M defined from (Yi)i≥1 as in Lemma 3, it follows that log(M) is at most the amount of761

time spent on eventual rejections before the first eventually accepted arm. Therefore if log(M) ≤762

N(1 − ϱ), we conclude that the last arm to be studied was sampled at least Nϱ times. Since it was763

not rejected during that time, we can conclude this arm has pi ≥ β with probability 1 − e−Ωϱ(N).764

The main contribution to the failure probability of Algorithm 3 comes from the event {M ≥ A}765

above, for suitable A. Correspondingly, the main work will be to verify E[Y c
i ] ≤ 1 for suitable c.766

Note that Yi ∈ {0} ∪ [1,∞) almost surely for each i. Therefore a necessary first step in showing767

E[Y c
i ] ≤ 1 is to lower bound P[Yi = 0], the probability that Algorithm 3 never rejects ai. We now768

give a sufficient lower bound from the event pi ≥ α.769

Proposition C.1. Let x1, x2, . . . be an i.i.d. Bernoulli(p) sequence for p ≥ α, and let Sk =
∑k

i=1 xi770

and set771

S = inf
k≥1

Sk/k.

Then S ≥ α− ϱ holds with probability at least c(α, ϱ) > 0. Thus E[Ii] ≤ 1− c(α, ϱ).772

Proof. Since the probability that S ≥ α − ϱ is increasing in p it suffices to take p = α and show773

the probability is positive for any ϱ > 0. Assume not. Then by restarting the indexing every time774

Sk ≤ k(α− ϱ) holds, we find that775

lim inf
n→∞

Sn/n ≤ α− ϱ.

This contradicts the strong law of large numbers, thus completing the proof of the first assertion.776

The second assertion follows since if Sk/k ≥ α − ϱ for all k where x1, . . . are the rewards of arm777

i, then arm i will never be rejected by Algorithm 3.778

Based on Proposition C.1 above, to show779

E
[
e
Xi·

cα,β−ϱ3

log2 N · Ii
]
≤ 1

(which is essentially what we want in light of Lemma 3), it suffices to show that780

E
[(

e
Xi·

cα,β−ϱ3

log2 N − 1

)
· Ii
]
≤ c(α, ϱ). (C.5)

We let Iti = Ii · 1Xi=t be the event that arm i was rejected after exactly t steps. Since Alg 3 can781

only reject after bj samples, we have782

Ii =

∞∑
j=0

I
bj
i

We use this to break the left-hand side of (C.5) into three separate parts and estimate the parts783

separately. The parts correspond to b0, b1 through bk0 , and bk0+1 onward. The first two parts are784

easier and handled in Subsection C.3 below. The final term is the main contribution and is handled785

in Subsection C.4.786

C.3 Analysis of Algorithm 3 in the Small and Medium Sample Phases787

Proposition C.2 bounds the contribution to (C.5) from the small sample phase, i.e. the first rejection788

condition in line 7 of Alg 3.789

Proposition C.2. For any α, ϱ there is ϱ1 > 0 sufficiently small that with b0 as defined above, and790

with N sufficiently large,791

E
[(

e
Xi·

cα,β−ϱ3

log2 N − 1

)
· Ib0i

]
≤ c(α, ϱ)/4
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Proof. It suffices to observe that for fixed α, ϱ and ϱ1 small and N sufficiently large, we have792

e
b0·

cα,β−ϱ3

log2 N − 1 ≤ eϱ1 − 1 ≤ 2ϱ1.

793

Proposition C.3 bounds the contribution to (C.5) from the medium sample phase, i.e. the second794

rejection condition in line 12 of Alg 3.795

Proposition C.3. For any α, ϱ, ϱ1 and for N sufficiently large,796

k0∑
k=1

E
[(

e
Xi·

cα,β−ϱ3

log2 N − 1

)
· Ibki

]
≤ c(α, ϱ)/4

Proof. The event Ibki requires |p̂i,bk − p̂i,bk−1
| ≥ 1√

logN
. Hence by a standard Chernoff estimate,797

regardless of the true reward probability pi,798

E[Ibki ] ≤ e−Ωα,ϱ,ϱ1
(bk/ logN).

Since by construction b0 ≥ ϱ1 log
2 N , we have799

E
[(

e
Xi·

cα,β−ϱ3

log2 N − 1

)
· Ibki

]
≤ e

bk
cα,β−ϱ3

log2 N
−Ωα,ϱ,ϱ1 (bk/ logN)

≤ e−Ωα,ϱ,ϱ1
(logN)

= N−Ωα,ϱ,ϱ1
(1).

