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Abstract

Algorithmic reproducibility measures the deviation in outputs of machine learning
algorithms upon minor changes in the training process. Previous work suggests that
first-order methods would need to trade-off convergence rate (gradient complexity)
for better reproducibility. In this work, we challenge this perception and demon-
strate that both optimal reproducibility and near-optimal convergence guarantees
can be achieved for smooth convex minimization and smooth convex-concave
minimax problems under various error-prone oracle settings. Particularly, given
the inexact initialization oracle, our regularization-based algorithms achieve the
best of both worlds — optimal reproducibility and near-optimal gradient complexity
— for minimization and minimax optimization. With the inexact gradient oracle, the
near-optimal guarantees also hold for minimax optimization. Additionally, with
the stochastic gradient oracle, we show that stochastic gradient descent ascent is
optimal in terms of both reproducibility and gradient complexity. We believe our
results contribute to an enhanced understanding of the reproducibility-convergence
trade-off in the context of convex optimization.

1 Introduction

In the realm of machine learning, improving model performance remains a primary focus; however,
this alone falls short when it comes to the practical deployment of algorithms. There has been a
growing emphasis on the development of machine learning systems that prioritize trustworthiness and
reliability. Central to this pursuit is the concept of reproducibility [38}164], which requires algorithms
to yield consistent outputs, in the face of minor changes to the training environment. Unfortunately, a
lack of reproducibility has been reported across various domains [[10} 40} 41 64], posing significant
challenges to the integrity and dependability of scientific research. Notably, empirical studies in
Henderson et al. [43] have revealed that reproducing baseline algorithms in reinforcement learning
is a formidable task due to both inherent sources (e.g., random seeds, environment properties) and
external sources (e.g., hyperparameters, codebases) of non-determinism. These findings underscore
the criticality of having access to the relevant code and data, as well as sufficient documentation of
experimental details, to ensure reproducibility in machine learning algorithms.

Instead of considering the irreproducibility issue solely from an empirical perspective, Ahn et al. [1]
initiated the theoretical study of reproducibility in machine learning as an inherent characteristic of the
algorithms themselves. They focus on first-order algorithms for convex minimization problems and
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Table 1: Algorithmic reproducibility (Def.]3) and gradient complexity for algorithms in the smooth
convex minimization setting given inexact deterministic oracles (Def. 1). Here, “LB” stands for
lower-bound ané& ™ bdenotesninf a; bg. For the inexact gradient oracle, O () is required for

GD to be -optimaland O ( %) is required for Algo[ IL.

Algorithm Inexact Initialization Inexact Gradient
Convergence Reproducibility Convergence Reproducibility
GD[1] O(1=) o(? O(1=) o( *=?)
AGD [6] oty  o(2?) i ]
Algo.H(Thm.) O(l:pj o( d O(lzpﬁ O( 2= 29)
p p
LB [61, 1] ax=") (2 @a= ( 2=?

de ne reproducibility as the deviation in outputs of independent runs of the algorithms, accounting
for sources of irreproducibility captured by inexact or noisy oracles. In particular, they consider three
practical error-prone operations, including inexact initialization, inexact gradient computation due to
numerical errors, and stochastic gradient computation due to sampling or shufing. When restricting
the outputs to be-optimal and assuming the level of inexactness that could cause irreproducibility is
bounded by , they establish both lower and upper reproducibility bounds of (stochastic) gradient
descent for all three settings. The lower-bounds indicate the existence of intrinsic irreproducibility
for any rst-order algorithms, while the matching upper-bounds suggest that (stochastic) gradient
descent already achieves optimal reproducibility.

An important question arises regarding whether there is a fundamental trade-off between repro-
ducibility and convergence speed in algorithms. For example, in the case of inexact initialization, the
optimally reproducible algorithnil], gradient descent (GD), is known to be strictly sub-optimal in
terms of gradient complexity for smooth convex minimization probledd} [On the other hand, the
optimally convergent algorithm, Nesterov's accelerated gradient descent (BB (iffers from a

worse reproducibility bounds]. The situation becomes more intricate in the case of inexact gradient
computation. A natural question that we aim to address in this pap€aiswe achieve the best of

both worlds — optimal convergence and reproducibility?

On another front, while minimization problems can effectively model and explain the behavior of
many traditional machine learning systems, recent years have witnessed a surge of applications that
are formulated as minimax optimization problems. Important examples include generative adversarial
networks (GANSs) B7], robust optimization$4], and reinforcement learnin@$]. Despite a wealth

of convergence theory for various minimax optimization algorithms, extensive empirical evidence
suggests that these algorithms can be hard to train in praéficé,[53]: the training procedure can

be very unstableZ3] and highly sensitive to changes of hyper-parameters. Motivated by such issues,
we initiate the theoretical study of algorithmic reproducibility in minimax optimization. The second
question that we aim to address in this pape¥état are the fundamental limits of reproducibility for
minimax optimization algorithms and their convergence-reproducibility trade-&ffsvill focus on
smooth convex-concave minimax optimization as a rst step, where the irreproducibility issue comes
from either inexact initialization, inexact gradient computation, or stochastic gradient computation.

