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Abstract

Algorithmic reproducibility measures the deviation in outputs of machine learning
algorithms upon minor changes in the training process. Previous work suggests that
first-order methods would need to trade-off convergence rate (gradient complexity)
for better reproducibility. In this work, we challenge this perception and demon-
strate that both optimal reproducibility and near-optimal convergence guarantees
can be achieved for smooth convex minimization and smooth convex-concave
minimax problems under various error-prone oracle settings. Particularly, given
the inexact initialization oracle, our regularization-based algorithms achieve the
best of both worlds – optimal reproducibility and near-optimal gradient complexity
– for minimization and minimax optimization. With the inexact gradient oracle, the
near-optimal guarantees also hold for minimax optimization. Additionally, with
the stochastic gradient oracle, we show that stochastic gradient descent ascent is
optimal in terms of both reproducibility and gradient complexity. We believe our
results contribute to an enhanced understanding of the reproducibility-convergence
trade-off in the context of convex optimization.

1 Introduction

In the realm of machine learning, improving model performance remains a primary focus; however,
this alone falls short when it comes to the practical deployment of algorithms. There has been a
growing emphasis on the development of machine learning systems that prioritize trustworthiness and
reliability. Central to this pursuit is the concept of reproducibility [38, 64], which requires algorithms
to yield consistent outputs, in the face of minor changes to the training environment. Unfortunately, a
lack of reproducibility has been reported across various domains [10, 40, 41, 64], posing significant
challenges to the integrity and dependability of scientific research. Notably, empirical studies in
Henderson et al. [43] have revealed that reproducing baseline algorithms in reinforcement learning
is a formidable task due to both inherent sources (e.g., random seeds, environment properties) and
external sources (e.g., hyperparameters, codebases) of non-determinism. These findings underscore
the criticality of having access to the relevant code and data, as well as sufficient documentation of
experimental details, to ensure reproducibility in machine learning algorithms.

Instead of considering the irreproducibility issue solely from an empirical perspective, Ahn et al. [1]
initiated the theoretical study of reproducibility in machine learning as an inherent characteristic of the
algorithms themselves. They focus on first-order algorithms for convex minimization problems and
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Table 1: Algorithmic reproducibility (Def. 3) and gradient complexity for algorithms in the smooth
convex minimization setting given inexact deterministic oracles (Def. 1). Here, “LB” stands for
lower-bound anda ^ bdenotesminf a; bg. For the inexact gradient oracle,� � O (� ) is required for
GD to be� -optimal and� � O (� 5=4) is required for Algo. 1.

Algorithm
Inexact Initialization Inexact Gradient

Convergence Reproducibility Convergence Reproducibility

GD [1] O(1=�) O(� 2) O(1=�) O(� 2=�2)

AGD [6] O(1=
p

� ) O(� 2e1=p
� ) - -

Algo. 1 (Thm. 3.3, 3.5) ~O(1=
p

� ) O(� 2) ~O(1=
p

� ) O(� 2=�2:5)

LB [61, 1] 
(1 =
p

� ) 
( � 2) 
(1 =
p

� ) 
( � 2=�2)

de�ne reproducibility as the deviation in outputs of independent runs of the algorithms, accounting
for sources of irreproducibility captured by inexact or noisy oracles. In particular, they consider three
practical error-prone operations, including inexact initialization, inexact gradient computation due to
numerical errors, and stochastic gradient computation due to sampling or shuf�ing. When restricting
the outputs to be� -optimal and assuming the level of inexactness that could cause irreproducibility is
bounded by� , they establish both lower and upper reproducibility bounds of (stochastic) gradient
descent for all three settings. The lower-bounds indicate the existence of intrinsic irreproducibility
for any �rst-order algorithms, while the matching upper-bounds suggest that (stochastic) gradient
descent already achieves optimal reproducibility.

An important question arises regarding whether there is a fundamental trade-off between repro-
ducibility and convergence speed in algorithms. For example, in the case of inexact initialization, the
optimally reproducible algorithm [1], gradient descent (GD), is known to be strictly sub-optimal in
terms of gradient complexity for smooth convex minimization problems [61]. On the other hand, the
optimally convergent algorithm, Nesterov's accelerated gradient descent (AGD) [60], suffers from a
worse reproducibility bound [6]. The situation becomes more intricate in the case of inexact gradient
computation. A natural question that we aim to address in this paper is:Can we achieve the best of
both worlds – optimal convergence and reproducibility?

On another front, while minimization problems can effectively model and explain the behavior of
many traditional machine learning systems, recent years have witnessed a surge of applications that
are formulated as minimax optimization problems. Important examples include generative adversarial
networks (GANs) [37], robust optimization [54], and reinforcement learning [25]. Despite a wealth
of convergence theory for various minimax optimization algorithms, extensive empirical evidence
suggests that these algorithms can be hard to train in practice [67, 4, 53]: the training procedure can
be very unstable [23] and highly sensitive to changes of hyper-parameters. Motivated by such issues,
we initiate the theoretical study of algorithmic reproducibility in minimax optimization. The second
question that we aim to address in this paper is:What are the fundamental limits of reproducibility for
minimax optimization algorithms and their convergence-reproducibility trade-offs?We will focus on
smooth convex-concave minimax optimization as a �rst step, where the irreproducibility issue comes
from either inexact initialization, inexact gradient computation, or stochastic gradient computation.

1.1 Our Contributions

Our main contributions are two-fold:

First, we propose Algorithm 1, which solves a regularized version of the smooth convex minimization
problem. This algorithm achieves both optimal algorithmic reproducibility ofO(� 2) and near-optimal
gradient complexity of~O(1=

p
� )2 under the� -inexact initialization oracle. Table 1 provides a

comparison with GD and AGD. Our results rely on the key observation that solutions to strongly-

2Throughout the paper,~O hides additional logarithmic factors. We claim near-optimality of the result when
it is optimal up to logarithmic terms.
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Table 2: Algorithmic reproducibility (Def. 6) and gradient complexity for algorithms in the smooth
convex-concave minimax setting given inexact deterministic oracles (Def. 4). Here, “LB” stands for
lower-bound anda ^ bdenotesminf a; bg. For the inexact gradient oracle,� � O (� ) is required for
GDA, EG, and Algo. 3 to be� -optimal, and� � O (� 2) is required for Algo. 2. The diameterD in
Assumption 4.1 is a trivial upper-bound for reproducibility in all cases.

Algorithm
Inexact Initialization Inexact Gradient

Convergence Reproducibility Convergence Reproducibility

GDA (Thm. 4.2) O(1=�2) O(� 2) O(1=�2) O(� 2=�2)

EG (Thm. 4.3) O(1=�) O(� 2e1=� ^ (� 2 + 1=�2)) O(1=�) O(� 2e1=� ^ 1=�2)

Algo. 2 (Thm. 4.4, 4.6) ~O(1=�) O(� 2) ~O(1=�) O(� 2=�2)

Algo. 3 (Thm. 4.7, 4.8) ~O(1=�) O(� 2) ~O(1=�) O(� 2=�2)

LB ([63], Lem. B.3) 
(1 =�) 
( � 2) 
(1 =�) 
( � 2=�2)

convex regularized problems are unique, allowing algorithms that converge close to the minimizers
to be reproducible. This highlights the effectiveness of regularization in achieving near-optimal
convergence without compromising reproducibility.

Second, we extend the notion of reproducibility to smooth convex-concave minimax optimization(1)
under inexact initialization and inexact gradient oracles. We establish the �rst reproducibility analysis
for commonly-used minimax optimization algorithms such as gradient descent ascent (GDA) and
Extragradient (EG) [48]. Our results indicate that they are either sub-optimal in terms of convergence
or reproducibility. To address this, we propose two new algorithms (Algorithm 2 and 3) which utilize
regularization techniques to achieve optimal algorithmic reproducibility and near-optimal gradient
complexity. The summarized results are presented in Table 2. Additional numerical experiments
showcasing the effectiveness of our algorithms can be found in Appendix D. Although smooth convex-
concave minimax optimization is nonsmooth in its primal form, our results indicate an improved
reproducibility compared to the result of general nonsmooth convex problems [1] by leveraging the
additional minimax structure. Lastly, in the case of stochastic gradient oracle, we show stochastic
GDA can simultaneously attain both optimal convergence and optimal reproducibility.

1.2 Related Works

Related Notions. (Reproducibility)Previous works that study reproducibility in machine learning
are mostly on the empirical side. They either conduct experiments to report irreproducibility issues in
the community [40, 43, 18, 64], or propose practical tricks to improve reproducibility [69, 79, 56, 19].
Ahn et al.[1] initiated the theoretical study of reproducibility in convex minimization problems
as a property of the algorithm itself.(Replicability) In an independent work, Impagliazzo et al.
[45] proposed the notion of replicability in statistical learning, where an algorithm is replicable
if its outputs on two i.i.d. datasets are exactly the same with high probability. Its connection to
generalization and differential privacy [29] is established in Bun et al.[21] and Kalavasis et al.[47].
Replicable algorithms are proposed in the context of stochastic bandits [30] and clustering [31].
(Stability)Depending on the context, the term stability may have different meanings. In empirical
studies [4, 5, 22], instability often refers to issues such as oscillations or failure to converge during
training. In learning theory, algorithmic stability [17] measures the deviation in an algorithm's outputs
for �nite-sum problems when a single item in the input dataset is replaced by an i.i.d. in-distribution
sample. The concept receives increasing attention as it implies dimension-independent generalization
bounds of gradient-based methods for both minimization [42, 11, 6] and minimax [33, 49, 16]
problems. In the area of differential equations [13] and variational inequalities [32], stability is also
examined as a property of the solution set in response to perturbations in the problem conditions.

In this work, we consider the notion of reproducibility that characterizes the behavior of algorithms
upon slight perturbations in the training. We defer the task of establishing intrinsic connections
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among related notions to future work. The most closely related concept is algorithmic stability,
where the analysis is similar to reproducibility under the inexact deterministic gradient oracle. Attia
and Koren[6] showed the stability of AGD [60] grows exponentially with the number of iterations.
Later, this is improved to quadratic dependence [7] based on a similar idea as ours that leverages
stability of solutions to strongly-convex minimization problems [68, 34]. However, since there is
no inexactness of the gradients in their setting, it is possible to ensure outputs that are arbitrarily
close to the optimal solution. Given the presence of inexact gradients in our case, the convergence is
only limited to a neighborhood of the optimal solution, which makes the problem more challenging.
The trade-off between stability and convergence was investigated in Chen et al.[24]. Their results
suggest that a faster algorithm has to be less stable, and vice versa. However, we show the feasibility
of achieving both optimal reproducibility and near-optimal convergence simultaneously in the setting
we considered.

Minimax Optimization. Existing literature on minimax optimization primarily focuses on con-
vergence analysis across various settings. For instance, there are studies on the strongly-convex–
strongly-concave case [72, 57], convex-concave case [59, 63], and nonconvex–(strongly)-concave
case [52, 71]. The lower complexity bounds have also been established for these settings [80, 50, 77].
Our work aims to design reproducible algorithms while maintaining the optimal oracle complexities
achieved in these previous works.

Inexact Gradient Oracles. A series of works investigate the convergence properties of �rst-order
methods under deterministic inexact oracles for minimization [26, 27, 28] and minimax [70] problems.
However, their inexact oracles differ from ours, and our focus is more on reproducibility. In recent
years, there has been increasing interest in studying biased stochastic gradient oracles as well, where
the bias arises from various sources such as problem structure [44], compression [14] or Byzantine
failure [15] in distributed learning, and gradient-free optimization [62]. These biases can also
contribute to irreproducibility, and this direction would be an interesting avenue of research.

Regularization Technique. The central algorithmic insight driving our improvements towards
obtaining both optimal convergence and reproducibility is the regularization technique, which is
commonly used in the optimization literature. One important use case is to boost convergence
by leveraging known and good convergence properties of algorithms on smooth strongly-convex
functions for solving convex and nonsmooth problems, see e.g., [51, 3, 74], just to name a few. In
addition, the regularization technique has also been demonstrated to be useful in improving stability
and generalization [76, 7], enhancing sensitivity and privacy guarantees [34, 78], etc. In this paper, we
provide another important use case by showing an improved convergence-reproducibility trade-off.

2 Preliminaries in Algorithmic Reproducibility

Notation. We usek�k to represent the Euclidean norm.� C(x) denotes the projection ofx onto
the setC. A function h : S ! R is `-smooth if it is differentiable and its gradientr h satis�es
kr h(x1) � r h(x2)k � `kx1 � x2k for anyx1; x2 in the domainS 2 Rd. A functiong : S ! R
is convex ifg(�x 1 + (1 � � )x2) � �g (x1) + (1 � � )g(x2) for any� 2 [0; 1] andx1; x2 2 S. If
g satis�esg(x) � (�= 2)kxk2 being convex with� > 0, then it is� -strongly-convex. Similarly, a
functiong : S ! R is concave if� g is convex, and� -strongly-concave if� g is � -strongly-convex.

Ahn et al.[1] studied the algorithmic reproducibility for convex minimization problemsminx 2X F (x),
measured by the(�; � )-deviation bound of an algorithmA. Here,� denotes the size of errors in the
oracles that can lead to different outputs in independent runs of the same algorithm. The notion of
reproducibility also requiresA to produce� -optimal solutions, avoiding trivial outputs.

De�nition 1. Three different inexact oracle models are considered:(i ) a � -inexact initialization
oraclethat returns a starting pointx0 2 X such thatkx0 � u0k2 � � 2=4 for some reference point
u0 2 X , (ii ) a � -inexact deterministic gradient oraclethat returns an inexact gradientG(x) such that
kr F (x) � G(x)k2 � � 2 for the true gradientr F (x), (iii ) a � -inexact stochastic gradient oracle
that returns an unbiased gradient estimater f (x; � ) such thatEkr f (x; � ) � r F (x)k2 � � 2.

De�nition 2. A point x̂ 2 X is an� -optimal solution ifF (x̂) � minx 2X F (x) � � in the deterministic
setting, orE[F (x̂)] � minx 2X F (x) � � in the stochastic setting, where the expectation is taken over
all the randomness in the gradient oracle and in the algorithm that outputsx̂.
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De�nition 3. The(�; � )-deviationkx̂ � x̂0k2 is used to measure the reproducibility of an algorithm
A with � -optimal solutionŝx andx̂0, wherex̂ andx̂0 are outputs of two independent runs of the
algorithmA given a� -inexact oracle in De�nition 1.