Since k0 ≤ O(logN), summing gives the desired conclusion.800

Propositions C.2 and C.3 imply that the total contribution from rejections in the small and medium801

sample phases is at most c(α, ϱ)/2. It remains to analyze the large sample phase in the following802

subsection.803

C.4 Analysis of Algorithm 3 in the Large Sample Phase804

Similarly to the previous section, the main part of the analysis concerns the large sample phases805

bk0+j for j ≥ 1. Our goal is to precisely estimate the rejection probability at each time bk0+j . Note806

that these estimates should not depend on the true average rewards pi.807

Our approach is based on exchangeability and avoids any consideration of pi. For a given value j808

and a large constant L = L(ϱ), consider the sequence of times809

bk0+j−L, bk0+j−L+1, . . . , bk0+j

and the associated sequence of empirical average rewards810

p̂i,bk0+j−L
, p̂i,bk0+j−L+1

, . . . , p̂i,bk0+j
. (C.6)

It follows from the algorithm description that for Ibk0+j

i to occur, we must have811

p̂i,bk0+j
− p̂i,bk0+j−ℓ

≥ ℓ · dF (α, β)ϱ(1− ϱ2)

logN
, ∀ 1 ≤ ℓ ≤ L. (C.7)

This is clear for j > L, but it holds also for 0 ≤ j ≤ L as for N sufficiently large,812

α− ϱ− k0√
logN

− L · dF (α, β)ϱ(1− ϱ2)

logN
≥ α− 2ϱ.

By exchangeability, conditioned on the future values p̂i,bk0+j
, . . . , p̂i,bk0+j−ℓ

the law of p̂i,bk0+j−ℓ−1
813

depends only on p̂i,bk0+j−ℓ
and is given explicitly by a hypergeometric variable. Recalling that814
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Ri,t = ni,tp̂i,t is the total reward from the first ni,t samples of arm i, Ri,bk0+j−ℓ−1
has hypergeo-815

metric conditional law given by:816

P
[
Ri,bk0+j−ℓ−1

= k
∣∣ (p̂i,bk0+j

, . . . , p̂i,bk0+j−ℓ

)]
= P

[
Ri,bk0+j−ℓ−1

= k | p̂i,bk0+j−ℓ

]
=

(bk0+j−ℓ−1

k

)(bk0+j−ℓ−bk0+j−ℓ−1

Rk0+j−ℓ−k

)
( bk0+j−ℓ

Rk0+j−ℓ

) . (C.8)

We will refer to this as the HyperGeom
(
bk0+j−ℓ, bk0+j−ℓ−1, Rk0+j−ℓ

)
distribution. Importantly,817

this distribution is independent of µ. We exploit this below to control the probability of a given818

sequence
(
p̂i,bk0+j−L

, p̂i,bk0+j−L+1
, . . . , p̂i,bk0+j

)
of empirical average rewards. The following819

useful result states that hypergeometric variables automatically inherit tail bounds from the corre-820

sponding binomial random variables.821

Lemma 1 ([LP14, Hoe94]). Fix non-negative integers A ≥ B,C and let X ∼822

HyperGeom(A,B,C) and Y ∼ Bin(B,C/A). Then for any convex function f : R→ R,823

E[f(X)] ≤ E[f(Y )].

Lemma 2. For any 0 < q < q < 1 and constants ϱ > 0 there exists ∆0(q, q, ϱ) and N0(q, q, ϱ)824

such that the following holds for all p ∈ [q, q]. For n ≥ n0 sufficiently large and 1
∆0

√
n
≤ ∆ ≤ ∆0,825

P
[
HyperGeom(n(1 + ϱ), n, np(1 + ϱ))

n
≤ p−∆

]
≤ e

(
− ∆2

2p(1−p)
+ϱ

)
n
.

Proof. The corresponding binomial result Lemma 4 is proved in Theorem 2.2 in [DA92] by upper826

bounding an exponential moment. The same proof applies here by Lemma 1.827

It will be convenient to define a restricted set of good sequences (qL, qL−1, . . . , q0). These satisfy828

the key properties of empirical average reward sequences (C.6) for which I
bk0+j

i holds. We say such829

a length L+ 1 sequence is good if the following conditions are satisfied:830

1. q0 ∈ [q, q] ⊆ (0, 1) for constants 0 < q < q < 1 depending only on ϱ, L.831

2.
max
ℓ1,ℓ2

|qℓ1 − qℓ2 | ≤ O
(
1/
√
logN

)
. (C.9)

3. For each 1 ≤ ℓ ≤ L:832

θ(q0) ≤ θ(α− 2ϱ)− j · dF (α, β)ϱ(1− ϱ2)

logN

≤ θ(α− 2ϱ)− (j − ℓ) · dF (α, β)ϱ(1− ϱ2)

logN

≤ θ(qℓ).