1.1 Our Contributions

Our main contributions are two-fold:
First, we propose Algorithm 1, which solves a regularized version of the smooth convex minimization
problem. This algorithm achigves both optimal algorithmic reproducibili® 6f?) and near-optimal

gradient complexity ofd(1="")? under the -inexact initialization oracle. Table 1 provides a
comparison with GD and AGD. Our results rely on the key observation that solutions to strongly-

2Throughout the pape€y hides additional logarithmic factors. We claim near-optimality of the result when
it is optimal up to logarithmic terms.



Table 2: Algorithmic reproducibility (Def. 6) and gradient complexity for algorithms in the smooth
convex-concave minimax setting given inexact deterministic oracles (Def. 4). Here, “LB” stands for
lower-bound ané& ™ bdenotesninf a; bg. For the inexact gradient oracle, O () is required for
GDA, EG, and Algo. 3 to be-optimal, and O ( 2) is required for Algo. 2. The diametér in
Assumption 4.1 is a trivial upper-bound for reproducibility in all cases.

. Inexact Initialization Inexact Gradient
Algorithm
Convergence Reproducibility Convergence Reproducibility

GDA (Thm. 4.2) 0o(1=2) o( 2 0(1=2) O(%=?)
EG (Thm. 4.3) O(l=) O(?2° " (2+1=2?) O(1=) O(?2%"="r1=2?)

Algo. 2 (Thm. 4.4,4.6) O(1=) o( 2) o(1=) O( %=?)

Algo. 3 (Thm. 4.7,4.8) O(1=) o( ?) O(1=) o( %=?)

LB ([63], Lem. B.3) 1=) ( 2 a=) ( 2=?)

convex regularized problems are unique, allowing algorithms that converge close to the minimizers
to be reproducible. This highlights the effectiveness of regularization in achieving near-optimal
convergence without compromising reproducibility.

Second, we extend the notion of reproducibility to smooth convex-concave minimax optimiggtion
under inexact initialization and inexact gradient oracles. We establish the rst reproducibility analysis
for commonly-used minimax optimization algorithms such as gradient descent ascent (GDA) and
Extragradient (EG)48]. Our results indicate that they are either sub-optimal in terms of convergence
or reproducibility. To address this, we propose two new algorithms (Algorithm 2 and 3) which utilize
regularization techniques to achieve optimal algorithmic reproducibility and near-optimal gradient
complexity. The summarized results are presented in Table 2. Additional numerical experiments
showcasing the effectiveness of our algorithms can be found in Appendix D. Although smooth convex-
concave minimax optimization is nonsmooth in its primal form, our results indicate an improved
reproducibility compared to the result of general nonsmooth convex problgrog [everaging the
additional minimax structure. Lastly, in the case of stochastic gradient oracle, we show stochastic
GDA can simultaneously attain both optimal convergence and optimal reproducibility.

1.2 Related Works

Related Notions. (Reproducibility)Previous works that study reproducibility in machine learning
are mostly on the empirical side. They either conduct experiments to report irreproducibility issues in
the community 40, 43, 18, 64], or propose practical tricks to improve reproducibili6g[ 79, 56, 19].

Ahn et al.[1] initiated the theoretical study of reproducibility in convex minimization problems
as a property of the algorithm itsel{Replicability) In an independent work, Impagliazzo et al.
[45] proposed the notion of replicability in statistical learning, where an algorithm is replicable
if its outputs on two i.i.d. datasets are exactly the same with high probability. Its connection to
generalization and differential privacg9] is established in Bun et g21] and Kalavasis et al47].
Replicable algorithms are proposed in the context of stochastic baB€jtarid clustering 31].
(Stability) Depending on the context, the term stability may have different meanings. In empirical
studies §, 5, 22], instability often refers to issues such as oscillations or failure to converge during
training. In learning theory, algorithmic stability 7] measures the deviation in an algorithm's outputs

for nite-sum problems when a single item in the input dataset is replaced by an i.i.d. in-distribution
sample. The concept receives increasing attention as it implies dimension-independent generalization
bounds of gradient-based methods for both minimizaté 11, 6] and minimax B3, 49, 16|
problems. In the area of differential equatiod8][and variational inequalities3p], stability is also
examined as a property of the solution set in response to perturbations in the problem conditions.