We expand the de�nitions of reproducibility to encompass minimax optimization problems:

min
x 2X

max
y2Y

F (x; y): (1)

Our goal is to �nd thesaddle point(x � ; y� ) of the functionF (x; y), such thatF (x � ; y) �
F (x � ; y� ) � F (x; y � ) holds for all (x; y) 2 X � Y . The optimality of a point(x̂; ŷ) can be
assessed by itsduality gap, de�ned asmaxy2Y F (x̂; y) � minx 2X F (x; ŷ). In the minimax setting,
we analyze reproducibility under the following inexact oracle models.
De�nition 4. Three different inexact oracle models are considered:(i ) a � -inexact initialization
oraclethat returns a starting point(x0; y0) 2 X � Y such thatkx0 � u0k2 + ky0 � v0k2 � � 2=4 for
some reference point(u0; v0) 2 X � Y , (ii ) a � -inexact deterministic gradient oraclethat returns
an inexact gradientG(x; y) = ( Gx (x; y); Gy (x; y)) at any querying point(x; y) 2 X � Y such
thatkr F (x; y) � G(x; y)k2 � � 2 for the true gradientr F (x; y) = ( r x F (x; y); r y F (x; y)) , (iii )
a � -inexact stochastic gradient oraclethat returns an unbiased gradient estimater f (x; y; � ) =
(r x f (x; y; � ); r y f (x; y; � )) such thatE� kr f (x; y; � ) � r F (x; y)k2 � � 2.
De�nition 5. A point (x̂; ŷ) 2 X � Y is an� -saddle point solution if its duality gap satis�es that
maxy2Y F (x̂; y) � minx 2X F (x; ŷ) � � in the deterministic setting, or itsweakduality gap satis�es
thatmaxy2Y E[F (x̂; y)] � minx 2X E[F (x; ŷ)] � � in the stochastic setting.

De�nition 6. The(�; � )-deviationkx̂ � x̂0k2 + kŷ � ŷ0k2 is used to measure the reproducibility of
an algorithmA with � -saddle points(x̂; ŷ) and(x̂0; ŷ0), where(x̂; ŷ) and(x̂0; ŷ0) are outputs of two
independent runs of the algorithmA given a� -inexact oracle in De�nition 4.

The optimal convergence rates are well-understood for the convex optimization problems, including
convex minimization [61] and convex-concave minimax optimization [63]. Ahn et al.[1] provided the
theoretical lower-bounds of reproducibility for convex minimization problems, which can be extended
to convex-concave minimax problems as well (Lemma B.3). We say an algorithm achieves optimal
reproducibility if its reproducibility upper-bounds match the established theoretical lower-bounds.

3 Deterministic Gradient Oracle for Minimization Problems

In this section, we consider convex minimization problems of the form

min
x 2X

F (x);

whereX is a convex and closed set. We focus on the standard smooth and convex setting as
detailed in Assumption 3.1. Our goal is to �nd an� -optimal point as in De�nition 2. Ahn et al.[1]
showed that the optimal convergence rate and reproducibility can be achieved at the same time using
stochastic gradient descent (SGD) for the stochastic gradient oracle model. In the deterministic case,
they showed GD achieves the optimal reproducibility, albeit with a sub-optimal convergence rate
[60, 61]. Considering the instability of accelerated gradient descent (AGD) [26, 28, 6], Ahn et al.[1]
conjectured that
(1 =�) gradient complexity is necessary to attain the optimal reproducibility.
Assumption 3.1. The functionF is convex and̀-smooth. We have access to initial pointsx0 that
areD-close to an optimal solution, i.e.,kx � � x0k2 � D 2 for somex � 2 arg minx 2X F (x).

We introduce a generic algorithmic framework outlined in Algorithm 1, that solves a quadratically
regularized auxiliary problem (?) using a base algorithmA with initializationx0 until an accuracy
of � r is reached. Our key insight is that since the optimal solution for strongly convex problems is
unique, the reproducibility of the outputs from the regularized problem can be easily guaranteed.
Note that the regularization parameterr presents a trade-off: asr increases, the auxiliary problem
can be solved more ef�ciently, but the obtained solution deviates further from the original solution.
We will show that Algorithm 1 achieves a near-optimal complexity of~O(1=

p
� ), along with optimal

reproducibility under an inexact initialization oracle and slightly sub-optimal reproducibility under an
inexact deterministic gradient oracle. This �nding disproves the conjecture [1] that 
(1 =�) complexity
is necessary to achieve optimal reproducibility.
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Algorithm 1 Reproducible Algorithmic Framework for Convex Minimization Problems
Input: Regularization parameterr > 0, accuracy� r > 0, base algorithmA, initial point x0 2 X .

Apply A to approximately solve ther -strongly-convex and(` + r )-smooth problem

x r  arg min
x 2X

Fr (x) := F (x) +
r
2

kx � x0k2; (?)

such that the optimality gap
Fr (x r ) � min

x 2X
Fr (x) � � r :

Output: x r .

3.1 Inexact Initialization Oracle

We �rst examine the behavior of Algorithm 1 with access to exact deterministic gradients but given
different initializations. Starting from two distinct initial pointsx0 andx0

0 such thatkx0 � x0
0k2 � � 2,

we want to control the deviation between the �nal outputsx r andx0
r of the algorithm. The following

contraction property is essential to attain optimal reproducibility.

Lemma 3.2. Let x �
r = arg min x 2X f F (x) + ( r=2)kx � x0k2g and(x �

r )0 = arg min x 2X f F (x) +
(r=2)kx � x0

0k2g. WhenF is convex, it holds thatkx �
r � (x �

r )0k2 � k x0 � x0
0k2 for anyr > 0.

This indicates the optimal solutions are reproducible up to� 2. Consequently, if we can solve the
auxiliary problem (?) to a high accuracy� r , we can ensure the �nal outputx r is reproducible. The
selection of� r exhibits a trade-off: a smaller value increases complexity, yet brings the output
closer to the reproduciblex �

r . We characterize the complexity and reproducibility of Algorithm 1 by
carefully choosing the parametersr and� r .

Theorem 3.3. Under Assumption 3.1 and given an inexact initialization oracle, Algorithm 1 with
r = �=D 2, � r = ( �=2) minf 1; � 2=(4D 2)g and AGD [61] as base algorithmA outputs an� -optimal
point x r with ~O(

p
`D 2=�) gradient complexity, and the reproducibility iskx r � x0

r k2 � 4� 2.

This theorem implies that we can simultaneously achieve the near-optimal complexity of~O(
p

`D 2=�)
and optimal reproducibility ofO(� 2), which improves over theO(`D 2=�) complexity of GD [1]. In
fact, when combined with any base algorithm that solves the auxiliary problem, Algorithm 1 attains
optimal reproducibility. However, using AGD as the base algorithm results in the best complexity. To
the best of our knowledge, this is the only algorithm capable of achieving the best of both worlds.
Previously, Attia and Koren[6] proved that the algorithmic reproducibility (referred to as initialization
stability in their study) of Nesterov's AGD is�( � 2e1=p

� ) when the initialization is� 2-apart.

Remark 1. Adding regularization is a common and useful technique in the optimization literature.
Our algorithmic framework solves one auxiliary regularized strongly-convex problem, which is
referred to as classical regularization reduction in Allen-Zhu and Hazan[3]. Algorithm 1 is biased
and requires the knowledge of� andD to control the biased term introduced by the regularization
term. The convergence guarantee also has an additional sub-optimal logarithmic term. Allen-Zhu
and Hazan[3] proposed to use a double-loop algorithm, where a sequence of auxiliary regularized
strongly-convex problems with decreasing regularization parameters are solved. The vanishing
regularization ensures the algorithm is unbiased, and the resulting convergence guarantee requires no
knowledge of� and does not have an additional logarithmic term. Similar idea could apply to our
case as well, and the task of bridging such gaps is deferred to future work.

3.2 Inexact Deterministic Gradient Oracle

We further study the algorithmic reproducibility and gradient complexity of Algorithm 1 under
the inexact gradient oracle model that returns an inexact gradientG(x) 2 Rd such thatkG(x) �
r F (x)k2 � � 2 at any query pointx 2 X . From the inexact gradient oracle ofF , we can construct
an inexact gradient oracle for the auxiliary problemFr : Gr (x) = G(x) + r (x � x0) which satis�es
the conditionkGr (x) � r Fr (x)k2 = kG(x) � r F (x)k2 � � 2. To solve the auxiliary problem,
we consider AGD with an inexact oracle (Inexact-AGD) as proposed by Devolder et al.[27]. The
proposition below establishes its convergence behavior.
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Proposition 3.4. Considerminx 2X Fr (x), whereFr is r -strongly-convex and(` + r )-smooth. Given
an inexact gradient oracle that returnsGr (x) such thatkGr (x) � r Fr (x)k2 � � 2, starting from
y0 = x0, AGD with the following update rule

x t +1 = � X

�
yt �

1
2(` + r )

Gr (yt )
�

;

yt +1 = x t +1 +
2 �

p
r=(` + r )

2 +
p

r=(` + r )
(x t +1 � x t );

(Inexact-AGD)

for t = 0 ; 1; � � � ; T � 1, satis�es that

Fr (xT )� Fr (x �
r ) � exp

�
�

T
2

r
r
2`

� �
Fr (x0) � Fr (x �

r ) +
r
4

kx0 � x �
r k2

�
+

r
2`
r

�
1

` + r
+

2
r

�
� 2;

wherex �
r is the unique minimizer ofFr (x).

This proposition suggests that Inexact-AGD converges to a neighborhood with a radius ofO(� 2=r3=2)
around the optimal value. We note that convergence to the exact solution is unattainable for algorithms
employing inexact gradients [27, 28], and the size of this neighborhood is important in determining
the reproducibility ofx r .
Theorem 3.5. Under Assumption 3.1 with0 < � � `D 2 and given an inexact deterministic gradient
oracle in De�nition 1, Algorithm 1 withr = �=D 2, � r = 6 � 2D 3

p
`=(2� 3) and Inexact-AGD as

base algorithm outputs a(6� 2D 3
p

`=(2� 3) + �=2)-optimal pointx r with ~O(
p

`D 2=�) gradient
complexity, and the reproducibility iskx r � x0

r k2 � O (� 2=�5=2).

Ahn et al.[1] showed that GD achieves optimal reproducibility ofO(� 2=�2) and a complexity of
O(1=�) when� � O (� ). Our results indicate that a reproducibility ofO(� 2=�5=2) and a near-optimal
complexity of ~O(1=

p
� ) can be attained when� � O (� 5=4). We conjecture that this suboptimal

reproducibility bound is inevitable for the proposed framework given the lower bound result in
Devolder et al.[27] for algorithms under a(�; `; � )-inexact oracle associated with`-smooth� -
strongly-convex functions. Further discussions are provided in Appendix A.2. Moreover, we point
out that for minimizing̀ -smooth and� -strongly-convex functions, Proposition 3.4 already implies
that Inexact-AGD attains the optimal reproducibility ofO(minf � 2; � g) and the optimal complexity
of ~O(

p
`=� ) when the problem is well-conditioned, improving over the~O(`=� ) complexity in the

previous work [1].
Remark 2. In Appendix D, we demonstrate the effectiveness of Algorithm 1 on a quadratic mini-
mization problem equipped with an inexact gradient oracle. The results are plotted in Figure 1 in the
appendix. We observe that the reproducibility can be greatly improved when adding regularization,
with only a small degradation in the convergence performance.

4 Deterministic Gradient Oracle for Minimax Problems

In this section, we address the minimax optimization problem of the form

min
x 2X

max
y2Y

F (x; y);

whereX andY are convex compact sets. We focus on the standard smooth and convex-concave
setting as detailed in Assumption 4.1. We aim to �nd an� -saddle point(x̂; ŷ) such that its duality gap
satis�esmaxy2Y F (x̂; y) � minx 2X F (x; ŷ) � � . Here, the assumption that the domains are convex
and bounded ensures the existence of the saddle point when the objective is convex-concave [73]. We
focus on minimax problems equipped with inexact initialization oracles and inexact deterministic
gradient oracles as de�ned in De�nition 4. We �rst show that two classical algorithms, gradient
descent ascent (GDA) and Extragradient (EG) [48, 72], are either sub-optimal in convergence or sub-
optimal in reproducibility, which mirrors the minimization setting. Based on the same regularization
idea, we propose two new frameworks in Algorithm 2 and 3 that successfully attain near-optimal
convergence and optimal reproducibility at the same time.
Assumption 4.1.For all y 2 Y , F (�; y) is convex, and for allx 2 X , F (x; �) is concave. Furthermore,
F is `-smooth on the domainX � Y . Additionally, bothX andY have a diameter ofD . This means
that kx1 � x2k2 � D 2 andky1 � y2k2 � D 2 for all x1; x2 2 X andy1; y2 2 Y .
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The optimal gradient complexity to �nd� -saddle point under such assumptions is�(1 =�) [63]. Since
the minimax problem reduces to a minimization problem onX when the domainY is restricted
to be a singleton, the reproducibility lower-bounds [1] for smooth convex minimization hold as
lower-bounds for smooth convex-concave minimax optimization as well. That is,
( � 2) under the
inexact initialization oracle, and
( � 2=�2) under the inexact gradient oracle (see Lemma B.3). We
now present the convergence rate and reproducibility bounds of GDA (see Algorithm 4) and EG (see
Algorithm 5).
Theorem 4.2. (GDA) Under Assumption 4.1, the average iterate(�xT ; �yT ) output by GDA with
stepsize1=(`

p
T) afterT = O(1=�2) iterations is an� -saddle point . Furthermore, the reproducibility

of the output is(i ) O(� 2) under � -inexact initialization oracle; (ii ) O(� 2=�2) under � -inexact
deterministic gradient oracleif � � O (� ).
Theorem 4.3. (Extragradient)Under Assumption 4.1, the average iterate(�xT +1 =2; �yT +1 =2) output
by EG with stepsize1=` after T = O(1=�) iterations is an� -saddle point. Furthermore, the
reproducibility of this output is(i ) O(minf � 2e1=� ; � 2 + 1=�2; D 2g) under� -inexact initialization
oracle; (ii ) O(minf � 2e1=� ; 1=�2; D 2g) under� -inexact deterministic gradient oracleif � � O (� ).

While GDA can achieve optimal reproducibility, it converges with a sub-optimal complexity of
O(1=�2). On the other hand, EG achieves an optimalO(1=�) complexity but is not optimally
reproducible. Further details on this are provided in Appendix B. In Appendix B.3.4, we also
demonstrate that EG, through an alternative parameter selection, can achieve optimal reproducibility
at a sub-optimal rateO(1=�3=2). The question that remains open is how to simultaneously attain
both optimal reproducibility and gradient complexity. To address this, we have developed two
algorithmic frameworks with near-optimal guarantees, one based on regularization and the other
based on proximal point methods [66, 12].

4.1 Regularization Helps!

Algorithm 2 Reproducible Algorithmic Framework for Convex-Concave Minimax Problems
Input: Regularization parameterr > 0, accuracy� r > 0, base algorithmA, initialization(x0; y0).

Apply A to inexactly solve ther -strongly-convex-strongly-concave and(` + r )-smooth problem

(x r ; yr )  min
x 2X

max
y2Y

Fr (x; y) := F (x; y) +
r
2

kx � x0k2 �
r
2

ky � y0k2; (� )

such that8(x; y) 2 X � Y ,

r x Fr (x r ; yr )> (x r � x) � r y Fr (x r ; yr )> (yr � y) � � r : (2)

Output: (x r ; yr ).

We demonstrate that adding regularization is suf�cient to achieve near-optimal guarantees for smooth
convex-concave minimax problems. The general framework is summarized in Algorithm 2, where a
base algorithmA is applied to solve a regularized auxiliary problem which is strongly-convex inx
and strongly-concave iny. For the inexact initialization case, we show that an optimal reproducibility
bound ofO(� 2) and a near-optimal convergence rate of~O(1=�) can be attained simultaneously.
Theorem 4.4. Under Assumption 4.1 and given an inexact initialization oracle, Algorithm 2 with
r = �=D 2, � r = � � minf 1; � 2=(8D 2)g and EG as base algorithmA outputs a(2� )-saddle point
(x r ; yr ) with ~O(`D 2=�) gradient complexity, and the reproducibility is4� 2.