The third condition above is necessary for Ibk0+j ,i

i = 1, and these together imply the first condition.833

Indeed for fixed q, q and small ϱ ∈ (0, 1/10) one always has834

p̂i,bk0+j−1

p̂i,bk0+j

,
1− p̂i,bk0+j−1

1− p̂i,bk0+j

∈
[
1− 2ϱ, (1− 2ϱ)−1

]
for large enough N and any j. Hence it suffices to take q = β(1−2ϱ)L and q = 1−(1−α)(1−2ϱ)L.835

With this choice, if836

p̂i,bk0+j−L
, p̂i,bk0+j−L+1

, . . . , p̂i,bk0+j
.

is not good and I
bk0+j

i = 1, then the second condition must be the only violated one. The fol-837

lowing easy lemma controls the failure probability of the second condition. Recall from (C.8) that838

conditioning on p̂i,bk0+j
determines the joint conditional law of the previous conditional rewards,839

regardless of µ.840
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Lemma 3. All sequences violating only the second condition (C.9) above have probability at most841

e−ΩL,ϱ(bk0+j/ logN),

even after conditioning on an arbitrary value for p̂i,bk0+j
.842

Proof. The claim follows by an elementary Chernoff estimate for hypergeometric variables, which843

hold just as for binomial variables by Lemma 1. Indeed the assumption implies that some adjacent844

difference |p̂i,bk0+j−ℓ
− p̂i,bk0+j−ℓ+1

| has size Ω(1/
√
logN). (Note for applying the Chernoff bound845

that L is a constant independent of N , and so bk0+j−L ≥ ΩL,ϱ(bk0+j).)846

We now focus on upper-bounding the probability of any good sequence (qL, . . . , q0) appearing,847

conditionally on q0.848

Lemma 4. For any good sequence (qL, qL−1, . . . , q0) and j ≥ 0,849

P
[(
p̂i,bk0+j−L

, p̂i,bk0+j−L+1
, . . . , p̂i,bk0+j

)
=
(
qL, qL−1, . . . , q0

) ∣∣ pi,bk0+j
= q0

]
≤ exp

(
− (1−O(ϱ))

2q0(1− q0)ϱ

L−1∑
ℓ=0

bk0+j−ℓ(qℓ − qℓ+1)
2

)
.

Proof. It suffices to show that850

P[p̂i,bk0+j−ℓ−1
= qℓ+1 | qℓ] ≤ exp

(
− (1−O(ϱ))

2q0(1− q0)ϱ
bk0+j−ℓ(qℓ − qℓ+1)

2

)
This follows by applying Lemma 2 to the hypergeometric random variable851

p̂i,bk0+j−ℓ
· bk0+j−ℓ − p̂i,bk0+j−ℓ−1

· bk0+j−ℓ−1 = Rbk0+j−ℓ
−Rbk0+j−ℓ−1

.

The fact that852

bk0+j−ℓ+1 − bk0+j−ℓ = ϱ · bk0+j−ℓ ±O(1)

leads to the factor of ϱ in the denominator of the desired result.853

Lemma 5. For fixed problem parameters and N large, any good sequence (qL, . . . , q0) satisfies854

qℓ ≥ q0 +
ℓ · dF (α, β)ϱ(1− 2ϱ2) ·

√
q0(1− q0)

(logN)

Proof. Recall that θ′(q) = 1√
q(1−q)

and that θ is smooth on [q, q] ⊆ (0, 1). By Item 2 above, all qℓ855

are within oN (1) of each other, so the result follows from the inverse function theorem. (Notice that856

the factor (1− ϱ2) changed to (1− 2ϱ2) above.)857

Lemma 6. For 1 ≤ m ≤ L and any good sequence (qL, . . . , q0), we have858

m−1∑
ℓ=0

(qℓ − qℓ+1)
2 ≥ m · dF (α, β)2ϱ2(1− 4ϱ2) · q0(1− q0)

log2 N
.

Proof. The result follows from Lemma 5 and Cauchy-Schwarz in the form859

m−1∑
ℓ=0

(qℓ − qℓ+1)
2 ≥ m−1

(
m−1∑
ℓ=0

|qℓ − qℓ+1|

)2

.