In this work, we consider the notion of reproducibility that characterizes the behavior of algorithms
upon slight perturbations in the training. We defer the task of establishing intrinsic connections



among related notions to future work. The most closely related concept is algorithmic stability,
where the analysis is similar to reproducibility under the inexact deterministic gradient oracle. Attia
and Koren6] showed the stability of AGDg0] grows exponentially with the number of iterations.
Later, this is improved to quadratic dependendebpsed on a similar idea as ours that leverages
stability of solutions to strongly-convex minimization problerf8,[34]. However, since there is

no inexactness of the gradients in their setting, it is possible to ensure outputs that are arbitrarily
close to the optimal solution. Given the presence of inexact gradients in our case, the convergence is
only limited to a neighborhood of the optimal solution, which makes the problem more challenging.
The trade-off between stability and convergence was investigated in Chei2d al heir results
suggest that a faster algorithm has to be less stable, and vice versa. However, we show the feasibility
of achieving both optimal reproducibility and near-optimal convergence simultaneously in the setting
we considered.

Minimax Optimization.  Existing literature on minimax optimization primarily focuses on con-
vergence analysis across various settings. For instance, there are studies on the strongly-convex—
strongly-concave cas&2, 57], convex-concave casé9, 63], and nonconvex—(strongly)-concave

case b2, 71]. The lower complexity bounds have also been established for these se&h§9,[77].

Our work aims to design reproducible algorithms while maintaining the optimal oracle complexities
achieved in these previous works.

Inexact Gradient Oracles. A series of works investigate the convergence properties of rst-order
methods under deterministic inexact oracles for minimizat&27, 28] and minimax [f0] problems.
However, their inexact oracles differ from ours, and our focus is more on reproducibility. In recent
years, there has been increasing interest in studying biased stochastic gradient oracles as well, where
the bias arises from various sources such as problem struddjre¢mpression14] or Byzantine

failure [15] in distributed learning, and gradient-free optimizati@2][ These biases can also
contribute to irreproducibility, and this direction would be an interesting avenue of research.

Regularization Technique. The central algorithmic insight driving our improvements towards
obtaining both optimal convergence and reproducibility is the regularization technique, which is
commonly used in the optimization literature. One important use case is to boost convergence
by leveraging known and good convergence properties of algorithms on smooth strongly-convex
functions for solving convex and nonsmooth problems, see 813.3[74], just to name a few. In
addition, the regularization technique has also been demonstrated to be useful in improving stability
and generalizatior[, 7], enhancing sensitivity and privacy guarante®$ [/ 8], etc. In this paper, we
provide another important use case by showing an improved convergence-reproducibility trade-off.

2 Preliminaries in Algorithmic Reproducibility

Notation. We usek k to represent the Euclidean norm¢(x) denotes the projection of onto
the setC. A functionh : S| R is -smooth if it is differentiable and its gradienth satis es
kr h(x1) r h(x2)k “kx; xok for anyxs;x, in the domairS 2 RY. A functiong:S! R
is convex ifg( x 1 + (1 )IX2) g (xX1)+(1 )a(x2) forany 2 [0;1]andxy;x 2 S. If
g satis esg(x) (= 2)kxk? being convex with > 0, then itis -strongly-convex. Similarly, a
functiong: S! Risconcaveif gis convex, and -strongly-concave if gis -strongly-convex.

Ahn et al.[1] studied the algorithmic reproducibility for convex minimization problemisyx F (x),
measured by thé; )-deviation bound of an algorithi. Here, denotes the size of errors in the
oracles that can lead to different outputs in independent runs of the same algorithm. The notion of
reproducibility also require8 to produce -optimal solutions, avoiding trivial outputs.

De nition 1. Three different inexact oracle models are considefeda -inexact initialization
oraclethat returns a starting poiry 2 X such thakx, ugk?® 2=4 for some reference point
Ug 2 X, (ii) a -inexact deterministic gradient oracthat returns an inexact gradie®{x) such that
kr F(x) G(x)k? 2 for the true gradient F (x), (iii ) a -inexact stochastic gradient oracle
that returns an unbiased gradient estimatex; ) such tha€kr f (x; ) r F(x)k? 2.

De nition 2. Apoint® 2 X is an -optimal solution ifF (8) minyox F(X) in the deterministic
setting, ofE[F (%)] minyox F(X) in the stochastic setting, where the expectation is taken over
all the randomness in the gradient oracle and in the algorithm that odtputs



De nition 3. The(; )-deviationk® 2%?2 is used to measure the reproducibility of an algorithm
A with -optimal solutionst and®® where® and®° are outputs of two independent runs of the
algorithmA given a -inexact oracle in De nition 1.

We expand the de nitions of reproducibility to encompass minimax optimization problems:

min max F(xy): 1)

Our goal is to nd thesaddle point(x ;y ) of the functionF (x;y), such thatF (x ;y)
F(x;y) F(x;y ) holds for all(x;y) 2 X Y . The optimality of a poin{%;§) can be
assessed by iguality gap de ned asmaxyoy F(%;y) minyox F(X; §). In the minimax setting,
we analyze reproducibility under the following inexact oracle models.