Consider a� -inexact deterministic gradient oracle that returnsG(x; y) = ( Gx (x; y); Gy (x; y)) . First
noteGr (x; y) = ( Gx (x; y)+ r (x � x0); Gy (x; y) � r (y � y0)) is a� -inexact gradient for the auxiliary
problem(� ). We now characterize the convergence behavior of EG with this� -inexact gradient oracle,
referred to as Inexact-EG, to solve the auxiliary problem.
Lemma 4.5. Considerminx 2X maxy2Y Fr (x; y), whereFr (x; y) is r -strongly-convex-strongly-
concave and(` + r )-smooth. Given an inexact gradient oracle that returnsGr (x; y) such that
kGr (x; y) � r Fr (x; y)k2 � � 2, Inexact-EG with stepsize1=(2(` + r )) satis�es

kxT � x �
r k2 + kyT � y�

r k2 � exp
�

�
T
8

r
` + r

�
�
kx0 � x �

r k2 + ky0 � y�
r k2�

+
8� 2

r

�
2

` + r
+

1
r

�
:
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where(x �
r ; y�

r ) is the unique saddle point ofFr (x; y).

This lemma implies that Inexact-EG converges linearly to a neighborhood of sizeO(� 2=r2) around
the saddle point, which can be translated to the inaccuracy measure in (2) with� r = O(�=r ) utilizing
Lemma C.5. It is worth emphasizing that the size of this neighborhood is critical for achieving
optimal reproducibility, and the dependency onr in the above convergence rate is key for attaining
near-optimal complexity. Stonyakin et al.[70] analyzed Mirror-Prox [59] with restarts for strongly-
monotone variational inequalities under a different inexact oracle (see Devolder et al.[27] and [70,
Example 6.1] for its relationship with the inexactness notion of ours). Compared to Inexact-EG, their
two-loop structure of the restart scheme is more complicated to implement.

Theorem 4.6. Under Assumption 4.1 with0 < � � `D 2 and given an inexact gradient oracle,
Algorithm 2 withr = �=D 2, � r = O(�=r ) and Inexact-EG as base algorithmA outputs anO(� + �=� )-
saddle point with~O(`D 2=�) gradient complexity, and the reproducibility isO(� 2=�2).

Remark 3. Some numerical experiments on a bilinear matrix game with inexact gradient information
are provided in Appendix D (see Figure 2). With a small degradation in the convergence speed, the
regularized framework in Algorithm 2 effectively improves the reproducibility of the base algorithm.

The theorem indicates that optimal reproducibilityO(� 2=�2) and near-optimal gradient complexity
~O(1=�) can be achieved when� � O (� 2). Note by Theorem 4.2 and 4.3, GDA and EG can �nd
� -saddle points when� � O (� ). Next, we introduce an alternative algorithmic framework that
preserves the optimal reproducibility and attains the near-optimal complexity as long as� � O (� ).

4.2 Inexact Proximal Point Method

We propose a two-loop inexact proximal point framework, presented in Algorithm 3, which can
achieve both near-optimal gradient complexity and optimal algorithmic reproducibility. Compared
to Algorithm 2, the regularization parameter1=� = O(`) does not depend on the target accuracy�
and the diameterD , and the center of the regularization term is the last iterate(x t ; yt ) instead of the
initial point. Since the auxiliary problem is̀-strongly-convex-strongly-concave and2`-smooth with
condition number being�(1) , a wider range of base algorithms can be used to achieve the optimal
complexity than solving the problem in Algorithm 2 where the condition number is�(1 =�).

Algorithm 3 Inexact Proximal Point Method for Convex-Concave Minimax Problems
Input: Stepsize� > 0, accuracŷ� > 0, algorithmA, initialization(x0; y0), iteration numberT.
for t = 0 ; 1; � � � T � 1 do

Apply A to inexactly solve the smooth strongly-convex–strongly-concave problem

(x t +1 ; yt +1 )  min
x 2X

max
y2Y

F̂t (x; y) := F (x; y) +
1

2�
kx � x t k2 �

1
2�

ky � yt k2:

such that8(x; y) 2 X � Y ,

r x F̂t (x t +1 ; yt +1 )> (x t +1 � x) � r y F̂t (x t +1 ; yt +1 )> (yt +1 � y) � �̂:

Output: (�xT +1 ; �yT +1 ) = (1 =T)
P T � 1

t =0 (x t +1 ; yt +1 ).

Theorem 4.7. Under Assumption 4.1and given a� -inexact initialization oracle in De�nition 4 with
� � O (1=

p
� ), Algorithm 3 with�̂ � � 2=(2�T 2) and� = 1=` outputs anO(� )-saddle point after

T = O(1=�) iterations, and the reproducibility is9� 2.

Remark 4. The required accuracŷ� for the auxiliary problem isO(� 2� 2). Given that the auxiliary
problem is̀ -strongly-convex-strongly-concave and2`-smooth, various linearly convergent algorithms
such as EG, GDA, and Optimistic GDA [35] can �nd a point that satis�es the stopping criterion
within O(log(1=(�� ))) iterations. As a result, the total gradient complexity is~O(1=�). In contrast,
using GDA as the base algorithm in Algorithm 2 will lead to a sub-optimal gradient complexity.

Theorem 4.8. Under Assumption 4.1 and given a� -inexact deterministic gradient oracle in De�nition
4 with � � O (� ), Algorithm 3 with�̂ � O (� ) and � = 1=` outputs anO(� )-saddle point after
T = O(1=�) iterations, and the reproducibility isO(� 2=�2).

9



Remark 5. This theorem requires solving the auxiliary problem with a� -inexact gradient oracle. In
addition to Inexact-EG presented in Lemma 4.5, we show in Appendix C.1 that GDA with inexact
gradients(Inexact-GDA)can also converge linearly to the optimal point up to aO(� 2) error. Thus
the total complexity isO((1=�) log(1=� )) using both Inexact-EG and Inexact-GDA.

5 Stochastic Gradient Oracle for Minimax Problems

To provide a complete picture, in this section, we consider the stochastic minimax problem:

min
x 2X

max
y2Y

F (x; y) = E� [f (x; y; � )]; (3)

where the expectation is taken over a random vector� . We have access to a� -inexact stochastic
gradient oracle that can return unbiased gradientsr f (x; y; � ) with a bounded variance� 2 at each
point (x; y). We consider the popular algorithm called stochastic gradient descent ascent (SGDA).
The convergence behaviors of SGDA for the stochastic minimax problem(3) are well-known in
various settings. However, due to the randomness in the gradient oracle, independent runs of SGDA
may lead to different outputs even with the same parameters. Following De�nition 6, we further
establish the(�; � )-deviation of SGDA in the theorem below.
Theorem 5.1. Under Assumptions 4.1 and given an inexact stochastic gradient oracle in De�nition 4
with � = O(1), the average iterates(�xT ; �yT ) = (1 =T)

P T � 1
t =0 (x t ; yt ) of SGDA with stepsize1=(`�T )

afterT = 
(1 =�2) iterations is anO(� )-stationary point and the reproducibility isO
�
� 2=(� 2T)

�
.

TheO(1=�2) sample complexity of SGDA is known to be optimal when the objectiveF (x; y) is
convex-concave [46]. Moreover, our results suggest that SGDA is also optimally reproducible, as
the lower-bound of


�
� 2=(� 2T)

�
for convex minimization problems [1] is also valid for minimax

optimization according to our discussions in Lemma B.3.

6 Conclusion

In this work, instead of solely focusing on convergence performance, we investigate another crucial
property of machine learning algorithms, i.e., algorithms should be reproducible against slight pertur-
bations. We provide the �rst algorithms to simultaneously achieve optimal algorithmic reproducibility
and near-optimal gradient complexity for both smooth convex minimization and smooth convex-
concave minimax problems under various inexact oracle models. We focus on the convex case as
a �rst step since it is the most basic and fundamental setting in optimization. We believe a solid
understanding of the reproducibility in convex optimization will shed insights for that of the more
challenging nonconvex optimization. Note that some of the analysis and techniques used in this paper
can be extended to the smooth nonconvex setting, aligning with the stability analysis for nonconvex
objectives [42, 49]. The proposed regularized framework can be applied to nonconvex functions
as well using the convergence analysis of regularization or proximal point-based methods [2, 74].
However, the non-expansiveness property in Lemma 3.2 that is essential for the reproducibility
analysis will not hold any more without the convexity assumption. One potential way to alleviate it is
to impose additional structural assumptions on the gradients such as negative comonotonicity [39].
We leave a detailed study of the reproducibility in nonconvex optimization to future work.

Other possible improvements of our results include deriving optimal reproducibility with an acceler-
ated convergence rate for smooth convex minimization problems under the inexact gradient oracle,
removing the additional logarithmic terms in the complexity of our algorithms using techniques in
Allen-Zhu and Hazan[3], studying the reproducibility under the presence of mixed inexact oracles,
and extending the results to nonsmooth settings. Another interesting direction is to design simpler and
more direct methods with both optimal reproducibility and convergence guarantees. A possible way
is to directly unwrap the regularized algorithmic framework 1 or 2, leading to Tikhonov regularization
[8] or anchoring methods [75].
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A Near-optimal Guarantees in the Minimization Case

This section provides proof for the near-optimal guarantees of Algorithm 1 in the minimization case.
We start with some commonly-used facts that follow from basic algebraic calculations. See Bauschke
et al. [12] for an example.
Lemma A.1. The following facts will be used in the analysis. For any vectorsa; b2 Rd, it holds that

(i ) 2a> b = kak2 + kbk2 � k a � bk2;

(ii ) 2a> b = ka + bk2 � k ak2 � k ak2;

(iii ) � 
 kak2 �
1



kbk2 � 2a> b � 
 kak2 +
1



kbk2; 8
 > 0;

(iv ) k�a + (1 � � )bk2 + � (1 � � )ka � bk2 = � kak2 + (1 � � )kbk2; 8� 2 R:

A.1 Inexact Initialization Oracle

This section contains proof of Lemma 3.2 and Theorem 3.3 for the near-optimal guarantees of
Algorithm 1 in the inexact initialization case.

Proof of Lemma 3.2.By the optimality conditions ofx �
r and(x �

r )0, we have that for anyx; x 0 2 X ,

(r F (x �
r ) + r (x �

r � x0))> (x � x �
r ) � 0;

(r F ((x �
r )0) + r ((x �

r )0 � x0
0))> (x0 � (x �

r )0) � 0:
Takingx0 = x �

r andx = ( x �
r )0 in the above equation, we obtain that

(x �
r � (x �

r )0)>
�

(r F (x �
r ) + r (x �

r � x0)) � (r F ((x �
r )0) + r ((x �

r )0 � x0
0))

�
� 0:

Sincer F is monotone whenF is convex, rearranging terms, we get

0 � (x �
r � (x �

r )0)> (r F (x �
r ) � r F ((x �

r )0)) + r kx �
r � (x �

r )0k2 � r (x �
r � (x �

r )0)> (x0 � x0
0)

� r kx �
r � (x �

r )0k2 � r (x �
r � (x �

r )0)> (x0 � x0
0):

Givenr > 0, this means
kx �

r � (x �
r )0k2 � (x �

r � (x �
r )0)> (x0 � x0

0)

� k x �
r � (x �

r )0kkx0 � x0
0k:

Dividing both sides bykx �
r � (x �

r )0k, the proof is complete.

By converging suf�ciently close to the optimal solution, we can ensure Algorithm 1 is reproducible.
The near-optimal convergence rate is achieved using AGD [60] as the base algorithm.

Proof of Theorem 3.3.We �rst analyze the convergence guarantee. Letx � 2 arg minx 2X F (x) be
one minimizer ofF (x), andx �

r = arg min x 2X Fr (x) be the unique minimizer ofFr (x). By the
de�nition of Fr (x), we have that

F (x r ) � F (x � ) = Fr (x r ) �
r
2

kx r � x0k2 � Fr (x � ) +
r
2

kx � � x0k2

� Fr (x r ) � Fr (x � ) +
r
2

kx � � x0k2

� Fr (x r ) � Fr (x �
r ) +

r
2

kx � � x0k2

� � r +
rD 2

2
:

(4)
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� r andr will be selected later. For reproducibility, we proceed as

kx r � x0
r k � k x r � x �

r k + kx �
r � (x �

r )0k + k(x �
r )0 � x0

r k

� � + 2

r
2� r

r
:

where we use the optimality condition ofx �
r by r -strong-convexity ofFr (x):

r
2

kx r � x �
r k2 � Fr (x r ) � Fr (x �

r )

� � r ;

the optimality condition of(x �
r )0 and Lemma 3.2. Setting

r =
�

D 2 ; � r =
�
2

min
�

1;
� 2

4D 2

�
;

we guarantee thatF (x r ) � F (x � ) � � andkx r � x0
r k � 2� . The gradient complexity of AGD to

achieve� r approximation error on the function value gap of an`-smooth and(` + r )-strongly convex
function isO(

p
(` + r )=r log(1=� r )) = ~O(

p
`D 2=�), where ~O hides logarithmic terms.

A.2 Inexact Deterministic Gradient Oracle

This section contains proof of Lemma 3.4 and Theorem 3.5 for the guarantees in the inexact de-
terministic gradient case. We �rst study the convergence behavior of AGD [60] for smooth and
strongly-convex functions under the inexact gradient oracle. For the sake of simplicity and to enable
a general analysis, we slightly abuse notation here to consider the optimization problem

min
x 2X

f (x);

wheref : X ! R satis�es the following assumption.
Assumption A.2. f (x) is `-smooth and� -strongly convex on the closed convex domainX .

We consider the inexact gradient oracle de�ned below (referred to as� -oracle in this section).
De�nition 7. (� -oracle) At any querying pointx 2 X , the� -oracle returns a vectorg(x) 2 Rd such
thatkg(x) � r f (x)k2 � � 2, wherer f (x) is the true gradient off (x).

In previous work, Devolder et al.[27] de�ne a different inexact oracle that is motivated by the exact
�rst-order oracle and study the convergence behavior of �rst-order algorithms including AGD.
De�nition 8. ((�; `; � )-oracle [27]) At any querying pointx 2 X , the(�; `; � )-oracle returns approx-
imate �rst-order information(f �;`;� (x); g�;`;� (x)) such that for anyy 2 X ,

�
2

kx � yk2 � f (y) � (f �;`;� (x) + g�;`;� (x)> (y � x)) �
`
2

kx � yk2 + �:

The lemma below characterizes that the two oracles can be transformed into each other (adapted from
Devolder et al. [27, 28]).
Lemma A.3. Under Assumption A.2. A� -oracle can be transformed to a(� 0; `0; � 0)-oracle with
� 0 = (1 =(2`) + 1 =� )� 2, `0 = 2 `, and� 0 = �= 2. A (�; `; � )-oracle can be transformed to a� 0-oracle
for � 0 de�ned in(7).