860

Lemma 7. For any good sequence (qL, . . . , q0) and j ≥ 0, we have861

L−1∑
ℓ=0

bk0+j−ℓ(qℓ − qℓ+1)
2 ≥ (1−O(ϱ2)) ·

bk0+jϱ dF (α, β)
2 · q0(1− q0)

log2 N
.
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Proof. We break the sum into parts and apply Lemma 6 to each one. We have:862

L−1∑
ℓ=0

bk0+j−ℓ(qℓ − qℓ+1)
2 = bk0+j−L+1

L−1∑
ℓ=0

(qℓ − qℓ+1)
2 +

L−1∑
m=1

(bk0+j−m+1 − bk0+j−m)

m−1∑
ℓ=0

(qℓ − qℓ+1)
2

≥
L−1∑
m=1

bk0+j ·
ϱ

(1 + ϱ)m+10
· (1− 4ϱ2)

mϱ2dF (α, β)
2 · q0(1− q0)

log2 N

≥ (1−O(ϱ+ ϱ2)) · bk0+j ·
ϱ3dF (α, β)

2 · q0(1− q0)

log2 N
·
L−1∑
m=1

m

(1 + ϱ)m
.

For L = L(ϱ) = O
(
ϱ−1 log(ϱ−1)

)
sufficiently large,863

L−1∑
m=1

mϱ

(1 + ϱ)m
≥ (1− ϱ)

∞∑
m=1

m

(1 + ϱ)m
.

= (1− ϱ)

( ∞∑
m=1

1

(1 + ϱ)m

)2

=
1− ϱ

ϱ2
.

Substituting and recalling that ϱ≪ ϱ2 completes the proof.864

Combining with Lemma 4 yields the second inequality below (the first is trivial).865

Corollary C.4. For any µ and q0, we have866

Ppi∼µ
[(
p̂i,bk0+j−L

, p̂i,bk0+j−L+1
, . . . , p̂i,bk0+j

)
=
(
qL, qL−1, . . . , q0

)]
≤ P

[(
p̂i,bk0+j−L

, p̂i,bk0+j−L+1
, . . . , p̂i,bk0+j

)
=
(
qL, qL−1, . . . , q0

) ∣∣ pi,bk0+j
= q0

]
≤ exp

(
−
(
1−O(ϱ2)

)bk0+jdF (α, β)
2

2 log2 N

)
.

Lemma 8. Let j0 be the largest j such that bk0+j ≤ N . Then for N sufficiently large,867

j0∑
j=1

E
[
e
Xi·

cα,β−ϱ3

log2 N · Ibk0+j

i

]
≤ c(α, ϱ)/4.

Proof. Recall that cα,β = dF (α,β)2

2 , and observe that the number of total sequences (qL, . . . , q0) ∈868

[0, 1]L+1 with bk0+j+ℓqℓ ∈ Z is at most NL+1 for each j ≤ j0. Combining Lemma 3 and Corol-869

lary C.4 and noting that the latter always gives the main contribution, we find for each j ≤ j0,870

E
[
e
Xi·

cα,β−ϱ3

log2 N · Ibk0+j

i

]
≤ NL+1 exp

(
bk0+j

log2 N
·
(
(cα,β − ϱ3)− (1−O(ϱ2))cα,β

))
≤ exp

(
−Ω

(
ϱ3bk0+j

log2 N

))
so long as ϱ3 is chosen so that ϱ3 ≫ max(ϱ, ϱ2). In the last line we used the fact that bk0+j ≥871

bk0
≥ log4 N to absorb the factor NL+1 ≤ eϱ log3/2 N for large N . Summing over j gives the872
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desired result, since for ϱ4 = Ω(ϱ3) and N sufficiently large,873

∞∑
j=1

e
−Ω

(
ϱ3bk0+j

log2 N

)
≤

∞∑
m=1

e
−

ϱ4(m+bk0
)

log2 N

= e−ϱ4 log2 N
∞∑

m=1

e
− ϱ4m

log2 N

≤ e−ϱ4 log2 N ·O
(
log2 N

ϱ4

)
≤ e−

ϱ4 log2 N
2

≤ c(α, ϱ)/4.

874

We now use Lemma 3 to conclude.875

Proof that Algorithm 3 achieves the guarantee of Theorem 3.1. By combining Lemma 8 with the876

previous Propositions C.2 and C.3, it follows that877

E
[
e
Xi·

cα,β−ϱ3

log2 N · Ii
]
≤ 1.

Lemma 3 now implies that the total amount of time spent on eventually rejected arms is at most878

N(1− ϱ) with probability879

e
−

(cα,β−ϱ3)(1−ϱ)N

log2 N .

On this event, the output arm i∗ satisfies ni∗,N ≥ ϱN by definition. Since i∗ was not rejected, for880

j1 be the largest value such bk0+j1 ≤ ϱN we have881

p̂i∗,bk0+j1
≥ β + ϱ.