De nition 4. Three different inexact oracle models are consideféda -inexact initialization
oraclethat returns a starting poifko;yo) 2 X Y suchthakxg ugk?+ kyo Vvok?  2=4for
some reference poilftig; Vo) 2 X Y , (ii) a -inexact deterministic gradient oractbat returns
an inexact gradienB(x;y) = ( Gx(x;y); Gy(x;y)) at any querying poinfx;y) 2 X 'Y such
thatkr F(x;y) G(x;y)k? 2 forthe true gradient F(x;y) = (r «F(X;y);r yF(xy)), (iii )
a -inexact stochastic gradient oractbat returns an unbiased gradient estinrafgx;y; ) =
(r«f(xy; )ir yf(xy; )) suchthaE kr f(xy; ) r F(xy)k®

De nition 5. Apoint(%;§) 2 X Y is an -saddle point solution if its duality gap satis es that
maxyoy F(%y) minyox F(X9) in the deterministic setting, or itseakduality gap satis es
thatmaxyoy E[F (%;y)] minyox E[F(X; 9] in the stochastic setting.

De nition 6. The(; )-deviationk® R%2+ k¢ ¢%? is used to measure the reproducibility of
an algorithmA with -saddle pointg&; ¥) and(%% 99, where(%; $) and(%% 99 are outputs of two
independent runs of the algorithdngiven a -inexact oracle in De nition 4.

The optimal convergence rates are well-understood for the convex optimization problems, including
convex minimization$1] and convex-concave minimax optimizatid®g]. Ahn et al.[1] provided the
theoretical lower-bounds of reproducibility for convex minimization problems, which can be extended
to convex-concave minimax problems as well (Lemma B.3). We say an algorithm achieves optimal
reproducibility if its reproducibility upper-bounds match the established theoretical lower-bounds.

3 Deterministic Gradient Oracle for Minimization Problems

In this section, we consider convex minimization problems of the form

min F (x);

whereX is a convex and closed set. We focus on the standard smooth and convex setting as
detailed in Assumption 3.1. Our goal is to nd aroptimal point as in De nition 2. Ahn et a[1]

showed that the optimal convergence rate and reproducibility can be achieved at the same time using
stochastic gradient descent (SGD) for the stochastic gradient oracle model. In the deterministic case,
they showed GD achieves the optimal reproducibility, albeit with a sub-optimal convergence rate
[60, 61]. Considering the instability of accelerated gradient descent (AGR)Z8, 6], Ahn et al.[1]
conjectured thafl =) gradient complexity is necessary to attain the optimal reproducibility.

Assumption 3.1. The functiorF is convex and-smooth. We have access to initial poirgsthat
are D -close to an optimal solution, i.ekx xok? D?forsomex 2 argmingsx F(X).

We introduce a generic algorithmic framework outlined in Algorithm 1, that solves a quadratically
regularized auxiliary problen®j using a base algorithi with initialization xo until an accuracy

of , isreached. Our key insight is that since the optimal solution for strongly convex problems is
unique, the reproducibility of the outputs from the regularized problem can be easily guaranteed.
Note that the regularization parametgresents a trade-off: asncreases, the auxiliary problem

can be solved more ef ciently, but the obtained solution deviates furtfber from the original solution.
We will show that Algorithm 1 achieves a near-optimal complexitgl=" ), along with optimal
reproducibility under an inexact initialization oracle and slightly sub-optimal reproducibility under an
inexact deterministic gradient oracle. This nding disproves the conjeciitbdt (1 = ) complexity

is necessary to achieve optimal reproducibility.



Algorithm 1 Reproducible Algorithmic Framework for Convex Minimization Problems

Input: Regularization parameter> 0O, accuracy, > 0, base algorithmd\, initial pointxe 2 X .
Apply A to approximately solve the-strongly-convex and’ + r)-smooth problem

X, argminF,(x) = F(X)+ —kx  Xok%: @
x2X 2

such that the optimality gap
Fr (Xr) )r(glxn Fr (X) r

Output: X;.

3.1 Inexact Initialization Oracle

We rst examine the behavior of Algorithm 1 with access to exact deterministic gradients but given
different initializations. Starting from two distinct initial pointg andx$ such thakx, x3k? 2,

we want to control the deviation between the nal outpatsandx? of the algorithm. The following
contraction property is essential to attain optimal reproducibility.

Lemma 3.2. Letx, = argminyox fF(x)+ (r=2)kx xok?gand(x,)®= argminyox fF(x) +
(r=2)kx  x3k?g. WhenF is convex, it holds thadtx, (x,)%? k xo x3k2 for anyr > O.

This indicates the optimal solutions are reproducible up’toConsequently, if we can solve the
auxiliary problem ®) to a high accuracy;, we can ensure the nal output is reproducible. The
selection of , exhibits a trade-off: a smaller value increases complexity, yet brings the output
closer to the reproducibbe, . We characterize the complexity and reproducibility of Algorithm 1 by
carefully choosing the parameterand ;.