Proof. Given a� -oracle that returnsg(x) at any pointx 2 X , we construct a(� 0; `0; � 0)-oracle as

f � 0;` 0;� 0(x) = f (x) �
� 2

�
; g� 0;` 0;� 0(x) = g(x):

By `-smoothness off (x) and fact(iii ) in Lemma A.1, we have that

f (y) � f (x) + r f (x)> (y � x) +
`
2

kx � yk2

= f (x) + g(x)> (y � x) + ( r f (x) � g(x))> (y � x) +
`
2

kx � yk2

� f (x) + g(x)> (y � x) + `kx � yk2 +
� 2

2`
:

(5)
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Similarly by � -strong convexity off (x) and fact(iii ) in Lemma A.1, we have that

f (y) � f (x) + r f (x)> (y � x) +
�
2

kx � yk2

= f (x) + g(x)> (y � x) + ( r f (x) � g(x))> (y � x) +
�
2

kx � yk2

� f (x) + g(x)> (y � x) +
�
4

kx � yk2 �
� 2

�
:

(6)

Combined the above two equations together, we obtain that

�
4

kx � yk2 � f (y) �
�

f (x) �
� 2

�
+ g(x)> (y � x)

�
� `kx � yk2 +

�
1
2`

+
1
�

�
� 2:

This concludes the proof of the �rst part. For the second part, given a(�; `; � )-oracle in De�nition 8,
we construct a� 0-oracle as follows:g(x) = g�;`;� (x). Takingy = x in De�nition 8, we obtain8 x,

f �;`;� (x) � f (x) � f �;`;� (x) + �:

Therefore, by strong-convexity off (x), we have that8 x; y,

f (y) � f (x) + r f (x)> (y � x) +
�
2

kx � yk2

� f �;`;� (x) + r f (x)> (y � x) +
�
2

kx � yk2:

Combined with the second part of De�nition 8, we obtain that8 x; y,

(r f (x) � g�;`;� (x))> (y � x) �
` � �

2
kx � yk2 + �:

Then by a similar proof as for the convex case in Devolder et al.[28]. Let �( x) = r f (x) �
g�;`;� (x) and y = x + min f

p
2�=(` � � ); r (x)g�( x)=k�( x)k for r (x) = max f r 2 R j (x +

r �( x)=k�( x)k) 2 X g. We have that

kr f (x) � g�;`;� (x)k �

8
><

>:

p
2� (` � � ); when

q
2�

` � � � r (x);
` � �

2
r (x) +

�
r (x)

; otherwise:
(7)

Since we useg(x) = g�;`;� (x), the proof is complete.

Devolder et al.[27] prove that AGD equipped with(�; `; � )-oracle in De�nition 8 converges to a
O(�

p
`=� )-neighborhood of the optimal solution with accelerated rateT = ~O(

p
`=� ):

f (xT ) � f � � O

 

exp
�

� T

r
�
`

�
+ �

s
`
�

!

;

wherexT is the output ofT-step AGD andf � is the optimal value. They further establish a lower-
bound showing tightness of theO(�

p
`=� ) error for any �rst-order methods with accelerated rate.

Here, we are interested in the performance of AGD under the� -oracle in De�nition 7. Motivated by
the transformation in Lemma A.3, we choose the parameters in AGD as follows:

x t +1 = � X

�
yt �

1
2`

g(yt )
�

;

yt +1 = x t +1 +
2 �

p
�=`

2 +
p

�=`
(x t +1 � x t ):

(8)

The results can be implied by Devolder et al.[27] together with Lemma A.3. We provide detailed
proof in the following for completeness of the paper.
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Lemma A.4. Under Assumption A.2. Letx � be the unique minimizer off (x) and� = `=� be the
condition number. Given an inexact� -oracle in De�nition 7. Starting fromy0 = x0, AGD with
updates(8) for t = 0 ; 1; � � � ; T � 1 converges with

f (xT ) � f (x � ) � exp
�

�
T

2
p

�

� �
f (x0) � f (x � ) +

�
4

kx0 � x � k2
�

+
p

�
�

1
`

+
2
�

�
� 2:

Proof. By (5) in the proof of Lemma A.3, we have that

f (x t +1 ) � f (yt ) + g(yt )> (x t +1 � yt ) + `kx t +1 � yt k2 +
� 2

2`
:

Similarly by (6), we know for anyx 2 X ,

f (x) � f (yt ) + g(yt )> (x � yt ) +
�
4

kx � yt k2 �
� 2

�
:

Combing the above two results, for anyx 2 X , we have

f (x t +1 ) � f (x) = f (x t +1 ) � f (yt ) + f (yt ) � f (x)

� g(yt )> (x t +1 � x) + `kx t +1 � yt k2 �
�
4

kx � yt k2 +
�

1
2`

+
1
�

�
� 2

� � 2`(x t +1 � yt )> (x t +1 � x) + `kx t +1 � yt k2 �
�
4

kx � yt k2 +
�

1
2`

+
1
�

�
� 2

= � `kx t +1 � yt k2 + 2 `(x t +1 � yt )> (x � yt ) �
�
4

kx � yt k2 +
�

1
2`

+
1
�

�
� 2;

where in the last inequality we use the optimality condition of the projection step such that8 x 2 X ,
�

x t +1 � yt +
1
2`

g(yt )
� >

(x � x t +1 ) � 0:

Let � := 1=(2
p

� ) =
p

�= (4`). Settingx = x t andx = x � in the above equation, we get

(1 � � )( f (x t +1 ) � f (x t )) � � `(1 � � )kx t +1 � yt k2 + 2 `(1 � � )(x t +1 � yt )> (x t � yt )

�
�
4

(1 � � )kx t � yt k2 + (1 � � )
�

1
2`

+
1
�

�
� 2;

� (f (x t +1 ) � f (x � )) � � `� kx t +1 � yt k2 + 2 `� (x t +1 � yt )> (x � � yt )

�
�
4

� kx � � yt k2 + �
�

1
2`

+
1
�

�
� 2:

Let � t := f (x t ) � f (x � ) � 0. Summing the above two up, by fact(i ) in Lemma A.1, we obtain

� t +1 � (1 � � )� t � � `kx t +1 � yt k2 + 2 `(x t +1 � yt )> ((1 � � )x t + �x � � yt ) �
�
4

� kx � � yt k2

�
�
4

(1 � � )kx t � yt k2 +
�

1
2`

+
1
�

�
� 2;

= `kyt � (1 � � )x t � �x � k2 � `kx t +1 � (1 � � )x t � �x � k2 �
�
4

� kx � � yt k2

�
�
4

(1 � � )kx t � yt k2 +
�

1
2`

+
1
�

�
� 2:

Let �u t := x t � (1 � � )x t � 1 for t � 1. From the update (8) of AGD, we observe

(1 + � )yt = (1 + � )x t + (1 � � )(x t � x t � 1)
= 2x t � (1 � � )x t � 1

= x t + �u t :
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Rearranging terms, we can getx t = (1 + � )yt � �u t and thus

yt � (1 � � )x t = yt � (1 � � )((1 + � )yt � �u t )

= yt � ((1 � � 2)yt � (1 � � )�u t )
= � (�y t + (1 � � )ut ):

It is easy to verify that the above also holds whenu0 = x0 = y0. Since`� 2 = �= 4, we have that

� t +1 � (1 � � )� t

�
�
4

k�y t + (1 � � )ut � x � k2 �
�
4

kut +1 � x � k2 �
�
4

� kx � � yt k2 +
�

1
2`

+
1
�

�
� 2

=
�
4

k(1 � � )(ut � x � ) + � (yt � x � )k2 �
�
4

kut +1 � x � k2 �
�
4

� kx � � yt k2 +
�

1
2`

+
1
�

�
� 2

�
�
4

(1 � � )kut � x � k2 �
�
4

kut +1 � x � k2 +
�

1
2`

+
1
�

�
� 2;

where we use fact(iv ) in Lemma A.1. Rearranging terms, we then obtain

� t +1 +
�
4

kut +1 � x � k2 � (1 � � )
�

� t +
�
4

kut � x � k2
�

+
�

1
2`

+
1
�

�
� 2:

Unrolling the recursion, we have that

f (xT ) � f (x � ) � � T +
�
4

kuT � x � k2

� (1 � � )T
�

� 0 +
�
4

ku0 � x � k2
�

+
�
(1 � � )T � 1 + � � � + (1 � � ) + 1

�
�

1
2`

+
1
�

�
� 2

� exp(� �T )
�

f (x0) � f (x � ) +
�
4

ku0 � x � k2
�

+
1
�

�
1
2`

+
1
�

�
� 2

= exp
�

�
T

2
p

�

� �
f (x0) � f (x � ) +

�
4

kx0 � x � k2
�

+
p

�
�

1
`

+
2
�

�
� 2;

where we use the fact that1 + � � e� ; 8� 2 R.

Lemma 3.4 immediately follows from Lemma A.4. With the above results at hand, we are ready to
show proof of Theorem 3.5 below.

Proof of Theorem 3.5.For the convergence guarantee, similarly to the perturbed initialization case
in (4), for x � 2 arg minx 2X F (x) andx �

r = arg min x 2X Fr (x), we have that

F (x r ) � F (x � ) � Fr (x r ) � Fr (x �
r ) +

rD 2

2
:

For the reproducibility guarantee, usingr -strong-convexity ofFr (x), we can obtain that

kx r � x0
r k � k x r � x �

r k + kx �
r � x0

r k

�

r
2(Fr (x r ) � Fr (x �

r ))
r

+

r
2(Fr (x0

r ) � Fr (x �
r ))

r
:

Applying Lemma 3.4, if(Inexact-AGD)is used as the base algorithmA andx r is the output given
initializationy0 = x0 afterT iterations, sincer = �=D 2 � `, we know that

Fr (x r ) � Fr (x �
r )

� exp
�

�
T
2

r
r

` + r

� �
Fr (x0) � Fr (x �

r ) +
r
4

kx0 � x �
r k2

�
+

r
` + r

r

�
1

` + r
+

2
r

�
� 2

� exp
�

�
T
2

r
r
2`

� �
Fr (x0) � Fr (x �

r ) +
r
4

kx0 � x �
r k2

�
+ 5 � 2

r
`

2r 3 :
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When settingT = O(
p

`=r log(r 3=2=� 2)) , this means the algorithm converges toFr (x r ) � Fr (x �
r ) �

6� 2
p

`=(2r 3) andkx r � x �
r k2 � 12� 2

p
`=(2r 5). Therefore, sincer = �=D 2, we have that

F (x r ) � F (x � ) � O
�

� 2

� 3=2
+ �

�
;

and the reproducibility iskx r � x0
r k2 � O (� 2=�5=2).

The results suggest that to achieve� -approximation error on the function value gap, we need to set
� � O (� 5=4), which is a smaller regime compared to� � O (� ) in the previous work [1] when� � 1.
Furthermore, optimal reproducibilityO(� 2=�2) is not attained. We observe from the proof that the
additionalO(

p
� )-factor in the last term of the error bound in Lemma A.4 leads to this degradation.

Since we setr = O(� ) to balance the convergence rate and approximation error introduced through
regularization, this factor can beO(

p
1=�). Based on the lower-bound in Devolder et al.[27] for

(�; `; � )-oracle such that thisO(
p

� )-factor is unavoidable for an accelerated convergence rate and
the transformation between the two inexact oracles in Lemma A.3, we thus make the conjecture here
that the above results cannot be further improved. Algorithms that achieve optimal convergence and
reproducibility under this setting require better designs and we leave it for future work.

B Preliminary Results in the Minimax Case

In this section, we provide proof of some preliminary results in the minimax setting. We start with a
proof of the lower-bounds in Lemma B.3. Sub-optimal guarantees of gradient descent ascent (GDA)
in the deterministic case, as well as optimal guarantees of stochastic gradient descent ascent (SGDA),
are provided in Section B.2. Sub-optimal results of Extragradient (EG) are proved in Section B.3.

Before that, we introduce some notations and helpful lemmas that will be used in the analysis. We let
z = ( x; y) and ~r F (z) = ( r x F (x; y); �r y F (x; y)) for simplicity of the notation in the remaining
of the paper. The following results will be frequently used.

Lemma B.1. Under Assumption 4.1, the operator~r F is monotone and̀-Lipschitz. That is,8z1; z2 2
X � Y , k ~r F (z1) � ~r F (z2)k � `kz1 � z2k and( ~r F (z1) � ~r F (z2))> (z1 � z2) � 0. Moreover,
8z 2 X � Y , k ~r F (z)k � L where we de�neL := min k ~r F (z� )k +

p
2`D for minimum taking

w.r.t. any saddle pointz� = ( x � ; y� ) of F (x; y).

Proof. Lipschitzness of~r F directly follows from`-smoothness ofF (x; y). The fact that~r F is
monotone whenF (x; y) is convex-concave is well-known in the literature (e.g., see Theorem 1 in
Rockafellar [65]). For the last statement, taking any saddle pointz� , we have that8z 2 X � Y ,

k ~r F (z)k � k ~r F (z� )k + k ~r F (z) � ~r F (z� )k

� k ~r F (z� )k + `kz � z� k:
The proof is complete since the domainX andY have a diameter ofD .

Lemma B.2. Under Assumption 4.1. For some integerT � 1, letzt = ( x t ; yt ) for t = 0 ; 1; � � � ; T � 1
and �zT = (�xT ; �yT ) = (1 =T)

P T � 1
t =0 (x t ; yt ). If 8z 2 X � Y , (1=T)

P T � 1
t =0

~r F (zt )> (zt � z) � � ,
then it satis�es thatmaxy2Y F (�xT ; y) � minx 2X F (x; �yT ) � � .

Proof. SinceF (x; y) is convex-concave, we get that8z = ( x; y) 2 X � Y ,
F (x t ; y) � F (x; y t ) = F (x t ; y) � F (x t ; yt ) + F (x t ; yt ) � F (x; y t )

� r x F (x t ; yt )> (x t � x) � r y F (x t ; yt )> (yt � y)

= ~r F (zt )> (zt � z):
Summing up fromt = 0 to T � 1 and dividing both sides byT, by Jensen's inequality, we have that

F (�xT ; y) � F (x; �yT ) �
1
T

T � 1X

t =0

~r F (zt )> (zt � z)

� �:
Takingy = arg max v2Y F (�xT ; v) andx = arg min u2X F (u; �yT ), we conclude the proof.
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B.1 Lower-bounds for Reproducibility

The lower-bounds follow from the minimization setting [1].

Lemma B.3. For smooth convex-concave minimax optimization under Assumption 4.1, the repro-
ducibility, i.e.,(�; � )-deviation, of any algorithmA is at least(i ) 
( � 2) for the inexact initialization
oracle; (ii ) 
( � 2=�2) for the deterministic inexact gradient oracle;(iii ) 
( � 2=(T � 2)) for the stochas-
tic gradient oracle, whereT is the total number of iterations of the algorithm.