The probability for this to hold if pi ≤ β is at most e−Ωϱ(N). Altogether we find that882

P[pi∗ ≥ β] ≥ 1− exp

(
− (cα,β − ϱ5)N

log2 N

)
− e−Ωϱ(N) (C.10)

for ϱ5 arbitrarily small. This concludes the analysis of Algorithm 3 (since the last error term is883

negligible).884

C.5 Finding Many Good Arms with a Fixed Budget885

In this final subsection we observe that Algorithm 3 can be modified to output as many as logN886

distinct arms each of which satisfies the same (η, ε, δ)-PAC guarantee2, with no degradation in the887

asymptotic failure probability. With other parameters fixed, we denote the N -sample version of888

Algorithm 3 by AN to emphasize the dependence on N . In particular, N both equals the number of889

steps in AN and appears (via its logarithm) in the description of AN ’s individual steps.890

Let Ñ = N + ⌈ 2N
log1/2(N)

⌉. We consider a modified algorithm ÃÑ which mimicks the behavior of891

AN with two changes:892

1. ÃÑ is a Ñ -sample algorithm.893

2. If an arm ai has not yet been rejected after M = ⌈N/ log3/2(N)⌉ samples, then ÃÑ894

accepts ai and continues to ai+1. In particular, ÃÑ may accept several arms instead of just895

one.896

Theorem C.9. With probability 1−exp
(
− (cα,β−ϱ5−oN (1))N

log2 N

)
, ÃÑ accepts at least log(N) distinct897

arms ai, all of which satisfy pi ≥ β.898

2In fact logN can be replaced by anything oN (log2 N) by more precisely defining M and Ñ .
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The change from N to Ñ is almost irrelevant in the actual statement of Theorem C.9 since log(N) ≥899

log(Ñ)−oN (1). In particular, ÃÑ is a Ñ -sample algorithm which outputs at least log(Ñ)−1 arms900

with probability 1− exp
(
− (cα,β−ϱ5−oÑ (1))Ñ

log2 Ñ

)
. It is certainly not really necessary to use the value901

log(N) rather than log(Ñ) to describe the individual steps taken by ÃÑ . However introducing Ñ902

streamlines the proof below by letting us treat AN as a blackbox.903

Proof. To show that all accepted arms ai satisfy pi ≥ β with sufficiently high probability, it suffices904

to consider (C.10) with the final term replaced by e−Ωϱ(N/ log3/2(N)). In particular, observe that the905

main term does not change, even after multiplying the failure probability by O
(
log3/2(N)

)
(the906

maximum possible number of arms accepted by ÃÑ . Thus we focus on showing that ÃÑ outputs at907

least log(N) arms with high probability.908

Consider yet another N -sample algorithm ÂN which deletes each arm independently with probabil-909

ity 1/N and followsAN on the set of non-deleted arms in order of increasing index. (LikeAN , ÂN910

never accepts arms before time N .) We simulate ÃÑ and ÂN on the same reward sequences, i.e. we911

couple them so that the t-th sample of arm ai always gives the same result for each (t, i). We claim912

that in this coupling, conditioned on ÃÑ failing to accept log(N) arms within the first Ñ samples,913

ÂN has probability Ω(N− log(N)) to fail (i.e. output ai with pi < β) when run for N samples.914

First let us assume the claim and deduce Theorem C.9. Denote by p(N) the probability for AN to915

fail. Note that ÂN has the same failure probability p(N), having in fact the same behavior as AN916

in distribution (as the set of deleted arms is independent of everything else). Moreover let p̃(Ñ , k)917

denote the probability that ÃÑ fails to accept at least k arms. The claim above implies that918

p̃(Ñ , logN) ≤ O
(
N logN

)
· p(N, 1)

≤ eoN (N/ log2 N) · p(N, 1)

≤ exp

(
− (cα,β − ϱ5 − oN (1))N

log2 N

)
.

It remains to prove the above claim. Let us say the infinite i.i.d. reward sequence (ri,n)n≥1 of arm919

ai is acceptable if AN would not reject ai within M samples, i.e. ÃÑ will either accept ai or run920

out of samples before doing so. We take the point of view that each ai is either acceptable or not (by921

randomly fixing the reward sequences at the start). Then with probability Ω(N− log(N)), the first922

log(N) acceptable arms are skipped by Â, and the first N̂ unacceptable arms are not skipped. On923

this event, the first N̂ −M ≥ N samples obtained by ÂN , i.e. all N of its samples, are drawn from924

unacceptable arms. On this event, ÂN fails with constant probability, which establishes the claim925

and completes the proof.926
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