Theorem 3.3. Under Assumption 3.1 and given an inexact initialization oracle, Algorithm 1 with
= =D2, , =(,=2)minf1; 2=(4D?)gand AGD p]] as base algorithmA outputs an -optimal
pointx, with O(" "D 2=) gradient complexity, and the reproducibilitykg, x°k? 4 2.

This theorem implies that we can simultaneously achieve the near-optimal comple@i()F/) oD 2=)

and optimal reproducibility 0©( 2), which improves over th® ("D ?=) complexity of GD [1]. In

fact, when combined with any base algorithm that solves the auxiliary problem, Algorithm 1 attains
optimal reproducibility. However, using AGD as the base algorithm results in the best complexity. To
the best of our knowledge, this is the only algorithm capable of achieving the best of both worlds.
Previously, Attia and Koref6] proved that the algorithmic reproducibility (referred to as initialization
stability in their study) of Nesterov's AGD i§ 2e™= ") when the initialization is 2-apart.

Remark 1. Adding regularization is a common and useful technique in the optimization literature.
Our algorithmic framework solves one auxiliary regularized strongly-convex problem, which is
referred to as classical regularization reduction in Allen-Zhu and Hggdalgorithm 1 is biased

and requires the knowledge o&ndD to control the biased term introduced by the regularization
term. The convergence guarantee also has an additional sub-optimal logarithmic term. Allen-Zhu
and Hazari3] proposed to use a double-loop algorithm, where a sequence of auxiliary regularized
strongly-convex problems with decreasing regularization parameters are solved. The vanishing
regularization ensures the algorithm is unbiased, and the resulting convergence guarantee requires no
knowledge of and does not have an additional logarithmic term. Similar idea could apply to our
case as well, and the task of bridging such gaps is deferred to future work.

3.2 Inexact Deterministic Gradient Oracle

We further study the algorithmic reproducibility and gradient complexity of Algorithm 1 under
the inexact gradient oracle model that returns an inexact gra@ient2 RY such thakG(x)

r F(x)k? 2 atany query poink 2 X . From the inexact gradient oracle®f we can construct

an inexact gradient oracle for the auxiliary problem G, (x) = G(x) + r(x Xg) which satis es

the conditionkG; (x) r F;(xX)k? = kG(x) r F(x)k? 2. To solve the auxiliary problem,
we consider AGD with an inexact oracle (Inexact-AGD) as proposed by Devoldef27lThe
proposition below establishes its convergence behavior.



Proposition 3.4. Considemminyox F; (x), whereF, isr-strongly-convex an@l + r)-smooth. Given
an inexact gradient oracle that returi@; (x) such thakG, (x) r F,(x)k? 2, starting from
Yo = Xo, AGD with the following update rule

1
Xt41 = x Wt mer()/t) ;
2 =T (Inexact-AGD)
= Xt41 + —P——r—-=(X Xt);
Yi+1 t+1 2+ =+ r)( t+1 t)
fort =0;1; ;T 1, satis es that
r r
T r r 2 1 2
Fr(xr) Fe(x;) exp 5 Fr(xo) Fr(x )+ kao X K+ T s r oy %;

wherex, is the unique minimizer d¥, (x).

This proposition suggests that Inexact-AGD converges to a neighborhood with a ra@i(s’ef3=2)

around the optimal value. We note that convergence to the exact solution is unattainable for algorithms
employing inexact gradient7, 28], and the size of this neighborhood is important in determining

the reproducibility of, .

Theorem 3.5. Under Assumption 3.1 with < "D 2 and given {n inexact deterministic gradient
oracle in De nition 1, Algorithmpl withr = =D?2, , =6 2D%® "=(2 3) and Inexact-AGD as

base algorithm outputs €6 2D3 "=(2 3) + =2)-optimal pointx, with O( "D 2=) gradient
complexity, and the reproducibility kx;,  x°k? O ( 2=5%2),

Ahn et al.[1] showed that GD achieves optimal reproducibility®f 2= 2) and a complexity of
O(l=)when O E)). Our results indicate that a reproducibility®{ 2= 5=2) and a near-optimal
complexity of O(1="") can be attained when O ( °%). We conjecture that this suboptimal
reproducibility bound is inevitable for the proposed framework given the lower bound result in
Devolder et al[27] for algorithms under & ;"; )-inexact oracle associated withsmooth -
strongly-convex functions. Further discussions are provided in Appendix A.2. Moreover, we point
out that for minimizing -smooth and -strongly-convex functions, Proposition 3.4 already implies
that IBexact-AGD attains the optimal reproducibility@{minf 2; g) and the optimal complexity

of O(' "= ) when the problem is well-conditioned, improving over €= ) complexity in the
previous work [1].

Remark 2. In Appendix D, we demonstrate the effectiveness of Algorithm 1 on a quadratic mini-
mization problem equipped with an inexact gradient oracle. The results are plotted in Figure 1 in the
appendix. We observe that the reproducibility can be greatly improved when adding regularization,
with only a small degradation in the convergence performance.