Proof. The lower-bound of reproducibility in Ahn et al.[1] for smooth convex minimization problems
is also a valid lower-bound for smooth convex-concave minimax problems. To show this, we consider
a special case of the minimax problem(1) where the domainY is a singleton, i.e.,Y = f y0g for
somey0. Then the original smooth convex-concave minimax problemminx 2X maxy2Y F (x; y)
is equivalent to the smooth convex minimization problemminx 2X F (x; y0). For all three inexact
oracles, let(x̂; ŷ) and(x̂0; ŷ0) be the� -approximate outputs of independent two runs of the same
algorithm, i.e., the duality gap can be upper-bounded by� , then the reproducibilitykx̂ � x̂0k2 + kŷ �
ŷ0k2 = kx̂ � x̂0k2 sinceŷ = ŷ0 = y0. Moreover,x̂ andx̂0 are also� -approximate solutions of the
functionF (x; y0) based on the de�nition of duality gap. Thus the lower-bound in the minimization
setting [1] directly implies the lower-bound in the minimax setting. To be speci�c, the lower-bound
is: (i ) 
( � 2) for the inexact initialization case;(ii ) 
( � 2=�2) for the inexact deterministic gradient
case; and(iii ) 
( � 2=(T � 2)) for the stochastic gradient case.

B.2 Guarantees of Gradient Descent Ascent

This section provides proof of Theorem 4.2 for the sub-optimal guarantees of GDA in the deterministic
setting and Theorem 5.1 for the optimal guarantees of SGDA in the stochastic setting. We �rst provide
a general analysis and then expand it for three different inexact oracles in subsequent sections.

B.2.1 General Analysis

Algorithm 4 Gradient Descent Ascent
Input: Stepsize� > 0, initialization(x0; y0), number of iterationsT > 0.
for t = 0 ; 1; � � � T � 1 do

yt +1 = � Y (yt + � r y F (x t ; yt )) ,
x t +1 = � X (x t � � r x F (x t ; yt )) .

Output: (�xT ; �yT ) = (1 =T)
P T � 1

t =0 (x t ; yt ).

We consider (stochastic) gradient descent ascent (GDA/SGDA) outlined in Algorithm 4 for solving
minimax problems(1) or (3). The algorithm iteratively updates the variablesx t andyt using exact
gradientsr F (x t ; yt ), or inexact gradientsG(x t ; yt ), or stochastic gradientsr f (x t ; yt ; � t ) based on
different types of the inexact oracles in De�nition 4.

We �rst analyze the behavior of GDA with access to exact gradients. It is well-known that the last
iterate of GDA can diverge even for bilinear functions [55, 9, 36], and the average iterates converge
with a sub-optimal rateO(1=

p
T). We provide proof for completeness.

Lemma B.4. Under Assumption 4.1. When setting the stepsize to� = 1=(`
p

T), the average iterates
(�xT ; �yT ) of GDA converges with

max
y2Y

F (�xT ; y) � min
x 2X

F (x; �yT ) �
`D 2 + L 2=(2`)

p
T

;

This suggestsO(1=�2) gradient complexity is required to achieve� -saddle point.

Proof. Recallzt = ( x t ; yt ) and ~r F (zt ) = ( r x F (x t ; yt ); �r y F (x t ; yt )) . The GDA updates in
Algorithm 4 can be simpli�ed to

zt +1 = � X �Y (zt � � ~r F (zt )) : (9)
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Since the projection step is nonexpansive [12], we have that8z = ( x; y) 2 X � Y ,

kzt +1 � zk2 � k zt � � ~r F (zt ) � zk2

= kzt � zk2 � 2� ~r F (zt )> (zt � z) + � 2k ~r F (zt )k2:

Rearranging terms and using Lemma B.1, we can obtain that

~r F (zt )> (zt � z) �
1

2�

�
kzt � zk2 � k zt +1 � zk2�

+
�L 2

2
:

Taking summation fromt = 0 to T � 1 and dividing both sides byT, by Lemma B.2, we thus have

max
y2Y

F (�xT ; y) � min
x 2X

F (x; �yT ) �
D 2

�T
+

�L 2

2
:

When setting� = 1=(`
p

T), this means the complexity is required to beT � (`D 2 + L 2=(2`))2=�2

to achieve an� -saddle point such thatmaxy2Y F (�xT ; y) � minx 2X F (x; �yT ) � � .

Lemma B.5. Under Assumption 4.1, the GDA update(9) is (1 + � 2`2)-expansive. That is, if
(x t +1 ; yt +1 ) is obtained through 1-step of the update given(x t ; yt ), and(x0

t +1 ; y0
t +1 ) is obtained

given(x0
t ; y0

t ), we have that

kx t +1 � x0
t +1 k2 + kyt +1 � y0

t +1 k2 � (1 + � 2`2)
�
kx t � x0

t k
2 + kyt � y0

t k
2�

:

Proof. Recallzt = ( x t ; yt ) andz0
t = ( x0

t ; y0
t ). By the updates of GDA (9), we get that

kzt +1 � z0
t +1 k2 � k (zt � z0

t ) � � ( ~r F (zt ) � ~r F (z0
t ))k2

� k zt � z0
t k

2 + � 2k ~r F (zt ) � ~r F (z0
t )k

2 � 2� ( ~r F (zt ) � ~r F (z0
t ))

> (zt � z0
t )

� (1 + � 2`2)
�
kx t � x0

t k
2 + kyt � y0

t k
2�

;

where we use the fact that the projection step is nonexpansive and Lemma B.1.

B.2.2 Inexact Initialization Oracle

Theorem B.6(Restate Theorem 4.2, part(i )). Under Assumptions 4.1. The average iterate(�xT ; �yT )
of GDA satis�esmaxy2Y F (�xT ; y) � minx 2X F (x; �yT ) � O (� ) with complexityT = O(1=�2) if
setting stepsize� = 1=(`

p
T). The reproducibility, i.e.,(�; � )-deviation between outputs(�xT ; �yT ) and

(�x0
T ; �y0

T ) of two independent runs given different initialization isk�xT � �x0
T k2 + k�yT � �y0

T k2 � O (� 2).

Proof. The convergence analysis directly follows from Lemma B.4. For the reproducibility analysis,
by Lemma B.5 and the choice that� = 1=(`

p
T), we have that fort = 1 ; 2; � � � ; T � 1,

kx t � x0
t k

2 + kyt � y0
t k

2 � (1 + � 2`2)
�
kx t � 1 � x0

t � 1k2 + kyt � 1 � y0
t � 1k2�

=
�

1 +
1
T

�
�
kx t � 1 � x0

t � 1k2 + kyt � 1 � y0
t � 1k2�

�
�

1 +
1
T

� t �
kx0 � x0

0k2 + ky0 � y0
0k2�

:

The above also trivially holds fort = 0 . Therefore, by Jensen's inequality, we can obtain that

k�xT � �x0
T k2 + k�yT � �y0

T k2 �
1
T

T � 1X

t =0

�
kx t � x0

t k
2 + kyt � y0

t k
2�

� � 2 �
1
T

T � 1X

t =0

�
1 +

1
T

� t

� e� 2:

The choice of� is to avoid exponential dependence on` in the reproducibility bound.
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B.2.3 Inexact Deterministic Gradient Oracle

When only given an inexact gradient oracle in De�nition 4, the updates of GDA become

zt +1 = � X �Y (zt � � ~G(zt )) ; (10)

where we let~G(zt ) = ( Gx (x t ; yt ); � Gy (x t ; yt )) for the inexact gradients.
Theorem B.7(Restate Theorem 4.2, part(ii )). Under Assumptions 4.1. Given an inexact determin-
istic gradient oracle in De�nition 4 with� � O (� ). The average iterate(�xT ; �yT ) of GDA satis�es
maxy2Y F (�xT ; y) � minx 2X F (x; �yT ) � O (� ) with complexityT = O(1=�2) if setting stepsize
� = 1=(`

p
T). Furthermore, the reproducibility isk�xT � �x0

T k2 + k�yT � �y0
T k2 � O (� 2=�2).

Proof. We �rst show the optimization guarantee. By the GDA updates in(10)and De�nition 4 such
thatk ~r F (zt ) � ~G(zt )k2 � � 2, we have that for anyz = ( x; y) 2 X � Y ,

kzt +1 � zk2 � k zt � zk2 � 2� ~G(zt )> (zt � z) + � 2k ~G(zt )k2

� k zt � zk2 � 2� ~r F (zt )> (zt � z) + 2 � 2k ~r F (zt )k2

+ 2 � ( ~r F (zt ) � ~G(zt ))> (zt � z) + 2 � 2k ~G(zt ) � ~r F (zt )k2

� k zt � zk2 � 2� ~r F (zt )> (zt � z) + 2 � 2L 2 + 2
p

2��D + 2 � 2� 2:

(11)

Taking summation fromt = 0 to T � 1, we obtain that

1
T

T � 1X

t =0

~r F (zt )> (zt � z) �
kz0 � zk2

2�T
+ � (L 2 + � 2) +

p
2�D:

Supposing� � �=(2
p

2D) and setting� = 1=(`
p

T), by Lemma B.2, this means

max
y2Y

F (�xT ; y) � min
x 2X

F (x; �yT ) �
`D 2 + ( L 2 + � 2)=`

p
T

+
�
2

:

� -saddle point is guaranteed whenT = c=�2 for some constantc � 4(`D 2 + ( L 2 + � 2)=`)2.

We then prove the reproducibility guarantee. Letf zt gT
t =1 andf z0

t g
T
t =1 be the trajectories of two

independent runs of GDA with the same initial pointz0 2 X � Y and stepsize� > 0. By the GDA
updates (10) and Lemma B.5, we have that

kzt +1 � z0
t +1 k � k (zt � z0

t ) � � ( ~G(zt ) � ~G(z0
t ))k

� k (zt � z0
t ) � � ( ~r F (zt ) � ~r F (z0

t ))k + 2 ��

�
p

1 + � 2`2kzt � z0
t k + 2 ��:

(12)

Since the initializationz0 = z0
0 is the same, we obtain that for anyt = 1 ; 2; � � � ; T � 1,

kzt � z0
t k �

� p
1 + � 2`2

� t
kz0 � z0

0k + 2 ��
�

1 +
p

1 + � 2`2 + � � � +
� p

1 + � 2`2
� t � 1

�

= 2 ��
t � 1X

i =0

(1 + � 2`2) i= 2

� 2�� � t(1 + � 2`2)T=2:

The above also holds fort = 0 denoting
P � 1

i =0 = 0 . Setting� = 1=(`
p

T), the reproducibility is

k�xT � �x0
T k2 + k�yT � �y0

T k2 �
1
T

T � 1X

t =0

�
kx t � x0

t k
2 + kyt � y0

t k
2�

�
4� 2� 2

T
(1 + � 2`2)T

T � 1X

t =0

t2

�
4e
3`2 � � 2T;

which isO(� 2=�2) whenT = c=�2 as required in the convergence analysis of GDA.
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B.2.4 Stochastic Gradient Oracle

For the stochastic minimax problem(3), with access to a stochastic gradient oracle in De�nition 4,
SGDA updates fort = 0 ; 1; � � � ; T � 1,

zt +1 = � X �Y (zt � � ~r f (zt ; � t )) ; (13)

where~r f (zt ; � t ) = ( r x f (x t ; yt ; � t ); �r y f (x t ; yt ; � t )) andf � t gT � 1
t =0 are i.i.d. samples.

Proof of Theorem 5.1.We �rst show the convergence guarantee. By the SGDA updates in(13), given
all the information up to iterationt and taking expectation with respect to� t , we have8z 2 X � Y ,

E� t kzt +1 � zk2 � k zt � zk2 � 2� E[ ~r f (zt ; � t )> (zt � z)] + � 2Ek ~r f (zt ; � t )k2

= kzt � zk2 � 2� ~r F (zt )> (zt � z) + � 2Ek ~r f (zt ; � t )k2:

Taking full expectation, rearranging terms, and summing up fromt = 0 to T � 1, we have that

1
T

T � 1X

t =0

E
h

~r F (zt )> (zt � z)
i

�
kz0 � zk2

2�T
+

� (L 2 + � 2)
2

:

Therefore, by slightly modifying the proof of Lemma B.2 through taking expectations, and then
settingx = arg min u2X E[F (u; �yT )] andy = arg max v2Y E[F (�xT ; v)], we get

max
y2Y

E[F (�xT ; y)] � min
x 2X

E[F (x; �yT )] �
D 2

�T
+

� (L 2 + � 2)
2

:

We obtain thatmaxy2Y E[F (�xT ; y)] � minx 2X E[F (x; �yT )] � (`D 2 + ( L 2 + � 2)=(2`)) � if the
inexactness� = O(1), and we set� = 1=(`�T ), T � 1=�2.

We then show the reproducibility guarantee. For two independent runs of SGDA(13) with output
f zt gT

t =1 andf z0
t g

T
t =1 , by Lemma B.5, we have that for anyt = 0 ; 1; � � � ; T � 1,

E� t ;� 0
t
kzt +1 � z0

t +1 k2

� Ek(zt � z0
t ) � � ( ~r f (zt ; � t ) � ~r f (z0

t ; � 0
t ))k2

= kzt � z0
t k

2 � 2� ( ~r F (zt ) � ~r F (z0
t ))

> (zt � z0
t ) + � 2Ek ~r f (zt ; � t ) � ~r f (z0

t ; � 0
t )k

2

= kzt � z0
t k

2 � 2� ( ~r F (zt ) � ~r F (z0
t ))

> (zt � z0
t ) + � 2Ek ~r F (zt ) � ~r F (z0

t )k
2

+ � 2Ek( ~r f (zt ; � t ) � ~r f (z0
t ; � 0

t )) � ( ~r F (zt ) � ~r F (z0
t ))k2

� (1 + � 2`2)kzt � z0
t k

2 + 4 � 2� 2:

Unrolling the recursion, noticingz0 = z0
0, we have that for anyt = 0 ; 1; � � � ; T � 1,

Ekzt � z0
t k

2 � 4� 2� 2
t � 1X

i =0

(1 + � 2`2) i :

SinceT � 1=�2, we know� = 1=(`�T ) � 1=(`
p

T). The reproducibility is thus

E
�
k�xT � �x0

T k2 + k�yT � �y0
T k2�

�
1
T

T � 1X

t =0

E
�
kx t � x0

t k
2 + kyt � y0

t k
2�

�
4� 2� 2

T

T � 1X

t =1

t � 1X

i =0

(1 + � 2`2) i

�
4� 2� 2

T

T � 1X

t =1

t
�

1 +
1
T

� T

� 2e� 2� 2T

=
2e
`2 �

� 2

� 2T
:

The last step uses the choice of� such that� 2T = 1=(`2� 2T).
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B.3 Guarantees of Extragradient

This section provides proof of Theorem 4.3 for the sub-optimal guarantees of Extragradient (EG).

B.3.1 General Analysis

Algorithm 5 Extragradient
Input: Stepsize� > 0, initialization(x0; y0), number of iterationsT > 0.
for t = 0 ; 1; � � � T � 1 do

yt +1 =2 = � Y (yt + � r y F (x t ; yt )) ,
x t +1 =2 = � X (x t � � r x F (x t ; yt )) .
yt +1 = � Y (yt + � r y F (x t +1 =2; yt +1 =2)) ,
x t +1 = � X (x t � � r x F (x t +1 =2; yt +1 =2)) .

Output: (�xT +1 =2; �yT +1 =2) = (1 =T)
P T � 1

t =0 (x t +1 =2; yt +1 =2).

For deterministic smooth convex-concave minimax optimization, Extragradient [48, 72] (EG), sum-
marized in Algorithm 5, achieves the optimalO(1=�) convergence rate. When only given inexact
gradients or stochastic gradients, the true gradients are just replaced byG(x t ; yt ) or r f (x t ; yt ; � t ).