4 Deterministic Gradient Oracle for Minimax Problems

In this section, we address the minimax optimization problem of the form

min max F(Xy);
whereX andY are convex compact sets. We focus on the standard smooth and convex-concave
setting as detailed in Assumption 4.1. We aim to nd asaddle poin{%; ¥) such that its duality gap
satis esmaxyoy F(%y) minkox F(X 9§ . Here, the assumption that the domains are convex
and bounded ensures the existence of the saddle point when the objective is convex-cSjcive [
focus on minimax problems equipped with inexact initialization oracles and inexact deterministic
gradient oracles as de ned in De nition 4. We rst show that two classical algorithms, gradient
descent ascent (GDA) and Extragradient (EG [/ 2], are either sub-optimal in convergence or sub-
optimal in reproducibility, which mirrors the minimization setting. Based on the same regularization
idea, we propose two new frameworks in Algorithm 2 and 3 that successfully attain near-optimal
convergence and optimal reproducibility at the same time.

Assumption4.1.Forally 2 Y, F(;y) is convex, andforak 2 X , F(x; ) is concave. Furthermore,
F is “-smooth on the domad Y . Additionally, bothX andY have a diameter dD. This means
thatkx; x,k? D?andky; y,k? D?forall xi;x, 2 X andy;y, 2Y.



The optimal gradient complexity to nd-saddle point under such assumptiongls =) [63]. Since

the minimax problem reduces to a minimization problemXomvhen the domairy is restricted

to be a singleton, the reproducibility lower-bounds for smooth convex minimization hold as
lower-bounds for smooth convex-concave minimax optimization as well. That i8) under the
inexact initialization oracle, and 2= 2) under the inexact gradient oracle (see Lemma B.3). We
now present the convergence rate and reproducibility bounds of GDA (see Algorithm 4) and EG (see
Algorithm 5).

Theorem 4&. (GDA) Under Assumption 4.1, the average iter@tg ;yr) output by GDA with
stepsizd=("" T) afterT = O(1= 2) iterations is an -saddle point . Furthermore, the reproducibility
of the output is(i) O( 2) under -inexact initialization oracle (i) O( 2= ?) under -inexact
deterministic gradientoraclée O ().

Theorem 4.3. (ExtragradientlUnder Assumption 4.1, the average iter@te +1 —»; y1+1 =2) output

by EG with stepsizd=" after T = O(1=) iterations is an -saddle point. Furthermore, the
reproducibility of this output ii) O(minf 2e~; 2+ 1=2;D?g) under -inexact initialization
oracle (i) O(minf 2e= ;1= 2;D?g) under -inexact deterministic gradient oraégfe O ().

While GDA can achieve optimal reproducibility, it converges with a sub-optimal complexity of
O(1=2). On the other hand, EG achieves an optif®gl= ) complexity but is not optimally
reproducible. Further details on this are provided in Appendix B. In Appendix B.3.4, we also
demonstrate that EG, through an alternative parameter selection, can achieve optimal reproducibility
at a sub-optimal rat®(1= 37?). The question that remains open is how to simultaneously attain
both optimal reproducibility and gradient complexity. To address this, we have developed two
algorithmic frameworks with near-optimal guarantees, one based on regularization and the other
based on proximal point methods [66, 12].

4.1 Regularization Helps!

Algorithm 2 Reproducible Algorithmic Framework for Convex-Concave Minimax Problems

Input: Regularization parameter> 0, accuracy, > 0, base algorithrd\, initialization (Xo; Yo).
Apply A to inexactly solve the-strongly-convex-strongly-concave aQic+ r)-smooth problem

) ; Cy) — . r 2 I 2.
(iye) - minmaxF (xy) := FOGy)+ Ske Xok™  Sky - yok ()
suchthaB(x;y) 2 X Y ,

FxFe(Xeiy)” (e x) 1 yFr(Xr;Yr)>(Yr Y) r )
Output: (Xr;Vr).

We demonstrate that adding regularization is suf cient to achieve near-optimal guarantees for smooth
convex-concave minimax problems. The general framework is summarized in Algorithm 2, where a
base algorithnA is applied to solve a regularized auxiliary problem which is strongly-convex in

and strongly-concave . For the inexact initialization case, we show that an optimal reproducibility
bound ofO( ?) and a near-optimal convergence ratéxgfi= ) can be attained simultaneously.

Theorem 4.4. Under Assumption 4.1 and given an inexact initialization oracle, Algorithm 2 with
r= =D?, , = minfl; 2=(8D?)gand EG as base algorithiA outputs a(2 )-saddle point
(X;;yr) with O('D 2=) gradient complexity, and the reproducibility4s?.