We provide proof of itsO(1=�) convergence for completeness. The proof is standard in the literature,
e.g., see Nemirovski [59] or Section 4.5 of Bubeck [20].
Lemma B.8. Under Assumption 4.1. When setting the stepsize to� = 1=`, the average iterates
(�xT +1 =2; �yT +1 =2) of EG converges with

max
y2Y

F (�xT +1 =2; y) � min
x 2X

F (x; �yT +1 =2) �
`D 2

T
:

This suggestsO(1=�) gradient complexity is required to achieve� -saddle point.

Proof. Recall zt = ( x t ; yt ) and ~r F (zt ) = ( r x F (x t ; yt ); �r y F (x t ; yt )) . The EG updates in
Algorithm 5 can be simpli�ed to

zt +1 =2 = � X �Y (zt � � ~r F (zt )) ;

zt +1 = � X �Y (zt � � ~r F (zt +1 =2)) :
(14)

By fact (i ) in Lemma A.1, we have that for anyz 2 X � Y ,

kzt +1 � zk2 + kzt +1 � zt k2 � k zt � zk2 = 2( zt +1 � zt )> (zt +1 � z)

� 2� ~r F (zt +1 =2)> (z � zt +1 );

where we use the optimality condition of the projection step such that(� C(u) � u)> (v � � C(u)) �
0; 8v 2 C. For the same reason, we can obtain that

kzt +1 =2 � zt k2 + kzt +1 =2 � zt +1 k2 � k zt � zt +1 k2 = 2( zt +1 =2 � zt )> (zt +1 =2 � zt +1 )

� 2� ~r F (zt )> (zt +1 � zt +1 =2):

Summing up the above two inequalities, we get

kzt +1 � zk2 � k zt � zk2 � k zt +1 =2 � zt k2 � k zt +1 =2 � zt +1 k2 + 2 � ~r F (zt +1 =2)> (z � zt +1 )

+ 2 � ~r F (zt )> (zt +1 � zt +1 =2)

= kzt � zk2 � k zt +1 =2 � zt k2 � k zt +1 =2 � zt +1 k2 + 2 � ~r F (zt +1 =2)> (z � zt +1 =2)

+ 2 � ( ~r F (zt ) � ~r F (zt +1 =2))> (zt +1 � zt +1 =2):
(15)

According to Lemma B.1, we can obtain

( ~r F (zt ) � ~r F (zt +1 =2))> (zt +1 � zt +1 =2) � `kzt � zt +1 =2kkzt +1 � zt +1 =2k

�
`
2

kzt � zt +1 =2k2 +
`
2

kzt +1 � zt +1 =2k2:
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Therefore, rearranging terms, by the choice of stepsize� � 1=`, we have8z 2 X � Y ,

~r F (zt +1 =2)> (zt +1 =2 � z)

�
1

2�

�
kzt � zk2 � k zt +1 � zk2�

�
1

2�
kzt +1 =2 � zt k2 �

1
2�

kzt +1 =2 � zt +1 k2

+ ( ~r F (zt ) � ~r F (zt +1 =2))> (zt +1 � zt +1 =2)

�
1

2�

�
kzt � zk2 � k zt +1 � zk2�

�
�

1
2�

�
`
2

�
kzt +1 =2 � zt k2 �

�
1

2�
�

`
2

�
kzt +1 =2 � zt +1 k2

�
1

2�

�
kzt � zk2 � k zt +1 � zk2�

:

(16)

Taking summation fromt = 0 to T � 1, by Lemma B.2, we have

max
y2Y

F (�xT +1 =2; y) � min
x 2X

F (x; �yT +1 =2) �
kz0 � zk2

2�T
:

Sincekz0 � zk2 � 2D 2 and� = 1=`, the proof is complete.

The following results are motivated from Boob and Guzmán [16].
Lemma B.9. Under Assumption 4.1. Letzt +1 = ( x t +1 ; yt +1 ) be obtained through 1-step of EG
update(14)givenzt = ( x t ; yt ), andz0

t +1 is obtained givenz0
t . Setting� � 1=`, then we have

kzt +1 � z0
t +1 k � k zt � z0

t k + 2L` 2� 3:

Proof. For anyz = ( x; y) 2 X � Y , we de�ne an operatorPzt (�) : X � Y ! X � Y as
Pzt (z) = � X �Y (zt � � ~r F (z)) , and the EG updates can be written aszt +1 = Pzt (Pzt (zt )) . When
the stepsize� � 1=`, the operatorPzt (�) is nonexpansive, i.e.,8z1; z2 2 X � Y ,

kPzt (z1) � Pzt (z2)k � � k ~r F (z1) � ~r F (z2)k
� �` kz1 � z2k
� k z1 � z2k:

Since the domainX �Y is a nonempty bounded closed convex set, by Theorem 4.19 in Bauschke et al.
[12], the nonexpansive operatorPzt (�) admits �xed points. Denote one �xed point asut 2 X � Y
such thatut = � X �Y (zt � � ~r F (ut )) = Pzt (ut ). The nonexpansiveness ofPzt (�) implies

kzt +1 � ut k = kPzt (Pzt (zt )) � Pzt (Pzt (ut ))k

� (�` )2kzt � ut k

� � 2`2 � � k ~r F (ut )k

� � 3`2L:

(17)

The same holds true forz0
t +1 andu0

t = Pz0
t
(u0

t ) de�ned for z0
t . As a result, we can obtain that

kzt +1 � z0
t +1 k � k zt +1 � ut k + kut � u0

t k + ku0
t � z0

t +1 k

� k ut � u0
t k + 2L` 2� 3:

(18)

By optimality conditions ofut = � X �Y (zt � � ~r F (ut )) andu0
t = � X �Y (z0

t � � ~r F (u0
t )) , we

obtain that for anyz; z0 2 X � Y ,

(ut � zt + � ~r F (ut ))> (z � ut ) � 0;

(u0
t � z0

t + � ~r F (u0
t ))

> (z0 � u0
t ) � 0:

Takingz = u0
t andz0 = ut and using the fact that~r F is monotone by Lemma B.1, we obtain that

kut � u0
t k

2 � (ut � u0
t )

> (zt � z0
t ) � � ( ~r F (ut ) � ~r F (u0

t ))
> (ut � u0

t )

� k ut � ut kkzt � z0
t k:

Combined with (18), the proof is complete sincekut � u0
t k � k zt � z0

t k.
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Remark 6. We can alternatively derive the relation betweenkzt +1 � z0
t +1 k andkzt � z0

t k as follows:

kzt +1 � z0
t +1 k2

� k zt � z0
t k

2 � 2� (zt � z0
t )

> ( ~r F (zt +1 =2) � ~r F (z0
t +1 =2)) + � 2k ~r F (zt +1 =2) � ~r F (z0

t +1 =2)k2

� k zt � z0
t k

2 + 2 �` kzt � z0
t kkzt +1 =2 � z0

t +1 =2k + � 2`2kzt +1 =2 � z0
t +1 =2k2

� (1 + 2 �`
p

1 + � 2`2 + � 2`2(1 + � 2`2))kzt � z0
t k

2

=
�

1 + �`
p

1 + � 2`2
� 2

kzt � z0
t k

2:

Here, we use Lemma B.1 and B.5. The above results will lead to reproducibility that grows with
O(eT ), which is similar to the results of AGD for the minimization setting [6].

B.3.2 Inexact Initialization Oracle

Theorem B.10 (Restate Theorem 4.3, part(i )). Under Assumptions 4.1. The average iterate
(�xT +1 =2; �yT +1 =2) of EG satis�esmaxy2Y F (�xT +1 =2; y) � minx 2X F (x; �yT +1 =2) � O (� ) with
complexityT = O(1=�) if setting stepsize� = 1=`. Furthermore, the reproducibility, i.e.,(�; � )-
deviation between outputs of two independent runs of EG given different initialization isk�xT +1 =2 �
�x0

T +1 =2k2 + k�yT +1 =2 � �y0
T +1 =2k2 � O (minf � 2e1=� ; � 2 + 1=�2; D 2g).

Proof. The convergence part directly follows from Lemma B.8 withT = c=� for some constant
c � `D 2. For reproducibility, by Lemma B.5, B.9 and the stepsize� = 1=`, we have that for
t = 1 ; 2; � � � ; T � 1,

kx t +1 =2 � x0
t +1 =2k2 + kyt +1 =2 � y0

t +1 =2k2 � (1 + � 2`2)
�
kx t � x0

t k
2 + kyt � y0

t k
2�

� 2(kz0 � z0
0k + 2L` 2� 3t)2

� 2
�

� +
2L
`

t
� 2

:

The above also holds fort = 0 . Therefore, by Jensen's inequality, we obtain

k�xT +1 =2 � �x0
T +1 =2k2 + k�yT +1 =2 � �y0

T +1 =2k2 �
1
T

T � 1X

t =0

�
kx t +1 =2 � x0

t +1 =2k2 + kyt +1 =2 � y0
t +1 =2k2

�

�
2
T

T � 1X

t =0

�
� +

2L
`

t
� 2

� 4� 2 +
16L 2

3`2 T2:

Alternatively, by Remark 6, we know thatkzt +1 =2 � z0
t +1 =2k2 � 2(1 +

p
2)2t � 2, and thus the

reproducibility isk�xT +1 =2 � �x0
T +1 =2k2 + k�yT +1 =2 � �y0

T +1 =2k2 � O (eT � 2). The proof is complete
by taking the minimum between the two results and replacingT with c=�.

B.3.3 Inexact Deterministic Gradient Oracle

When only given inexact gradient(Gx (x t ; yt ); Gy (x t ; yt )) , the updates of EG becomes

zt +1 =2 = � X �Y (zt � � ~G(zt )) ;

zt +1 = � X �Y (zt � � ~G(zt +1 =2)) ;

where exact gradients~r F (zt ) in (14) are replaced by~G(zt ) = ( Gx (x t ; yt ); � Gy (x t ; yt )) .

Theorem B.11(Restate Theorem 4.3, part(ii )). Under Assumptions 4.1. Given an inexact deter-
ministic gradient oracle in De�nition 4 with� � O (� ). The average iterate(�xT +1 =2; �yT +1 =2) of EG
satis�esmaxy2Y F (�xT +1 =2; y) � minx 2X F (x; �yT +1 =2) � O (� ) with complexityT = O(1=�) if
setting stepsize� = 1=`. Furthermore, the reproducibility isO(minf � 2e1=� ; 1=�2; D 2g).
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Proof. Let �( zt ) = ~G(zt ) � ~r F (zt ). We knowk�( zt )k � � by De�nition 4. Using(15) in the
proof of Lemma B.8, we have that8z 2 X � Y ,

kzt +1 � zk2 � k zt � zk2 � k zt +1 =2 � zt k2 � k zt +1 =2 � zt +1 k2 + 2 � ~G(zt +1 =2)> (z � zt +1 =2)

+ 2 � ( ~G(zt ) � ~G(zt +1 =2))> (zt +1 � zt +1 =2)

= kzt � zk2 � k zt +1 =2 � zt k2 � k zt +1 =2 � zt +1 k2 + 2 � ~r F (zt +1 =2)> (z � zt +1 =2)

+ 2 � ( ~r F (zt ) � ~r F (zt +1 =2))> (zt +1 � zt +1 =2) + 2 � �( zt +1 =2)> (z � zt +1 =2)

+ 2 � (�( zt ) � �( zt +1 =2))> (zt +1 � zt +1 =2)

� k zt � zk2 � k zt +1 =2 � zt k2 � k zt +1 =2 � zt +1 k2 + 2 � ~r F (zt +1 =2)> (z � zt +1 =2)

+ 2 � ( ~r F (zt ) � ~r F (zt +1 =2))> (zt +1 � zt +1 =2) + 6
p

2��D:
(19)

The above is the same as(15)up to an additional error inO(� ). Following the same proof after(15),
with � = 1=`, we obtain that

max
y2Y

F (�xT +1 =2; y) � min
x 2X

F (x; �yT +1 =2) �
`D 2

T
+ 3

p
2�D:

When� � �=(6
p

2D) andT = c=� for some constantc � 2`D 2=�, we get� -saddle point.

We then show the reproducibility guarantee. Letut = � X �Y (zt � � ~r F (ut )) be the same as in the
proof of Lemma B.9. Similarly to (17), we have that

kzt +1 � ut k � � k ~G(zt +1 =2) � ~r F (ut )k

� � k ~r F (zt +1 =2) � ~r F (ut )k + � k ~G(zt +1 =2) � ~r F (zt +1 =2)k

� �` kzt +1 =2 � ut k + ��

� � 2`k ~G(zt ) � ~r F (ut )k + ��

� � 2`2kzt � ut k + (1 + �` )��

� � 3`2L + (1 + �` )��:

As a result, the same as (18), since� = 1=`, we can obtain that8t = 0 ; 1; � � � ; T � 1,

kzt � z0
t k � k zt � 1 � z0

t � 1k + 2 � 3`2L + 2(1 + �` )��

� t(2� 3`2L + 2(1 + �` )�� )

�
2t
`

(L + 2 � ):

Therefore, by Jensen's inequality and (12) in Section B.2.3 for the guarantee of GDA, we know

k�xT +1 =2 � �x0
T +1 =2k2 + k�yT +1 =2 � �y0

T +1 =2k2 �
1
T

T � 1X

t =0

�
kx t +1 =2 � x0

t +1 =2k2 + kyt +1 =2 � y0
t +1 =2k2

�

�
1
T

T � 1X

t =0

2
�
(1 + � 2`2)kzt � z0

t k
2 + 4 � 2� 2�

�
1
T

T � 1X

t =0

8
`2

�
2t2(L + 2 � )2 + � 2�

�
128
3`2 � 2T2 +

32L 2

3`2 T2 +
8
`2 � 2:
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Note thatT = c=� and� � O (� ). Thus the reproducibility isO(1=�2). Alternatively, by Remark 6
and similarly to (12), we have that

kzt +1 � z0
t +1 k

�
q

kzt � z0
t k2 + 2 �` kzt � z0

t kkzt +1 =2 � z0
t +1 =2k + � 2`2kzt +1 =2 � z0

t +1 =2k + 2 ��

�

r �
1 + �`

p
1 + � 2`2

� 2
kzt � z0

t k2 + 4 � 2`�
�

1 + �`
p

1 + � 2`2
�

kzt � z0
t k + 4 � 4`2� 2 + 2 ��

=
�

1 + �`
p

1 + � 2`2
�

kzt � z0
t k + 2 �� (1 + �` )

= (1 +
p

2)kzt � z0
t k +

4�
`

:

Thuskzt +1 =2 � z0
t +1 =2k �

p
2kzt � z0

t k + 2 �=` � O (eT �=` ) and the reproducibility isO(� 2e1=� ).
The proof is complete by taking the minimum between the two results.

B.3.4 More Discussions

In this section, we show that Extragradient can also be optimally reproducible by a different selection
of parameters. Although it will suffer from a sub-optimal convergence rateO(1=�3=2) instead of
O(1=�), this is still an improvement on theO(1=�2) rate of GDA.