Consider a -inexact deterministic gradient oracle that retu@(; y) = ( Gx(X;y); Gy(x;y)). First
noteG; (X;¥) = (Gx (X y)+ r(x xo);Gy(x;y) r(y Yo)) isa -inexactgradient for the auxiliary
problem( ). We now characterize the convergence behavior of EG with thigxact gradient oracle,
referred to as Inexact-EG, to solve the auxiliary problem.

Lemma 4.5. Considerminyox maxyoy Fr(X;y), whereF, (x;y) is r-strongly-convex-strongly-
concave and” + r)-smooth. Given an inexact gradient oracle that retu@gx;y) such that
KG:(x;y) r F.(x;y)k* 2, Inexact-EG with stepsize=(2(" + r)) satis es

T r ) , . 82 2
T kxo X k“+ kyo Yy, k +T T

kxt  x k*+ kyr y,k® exp + r}



where(x, ;y, ) is the unique saddle point & (x;y).

This lemma implies that Inexact-EG converges linearly to a neighborhood dDgiZe=r?) around

the saddle point, which can be translated to the inaccuracy measure in (2) witld( =r) utilizing
Lemma C.5. It is worth emphasizing that the size of this neighborhood is critical for achieving
optimal reproducibility, and the dependencyroim the above convergence rate is key for attaining
near-optimal complexity. Stonyakin et §I0] analyzed Mirror-Prox%9] with restarts for strongly-
monotone variational inequalities under a different inexact oracle (see Devoldef2&8{ and [70,
Example 6.1] for its relationship with the inexactness notion of ours). Compared to Inexact-EG, their
two-loop structure of the restart scheme is more complicated to implement.

Theorem 4.6. Under Assumption 4.1 wit@ < "D 2 and given an inexact gradient oracle,
Algorithm 2 withr = =D 2, , = O( =r) and Inexact-EG as base algorithdnoutputs arO( + = )-

saddle point wittO("D ?=) gradient complexity, and the reproducibility@( 2= ?).

Remark 3. Some numerical experiments on a bilinear matrix game with inexact gradient information
are provided in Appendix D (see Figure 2). With a small degradation in the convergence speed, the
regularized framework in Algorithm 2 effectively improves the reproducibility of the base algorithm.

The theorem indicates that optimal reproducibidy 2= ?) and near-optimal gradient complexity
O(1=) can be achieved when O ( 2). Note by Theorem 4.2 and 4.3, GDA and EG can nd
-saddle points when O (). Next, we introduce an alternative algorithmic framework that
preserves the optimal reproducibility and attains the near-optimal complexity as longag ).

4.2 Inexact Proximal Point Method

We propose a two-loop inexact proximal point framework, presented in Algorithm 3, which can
achieve both near-optimal gradient complexity and optimal algorithmic reproducibility. Compared
to Algorithm 2, the regularization paramefer = O(") does not depend on the target accuracy
and the diametdd, and the center of the regularization term is the last itgpgtgy;) instead of the
initial point. Since the auxiliary problem isstrongly-convex-strongly-concave agttsmooth with
condition number being1) , a wider range of base algorithms can be used to achieve the optimal
complexity than solving the problem in Algorithm 2 where the condition numbét is= ).

Algorithm 3 Inexact Proximal Point Method for Convex-Concave Minimax Problems
Input: Stepsize > 0, accuracy*> 0, algorithmA, initialization (xo; Yo), iteration numbef .
fort=0;1;, T 1do
Apply A to inexactly solve the smooth strongly-convex—strongly-concave problem

(Xt+1 ; Vis1) Qg(n max Fix;y) = F(xy)+ zikx X k2 Ziky yik?:
suchthaB(x;y)2X Y
FxFi(Xen V) (e X)) 1 yFi(Xen Ve )” (e y) 2
Output: (Xt+1;yr+1) = (1=T) i too  (Xts1 Yes1 )

Theorem 6.7. Under Assumption 4.1and given dnexact initialization oracle in De nition 4 with
O (1="), Algorithm 3 with®  2=2T ?)and = 1="outputs arO( )-saddle point after
T = O(1=) iterations, and the reproducibility i8 2.

Remark 4. The required accuracyfor the auxiliary problem i©( 2 2). Given that the auxiliary
problem is -strongly-convex-strongly-concave addsmooth, various linearly convergent algorithms
such as EG, GDA, and Optimistic GDA%] can nd a point that satis es the stopping criterion
within O(log(1=( ))) iterations. As a result, the total gradient complexit@i€= ). In contrast,
using GDA as the base algorithm in Algorithm 2 will lead to a sub-optimal gradient complexity.

Theorem 4.8. Under Assumption 4.1 and given dnexact deterministic gradient oracle in De nition
4 with O (), Algorithm 3 with® O () and = 1=" outputs anO( )-saddle point after
T = O(1=) iterations, and the reproducibility i©( 2= 2).



Remark 5. This theorem requires solving the auxiliary problem with-i@exact gradient oracle. In
addition to Inexact-EG presented in Lemma 4.5, we show in Appendix C.1 that GDA with inexact
gradientgInexact-GDA)can also converge linearly to the optimal point up ©(@?) error. Thus

the total complexity iO((1=)log(1=)) using both Inexact-EG and Inexact-GDA.