Theorem B.12. Under Assumptions 4.1. The average iterate(�xT +1 =2; �yT +1 =2) of EG satis�es
maxy2Y F (�xT +1 =2; y) � minx 2X F (x; �yT +1 =2) � O (� ) with complexityT = O(1=(� 1=2� 3=2)) if
setting stepsize� = min f 1=`; (�=(2`2T))1=3g. The reproducibility isO(� 2).

Proof. The same as Section B.3.2, by the choice of stepsize� such that� 3T � �=2`2, we obtain

k�xT +1 =2 � �x0
T +1 =2k2 + k�yT +1 =2 � �y0

T +1 =2k2 �
2
T

T � 1X

t =0

�
� + 2L` 2� 3t

� 2

� 4� 2 + 4(2L` 2� 3T)2

� 4(L 2 + 1) � 2:

By Lemma B.8, when the stepsize� � 1=`, we have that

max
y2Y

F (�xT +1 =2; y) � min
x 2X

F (x; �yT +1 =2) �
D 2

�T

�
`D 2

T
+

D 2(2`2=� )1=3

T2=3
:

This means aO(1=(� 1=2� 3=2)) convergence rate with reproducibilityO(� 2). In the case� = O(1),
the gradient complexity isO(1=�3=2).

Theorem B.13. Under Assumptions 4.1. Given an inexact deterministic gradient oracle in De�nition
4 with � � O (� ). The average iterate(�xT +1 =2; �yT +1 =2) of EG satis�esmaxy2Y F (�xT +1 =2; y) �
minx 2X F (x; �yT +1 =2) � O (� ) with complexityT = O(1=(�

p
� )) if setting stepsize� =

minf 1=`; (�=(2`2))1=2g. The reproducibility isO(� 2=�2).

Proof. The same as Section B.3.3, since�` � 1 and� 2 � �=(2`2), we have that

k�xT +1 =2 � �x0
T +1 =2k2 + k�yT +1 =2 � �y0

T +1 =2k2 � 8� 2� 2 +
4
T

T � 1X

t =0

(2� 3`2L + 4 �� )2t2

� 8
�
(2L` 2� 2)2� 2T2 + 8 � 2� 2T2 + � 2� 2�

� 8(L 2 + 9) � 2(�T )2:
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When the stepsize� � 1=`, we also have

max
y2Y

F (�xT +1 =2; y) � min
x 2X

F (x; �yT +1 =2) �
D 2

�T
+ 3

p
2�D

�
`D 2

T
+

p
2`D 2

T
p

�
+ 3

p
2�D:

To guaranteeO(� )-saddle point, we need to ensure� � O (� ) and�T = c=� for some constantc.
This means aO(1=(�

p
� )) convergence rate with reproducibilityO(� 2=�2). Since� � O (� ), the

gradient complexity isO(1=�3=2).

Finally, we want to mention that the analysis can also be extended to reproducibility under stochastic
gradient oracle and stability of Extragradient [16] that matches with SGDA. We will not provide all
details here. The key is to select stepsize� to balance the convergenceO(1=(�T )) in Lemma B.8
and the error termO(� 3T) that appears according to Lemma B.9. Moreover, we also acknowledge
that it is unclear whether the analysis of EG is tight since the speci�c lower-bound is unknown. We
leave this problem for future exploration.

C Near-optimal Guarantees in the Minimax Case

This section discusses near-optimal guarantees for algorithmic reproducibility and gradient complexity
in smooth convex-concave minimax optimization.

C.1 Useful Lemmas

We �rst establish the convergence behavior of gradient descent ascent (GDA) and Extragradient (EG)
[48] for smooth and strongly-convex–strongly-concave (SC-SC) functions under the inexact gradient
oracle in De�nition 4. For the sake of simplicity and to enable a general analysis, we slightly abuse
notation here to consider the minimax optimization problem

min
x 2X

max
y2Y

f (x; y);

wheref : X � Y ! R satis�es the following assumption.

Assumption C.1. The functionf (x; y) is `-smooth and� –strongly-convex–strongly-concave on the
closed convex domainX � Y .

Assumption C.2. We assume the existence of an inexact gradient oracle that returns a vector
g(x; y) = ( gx (x; y); gy (x; y)) at any querying point(x; y) 2 X � Y such thatkr f (x; y) �
g(x; y)k2 � � 2 wherer f (x; y) = ( r x f (x; y); r y f (x; y)) is the true gradient at(x; y).

The lemma below shows the convergence behavior of GDA under the inexact gradient oracle presented
above, also referred to as Inexact-GDA.

Lemma C.3. Under Assumption C.1. Letz� = ( x � ; y� ) 2 X � Y be the unique saddle point of
f (x; y) and� := `=� be the condition number. Given an inexact gradient oracle in Assumption C.2.
Denotezt = ( x t ; yt ) and~g(zt ) = ( gx (x t ; yt ); � gy (x t ; yt )) . Starting fromz0 2 X � Y , GDA that
updates fort = 0 ; 1; � � � ; T � 1,

zt +1 = � X �Y (zt � � ~g(zt )) ; (Inexact-GDA)

with stepsize� = �= (4`2) converges with

kzT � z� k2 � exp
�

�
T

8� 2

�
kz0 � z� k2 +

�
1
`2 +

2
� 2

�
� 2:

Proof. Let ~r f (zt ) = ( r x f (x t ; yt ); �r y f (x t ; yt )) . It holds thatz� = � X �Y (z� � � ~r f (z� ))
since the saddle point problem and the projection problem share the same optimality condition when
f (x; y) is convex-concave (see Proposition 1.4.2 in Facchinei and Pang [32]) such that

~r f (z� )> (z � z� ) � 0; 8z = ( x; y) 2 X � Y :
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Therefore, similarly to (11), by the GDA updates, we have

kzt +1 � z� k2 = k� X �Y (zt � � ~g(zt )) � � X �Y (z� � � ~r f (z� ))k2

� k (zt � z� ) � � (~g(zt ) � ~r f (z� ))k2

= kzt � z� k2 � 2� (~g(zt ) � ~r f (z� ))> (zt � z� ) + � 2k~g(zt ) � ~r f (z� )k2:

Since~r f is � –strongly-monotone iff (x; y) is � –strongly-convex–strongly-concave [66, 35], i.e.,
8z1; z2 2 X � Y ; ( ~r f (z1) � ~r f (z2))> (z1 � z2) � � kz1 � z2k2, we have that

(~g(zt ) � ~r f (z� ))> (zt � z� ) = ( ~r f (zt ) � ~r f (z� ))> (zt � z� ) + (~g(zt ) � ~r f (zt ))> (zt � z� )

� � kzt � z� k2 � � kzt � z� k

�
�
2

kzt � z� k2 �
� 2

2�
;

where we use Assumption C.2 such thatk~g(zt ) � ~r f (zt )k � � and fact(iii ) in Lemma A.1. Then
by `-smoothness off (x; y), we can obtain that

k~g(zt ) � ~r f (z� )k2 � 2k~g(zt ) � ~r f (zt )k2 + 2k ~r f (zt ) � ~r f (z� )k2

� 2� 2 + 2 `2kzt � z� k2:

Combining all three results together, when choosing the stepsize� = �= (4`2), we get that

kzt +1 � z� k2 � (1 � �� + 2 � 2`2)kzt � z� k2 +
�

�
�

+ 2 � 2
�

� 2

=
�

1 �
1

8� 2

�
kzt � z� k2 +

� 2

4`2

�
1 +

1
2� 2

�
:

(20)

Unrolling the recursion, we thus obtain

kzT � z� k2

�
�

1 �
1

8� 2

� T

kz0 � z� k2 +
� 2

4`2

�
1 +

1
2� 2

�  

1 +
�

1 �
1

8� 2

�
+ � � � +

�
1 �

1
8� 2

� T � 1
!

� exp
�

�
T

8� 2

�
kz0 � z� k2 +

�
1
`2 +

2
� 2

�
� 2:

This means aO(� 2) convergence rate to aO(� 2) neighborhood, where� = `=� is the condition
number.

The lemma below establishes the convergence performance of EG under Assumption C.1 and C.2.
Lemma C.4. Under Assumption C.1. Letz� = ( x � ; y� ) 2 X � Y be the unique saddle point of
f (x; y) and � := `=� be the condition number. Given an inexact gradient oracle in Assumption
C.2. Denotezt = ( x t ; yt ) and ~g(zt ) = ( gx (x t ; yt ); � gy (x t ; yt )) . Starting fromz0 2 X � Y ,
Extragradient that updates fort = 0 ; 1; � � � ; T � 1,

zt +1 =2 = � X �Y (zt � � ~g(zt )) ;

zt +1 = � X �Y (zt � � ~g(zt +1 =2)) ;
(Inexact-EG)

with stepsize� = 1=(2`) converges with

kzT � z� k2 � exp
�

�
T
8�

�
kz0 � z� k2 +

8� 2

�

�
2
`

+
1
�

�
:

Proof. Let ~r f (zt ) = ( r x f (x t ; yt ); �r y f (x t ; yt )) and�( zt ) = ~g(zt ) � ~r f (zt ). By (15) in the
proof of Lemma B.8, settingz = z� , we have that,

kzt +1 � z� k2 � k zt � z� k2 � k zt +1 =2 � zt k2 � k zt +1 =2 � zt +1 k2 + 2 � ~r f (zt +1 =2)> (z� � zt +1 =2)

+ 2 � ( ~r f (zt ) � ~r f (zt +1 =2))> (zt +1 � zt +1 =2) + 2 � �( zt +1 =2)> (z� � zt +1 =2)

+ 2 � (�( zt ) � �( zt +1 =2))> (zt +1 � zt +1 =2):
(21)
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By strong-convexity-strong-concavity of the functionf (x; y), we know that

f (x � ; yt +1 =2) � f (x t +1 =2; yt +1 =2) + r x f (x t +1 =2; yt +1 =2)> (x � � x t +1 =2) +
�
2

kx t +1 =2 � x � k2;

� f (x t +1 =2; y� ) � � f (x t +1 =2; yt +1 =2) � r y f (x t +1 =2; yt +1 =2)> (y� � yt +1 =2) +
�
2

kyt +1 =2 � y� k2:

Summing up the above two inequalities, using the de�nition of saddle points, we have
~r f (zt +1 =2)> (z� � zt +1 =2) + �( zt +1 =2)> (z� � zt +1 =2)

� f (x � ; yt +1 =2) � f (x t +1 =2; y� ) �
�
2

kzt +1 =2 � z� k2 + �( zt +1 =2)> (z� � zt +1 =2)

� �
�
2

kzt +1 =2 � z� k2 + k�( zt +1 =2)kkz� � zt +1 =2k

� �
�
4

kzt +1 =2 � z� k2 +
� 2

�

� �
�
8

kzt � z� k2 +
�
4

kzt � zt +1 =2k2 +
� 2

�
;

(22)

where we use fact(iii ) in Lemma A.1 andkzt � z� k2 � 2kzt � zt +1 =2k2 + 2kzt +1 =2 � z� k2. By
smoothness off (x; y) and fact(iii ) in Lemma A.1, we also have that

( ~r f (zt ) � ~r f (zt +1 =2))> (zt +1 � zt +1 =2) + (�( zt ) � �( zt +1 =2))> (zt +1 � zt +1 =2)

� `kzt � zt +1 =2kkzt +1 � zt +1 =2k + 2 � � kzt +1 � zt +1 =2k

�
`
2

kzt � zt +1 =2k2 + `kzt +1 � zt +1 =2k2 +
2� 2

`
:

(23)

Plugging (22) and (23) back into (21), choosing� = 1=(2`), we obtain that

kzt +1 � z� k2 �
�

1 �
��
4

�
kzt � z� k2 �

�
1 �

��
2

� �`
�

kzt +1 =2 � zt k2

� (1 � 2�` )kzt +1 =2 � zt +1 k2 + 2 �� 2
�

2
`

+
1
�

�

�
�

1 �
�
8`

�
kzt � z� k2 +

� 2

`

�
2
`

+
1
�

�
:

(24)

Unrolling the recursion, since1 + � � e� , 8� 2 R, we get that

kzT � z� k2 �
�

1 �
�
8`

� T
kz0 � z� k2 +

� 2

`

�
2
`

+
1
�

��
1 +

�
1 �

�
8`

�
+ � � � +

�
1 �

�
8`

� T � 1
�

�
�

1 �
�
8`

� T
kz0 � z� k2 +

8� 2

�

�
2
`

+
1
�

�
:

This means aO(� ) convergence rate to aO(� 2) neighborhood, where� = `=� is the condition
number.

Lemma 4.5 directly follows from Lemma C.4 observing thatG(x; y)+ r (x � x0; y0 � y) is a� -inexact
gradient ofFr (x; y). Next, we provide a useful lemma showing how to satisfy the stopping criteria
for the auxiliary smooth SC-SC sub-problem in Algorithm 2 when presented with inexact gradients.
The results are motivated from Yang et al. [74].
Lemma C.5. Under Assumption C.1 and C.2. Suppose the domainX andY have a diameter ofD .
Denotez� = ( x � ; y� ) be the unique saddle point off (x; y). For anyẑ = ( x̂; ŷ) 2 X � Y , we let
~g(ẑ) = ( gx (x̂; ŷ); � gy (x̂; ŷ)) and de�ne[ẑ]� = ([ x̂]� ; [ŷ]� ) for � � 2` to be

[ẑ]� = � X �Y

�
ẑ �

1
�

~g(ẑ)
�

;

which is obtained through one step of GDA starting fromẑ with inexact gradients. Denote the true
gradient as~r f ([ẑ]� ) = ( r x f ([x̂]� ; [ŷ]� ); �r y f ([x̂]� ; [ŷ]� )) . Then we have that8z = ( x; y) 2
X � Y ,

~r f ([ẑ]� )> ([ẑ]� � z) � 2
p

2�D kẑ � z� k +
p

2�D

 

(2 +
p

2)

s
�
�

+ 3

!

:
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Moreover, it also holds thatk[ẑ]� � z� k � (1 +
p

2`=� )kẑ � z� k + � (1=
p

�� +
p

2=� ).

Proof. We construct a “ghost” point̂z1 = ( x̂1; ŷ1) 2 X � Y to be

ẑ1 = � X �Y

�
ẑ �

1
�

~g([ẑ]� )
�

:

ẑ1 can be regarded as performing one update of inexact-EG with stepsize1=� starting fromẑ.
Therefore, by(16) and(19) in the convergence analysis of EG, since1=� � 1=`, we obtain that
8z = ( x; y) 2 X � Y ,

~r f ([ẑ]� )> ([ẑ]� � z) �
�
2

kẑ � zk2 �
�
2

kẑ1 � zk2 + 3
p

2�D

=
�
2

(ẑ � ẑ1)> (ẑ � z + ẑ1 � z) + 3
p

2�D

�
�
2

(kẑ � z� k + kẑ1 � z� k) � kẑ � z + ẑ1 � zk + 3
p

2�D:

By (24) in the proof of Lemma C.4, since� � 2` and� � `, we have that

kẑ1 � z� k2 � k ẑ � z� k2 +
4� 2

�`
+

2� 2

��
:

Therefore, we can obtain thatkẑ1 � z� k � k ẑ � z� k + 2 �=
p

�` +
p

2�=
p

�� , and thus,

~r f ([ẑ]� )> ([ẑ]� � z) �
p

2�D (kẑ � z� k + kẑ1 � z� k) + 3
p

2�D

� 2
p

2�D kẑ � z� k +
p

2�D

 

2

r
�
`

+

s
2�
�

+ 3

!

:

For the last statement, since[ẑ]� is obtained through 1-step of GDA with inexact gradients, by(20)
in the proof of GDA for SC-SC problems before, we have that

k[ẑ]� � z� k2 �
�

1 +
2`2

� 2

�
kẑ � z� k2 + � 2

�
1

��
+

2
� 2

�
:

Therefore, we obtain thatk[ẑ]� � z� k � (1 +
p

2`=� )kẑ � z� k + � (1=
p

�� +
p

2=� ).

The above lemma also applies to the case when exact gradients are available setting� = 0 and

[ẑ]� = � X �Y

�
ẑ � 1

�
~r f (ẑ)

�
for the true gradients~r f (ẑ). This implies the stopping criteria

~r f (ẑ)> (ẑ � z) � �̂; 8z 2 X � Y in Algorithm 2 and 3 can be translated tokẑ � z� k2 � O (�̂ 2),
which can be satis�ed withinO(log(1=�̂ )) complexity using Lemma C.3 and C.4 with� = 0 (or
existing results in Tseng [72] or Facchinei and Pang [32]).

C.2 Regularization Helps!

Proof of Theorem 4.4 and 4.6 for the near-optimal guarantees of Algorithm 2 is provided here.

C.2.1 Inexact Initialization Oracle

We also use(x0; y0) as the initialization point when solving the auxiliary strongly-convex problem.
Note that the gradient steps starting from(x0; y0) remain the same onF (x; y) andFr (x; y).

Proof of Theorem 4.4.We �rst show the convergence guarantee. Letzr = ( x r ; yr ). By fact (i ) in
Lemma A.1, we have that8z = ( x; y) 2 X � Y ,

~r F (zr )> (zr � z) =
�

~r Fr (zr ) � r (zr � z0)
� >

(zr � z)

= ~r Fr (zr )> (zr � z) +
r
2

kz0 � zk2 �
r
2

kzr � z0k2 �
r
2

kzr � zk2

� � r + rD 2:

(25)

35



According to Lemma B.2, this meansmaxy2Y F (x r ; y) � minx 2X F (x; yr ) � � r + rD 2.

We then show the reproducibility guarantee. Denote the saddle point ofFr (x; y) given(x0; y0) as
(x �

r ; y�
r ), and the saddle point ofF 0

r (x; y) = F (x; y) + ( r=2)kx � x0
0k2 � (r=2)ky � y0

0k2 given
(x0

0; y0
0) as((x �

r )0; (y�
r )0). By Lemma B.4 in Appendix B.3 of Zhang et al. [78], we have that

kx �
r � (x �

r )0k2 + ky�
r � (y�

r )0k2 � k x0 � x0
0k2 + ky0 � y0

0k2:

Let zr = ( x r ; yr ), z�
r = ( x �

r ; y�
r ) andz0 = ( x0; y0) for simplicity of the notation.z0

r , (z�
r )0 andz0

0
can be de�ned in the same way. Similarly to the minimization case, we have

kzr � z0
r k � k zr � z�

r k + kz�
r � (z�

r )0k + k(z�
r )0 � z0

r k

� � + 2

r
2� r

r
;

where we usekz�
r � (z�

r )0k � k z0 � z0
0k � � and optimality ofz�

r by r strong-convexity–strong-
concavity (SC-SC) ofFr (x; y) (the same holds true forz0

r and(z�
r )0 as well):

r
2

kx r � x �
r k2 +

r
2

kyr � y�
r k2 � Fr (x r ; y�

r ) � Fr (x �
r ; y�

r ) + Fr (x �
r ; y�

r ) � Fr (x �
r ; yr )

� max
y2Y

Fr (x r ; y) � min
x 2X

Fr (x; yr )

� � r :

Thus settingr = �=D 2 and� r = � � minf 1; � 2=(8D 2)g, we guarantee thatmaxy2Y F (x r ; y) �
minx 2X F (x; yr ) � 2� andkx r � x0

r k2 + kyr � y0
r k2 � 4� 2. Applying Lemma C.5 with� = 0 ,

the complexity using Extragradient (EG) [72, 57] to achieve� r -error onr -SC–SC(` + r )-smooth
minimax optimization isO(( `=r +1) log(1=� r )) = ~O(`D 2=�), where ~O hides logarithmic terms.

C.2.2 Inexact Deterministic Gradient Oracle

This section contains proof of Theorem 4.6 for the near-optimal guarantees in the inexact deterministic
gradient case. The proof is based on Lemma 4.5 (restated and proved as Lemma C.4 in Section C.1)
and Lemma C.5.

Proof of Theorem 4.6.For the convergence guarantee, the same as (25), we have that

max
y2Y

F (x r ; y) � min
x 2X

F (x; yr ) � � r + rD 2:

For the reproducibility guarantee, we can obtain that

kzr � z0
r k � k zr � z�

r k + kz�
r � z0

r k:

Let zT be the output ofT-step Extragradient with initializationz0. By Lemma 4.5, we have that

kzT � z�
r k2 � exp

�
�

T
8

r
` + r

�
kz0 � z�

r k2 +
8� 2

r

�
2

` + r
+

1
r

�

� exp
�

�
T
16

r
`

�
kz0 � z�

r k2 +
16� 2

r 2 :

SettingT � (32`=r ) log(rD=� ) andr = �=D 2, this means the algorithm converges tokzT � z�
r k �

3
p

2D 2(�=� ). Therefore, according to Lemma C.5, if we choosezr = [ zT ]2` , since1 � `D 2=�, we
can guarantee thatkzr � z�

r k � 3(2
p

2 + 1)D 2(�=� ) and that

max
y2Y

F (x r ; y) � min
x 2X

F (x; yr ) �
�

4(
p

2 + 7)
`D 2

�
+ 3

p
2
�

�D + �:

The reproducibility iskzr � z0
r k2 � 36(9 + 4

p
2)D 4(� 2=�2).

C.3 Inexact Proximal Point Method

Proof of Theorem 4.7 and 4.8 for the guarantees of Algorithm 3 is provided in this section.
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C.3.1 General Analysis

We first analyze the convergence of the inexact proximal point method (Inexact-PPM). Given initial-
ization (x0; y0) and � > 0, for t = 0; 1; � � � ; T � 1, each step of Inexact-PPM is

(xt+1; yt+1) is an inexact solution to min
x∈X

max
y∈Y

F̂t(x; y) = F (x; y)+
1

2�
kx�xtk2� 1

2�
ky�ytk2:

Lemma C.6. If we run Inexact-PPM and make sure that for each sub-problem ~rF̂t(zt+1)⊤(zt+1 �
z) � �̂ for all z = (x; y) 2 X � Y , where zt+1 = (xt+1; yt+1) and ~rF̂t(zt+1) =

(rxF̂t(xt+1; yt+1);�ryF̂t(xt+1; yt+1)), then we have 8z 2 X � Y ,

max
y∈Y

F (�xT+1; y)�min
x∈X

F (x; �yT+1) � kz0 � zk2

2�T
+ �̂:

Proof. The proof is similar to Proposition 7 in Mokhtari et al. [58]. The same as (25), for any
z = (x; y) 2 X � Y and any t = 0; 1; � � � ; T � 1, we have that

~rF (zt+1)T (zt+1 � z) =

�
~rF̂t(zt+1)� 1

�
(zt+1 � zt)

�⊤

(zt+1 � z)

=
1

2�
kzt � zk2 � 1

2�
kzt+1 � zk2 � 1

2�
kzt+1 � ztk2 + ~rF̂t(zt+1)⊤(zt+1 � z)

� 1

2�
kzt � zk2 � 1

2�
kzt+1 � zk2 + �̂:

Taking summation from t = 0 to T � 1 and dividing both sides by T , we conclude that

1

T

T−1X
t=0

~rF (zt+1)⊤(zt+1 � z) �
kz0 � zk2

2�T
+ �̂:

The proof is completed by Lemma B.2.

C.3.2 Inexact Initialization Oracle

This section provides proof of Theorem 4.7.

Proof of Theorem 4.7. Let �zT+1 = (�xT+1; �yT+1) = (1=T )
PT−1
t=0 (xt+1; yt+1). By Lemma C.6 and

the choice that � = 1=‘, �̂ = �2=(2�T 2), we immediately have

max
y∈Y

F (�xT+1; y)�min
x∈X

F (x; �yT+1) � ‘D2

T
+
‘�2

2T 2
:

O(1=T ) convergence rate is guaranteed for � � O(
p
T ). Note that the condition number of F̂t(x; y)

is O(1) when � = 1=‘. Therefore, to guarantee an �-saddle point of F (x; y), a total complexity of
O(T log(1=�̂)) = O((1=�) log(1=(��))) is sufficient for various algorithms including GDA [32] and
EG [72] applying Lemma C.5 with � = 0.

Let z∗t = (x∗t ; y
∗
t ) be the unique saddle point of F̂t(x; y) with proximal center zt, and (z∗t )′ be the

saddle point when the proximal center is z′t. For the reproducibility guarantee, similarly to Section
C.2.1, we can obtain that

kzt+1 � z′t+1k � kzt+1 � z∗t k+ kz∗t � (z∗t )′k+ k(z∗t )′ � z′t+1k

� kzt � z′tk+ 2

r
2�̂

‘
;

(26)

where we use Lemma B.4 in Zhang et al. [78] and (1=�)-SC–SC of F̂t(x; y):

~rF̂t(zt+1)⊤(zt+1 � z∗t ) � F̂t(xt+1; y
∗
t )� F̂t(x∗t ; yt+1) +

1

2�
kzt+1 � z∗t k2

� ‘

2
kzt+1 � z∗t k2:
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Therefore, by induction, we have that for any t = 1; 2; � � � ; T ,

kzt � z′tk � kz0 � z′0k+ 2t

r
2�̂

‘

� � + 2�
t

T
� 3�:

The reproducibility is then k�zT+1 � �z′T+1k2 � 9�2 using Jensen’s inequality.

C.3.3 Inexact Deterministic Gradient Oracle

For Theorem 4.8, we provide proof when using GDA as the base algorithm. According to Lemma
C.4, EG can also be applied here with a similar argument.

Proof of Theorem 4.8. When setting � = 1=‘, the auxiliary problem is ‘–strongly-convex–strongly-
concave and 2‘-smooth. Let zKt be the output of K-step GDA with initialization z0

t on the minimax
problem minx∈X maxy∈Y F̂t(x; y) at iteration t. Denote its saddle point as z∗t . By Lemma C.3, if
K � 32 log(8‘2D2=(3�2)), we have that

kzKt � z∗t k2 � exp

�
�K

32

�
kz0
t � z∗t k2 +

9�2

4‘2

� 3�2

‘2
:

By Lemma C.5, we can thus set zt+1 = [zKt ]2‘ and guarantee that

~rF̂t(zt+1)⊤(zt+1 � z) � (4
p

6 + 5
p

2 + 4)�D; 8z 2 X � Y:
According to Lemma C.6, we then have

max
y∈Y

F (�xT+1; y)�min
x∈X

F (x; �yT+1) � ‘D2

T
+ 21�D:

When � � �=(42D), T � 2‘D2=� is required to obtain an �-saddle point, and the total gradient
complexity is TK = (64‘D2=�) log(8‘2D2=(3�2)) = ~O(1=�) with ~O hiding logarithmic terms.

We then show the reproducibility guarantee. From Lemma C.5, we know that kzt+1 � z∗t k �
(1 +

p
2=2)kzKt � z∗t k+

p
2�=‘ � 4:5�=‘. By (26), we have that

kzt+1 � z′t+1k � kzt � z′tk+
9�

‘
:

By induction, we conclude that kzt�z′tk � 9t(�=‘), and thus the reproducibility is k�zT+1��z′T+1k2 �
81�2T 2=‘2 = 324D4(�2=�2).

D Numerical Experiments

Some numerical experiments that demonstrate the effectiveness of regularization to improve repro-
ducibility are provided in this section. We test the algorithms on two problems: a minimization
problem with a quadratic objective and a minimax problem with a bilinear objective. The experiments
are conducted on a single local machine.

Minimization. We first compare the performance of gradient descent (GD), accelerated gradient
descent (AGD), Algorithm 1 with GD as the base algorithm (Reg-GD), and Algorithm 1 with AGD
as the base algorithm (Reg-AGD) on a quadratic minimization problem

min
x∈Rd

1

2
kAx� bk2:

Here, b 2 Rd with each entry sampled from the Gaussian distribution with mean 0 and standard
deviation 10 and A 2 Rd×d is a random positive semi-definite matrix with rank d � 1 that makes
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Figure 1: Comparisons among GD, AGD, and their regularized version on the quadratic minimization
problem with �-inexact gradients. The left figure plots the convergence behavior and the right shows
the reproducibility. Both axes are plotted utilizing a logarithmic scale.

sure the problem is convex but not strongly-convex. To be specific, we let A = U�U⊤ where U is a
random orthogonal matrix drawn from the Haar distribution, and � is a diagonal matrix with 1 entry
being 0 and the others uniformly sampled from [0:1; 10]. This ensures that the problem is smooth
with a parameter smaller than 100.

We implement an inexact gradient oracle that returns A⊤(Ax � b) + �e where e 2 Rd is an all-
one vector and � 2 R controls the inexactness level. We test the aforementioned four algorithms
with this inexact gradient oracle on both convergence performance measured by function value and
reproducibility performance measured by the deviation compared to the trajectory obtained from
using the true gradient when � = 0. In the experiments, we let d = 100 and � = 0:1. For all four
algorithms, we set the number of iterations to be T = 10000, and the stepsize to be 0.01 based on the
fact that the smoothness parameter is at most 100. For the regularization-based methods, we set the
regularization parameter of the auxiliary problem to 0.05. All other parameters are set according to
the theoretically suggested values. The results are illustrated in Figure 1.

In Figure 1, we see AGD converges faster than GD, but the deviation in iterates is much larger. When
introducing regularization, i.e., Reg-AGD, the reproducibility guarantee is greatly improved with
only a small degradation in the convergence performance. It is worth mentioning that Reg-GD also
has a smaller deviation bound compared to GD. All the results align with our theoretical analysis.
Changing the inexactness level � or the random seed for sampling the matrix A and the vector b does
not influence the phenomenon too much, so we do not report the results with different selections.

Minimax. We also test the performance of gradient descent ascent (GDA), Extragradient (EG), and
their regularized counterparts (Reg-GDA and Reg-EG) in Algorithm 2 on a bilinear matrix game

min
x∈X

max
y∈Y

x⊤Ay:

Here, A 2 Rd×d is generated the same as in the quadratic minimization example, X = fx 2
Rd j kxk � Dg and Y = fy 2 Rd j kyk � Dg are d-dimensional balls with diameter 2D measured
by the Euclidean norm. The projection onto these balls can be easily achieved. We implement an
inexact gradient oracle that returns Ay + �e and A⊤x + �e for the partial gradients w.r.t. x and y
respectively, where e 2 Rd is an all-one vector and � 2 R controls the inexactness level.

We test the aforementioned four algorithms with this inexact gradient oracle on both convergence
performance measured by the duality gap (computable due to bounded domain) and reproducibility
performance measured by the deviation compared to the trajectory obtained from using the true
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