5 Stochastic Gradient Oracle for Minimax Problems

To provide a complete picture, in this section, we consider the stochastic minimax problem:
min max F(sy)= E[f(sy; ) ©))

where the expectation is taken over a random vectdaile have access to ainexact stochastic
gradient oracle that can return unbiased gradieritéx;y; ) with a bounded variance at each
point(x;y). We consider the popular algorithm called stochastic gradient descent ascent (SGDA).
The convergence behaviors of SGDA for the stochastic minimax prot8gare well-known in

various settings. However, due to the randomness in the gradient oracle, independent runs of SGDA
may lead to different outputs even with the same parameters. Following De nition 6, we further
establish thé€ ; )-deviation of SGDA in the theorem below.

Theorem 5.1. Under Assumptions 4.1 and given aannexact stochastic gradient oracle in De nition 4
with = O(1), the average iterate&t;y7) = (L =T) (xt,yt) of SGDA with stepsize=(" T )
afterT = (1 = 2) iterations is anO( )-stationary point and the reproducibility ® 2=( °T) .

The O(1= 2) sample complexity of SGDA is known to be optimal when the objedtiye;y) is
convex-concavedfe]. Moreover, our results suggest that SGDA is also optimally reproducible, as
the lower-bound of  ?=( 2T) for convex minimization problemd] is also valid for minimax
optimization according to our discussions in Lemma B.3.

6 Conclusion

In this work, instead of solely focusing on convergence performance, we investigate another crucial
property of machine learning algorithms, i.e., algorithms should be reproducible against slight pertur-
bations. We provide the rst algorithms to simultaneously achieve optimal algorithmic reproducibility
and near-optimal gradient complexity for both smooth convex minimization and smooth convex-
concave minimax problems under various inexact oracle models. We focus on the convex case as
a rst step since it is the most basic and fundamental setting in optimization. We believe a solid
understanding of the reproducibility in convex optimization will shed insights for that of the more
challenging nonconvex optimization. Note that some of the analysis and techniques used in this paper
can be extended to the smooth nonconvex setting, aligning with the stability analysis for nonconvex
objectives §2, 49]. The proposed regularized framework can be applied to nonconvex functions
as well using the convergence analysis of regularization or proximal point-based methods [
However, the non-expansiveness property in Lemma 3.2 that is essential for the reproducibility
analysis will not hold any more without the convexity assumption. One potential way to alleviate it is
to impose additional structural assumptions on the gradients such as negative comono@8shicity [
We leave a detailed study of the reproducibility in nonconvex optimization to future work.

Other possible improvements of our results include deriving optimal reproducibility with an acceler-
ated convergence rate for smooth convex minimization problems under the inexact gradient oracle,
removing the additional logarithmic terms in the complexity of our algorithms using techniques in
Allen-Zhu and Hazaff3], studying the reproducibility under the presence of mixed inexact oracles,
and extending the results to nonsmooth settings. Another interesting direction is to design simpler and
more direct methods with both optimal reproducibility and convergence guarantees. A possible way
is to directly unwrap the regularized algorithmic framework 1 or 2, leading to Tikhonov regularization
[8] or anchoring methods [75].
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A Near-optimal Guarantees in the Minimization Case

This section provides proof for the near-optimal guarantees of Algorithm 1 in the minimization case.
We start with some commonly-used facts that follow from basic algebraic calculations. See Bauschke
et al. [12] for an example.

Lemma A.1. The following facts will be used in the analysis. For any vecits2 R, it holds that
(i) 2a” b= kak? + kbk? k a bk?;
(ii)2a” b= ka+ bk? k ak® k ak?;
(iii ) kak?® 1kbk2 2a”b  kak®+ 1kbkz; 8 > 0
(v)ka +(1 )ok?+ (1 )ka bk® = kak®+ (1 )kbk?; 8 2 R:

A.1 Inexact Initialization Oracle

This section contains proof of Lemma 3.2 and Theorem 3.3 for the near-optimal guarantees of
Algorithm 1 in the inexact initialization case.

Proof of Lemma 3.2By the optimality conditions ok, and(x, )% we have that for any;x°2 X ,
(r F(Xr) + r(Xr XO))> (X Xr) 0;
(r F())+ r((x)° x@)”(x° (%)) o
Takingx®= x, andx = (x,)%in the above equation, we obtain that
0 (X)) (T F)+ e x0) (P F((x))+ r((x)° xq) O
Sincer F is monotone whelr is convex, rearranging terms, we get
0 (X ()Y (rF(x) r Fx)N+ rke  (x)% r(x, (%)) (xo  x0)
I'er (xr)q(2 I'(Xr (Xr)0)> (XO X8)Z
Givenr > 0, this means
er (Xr )(kz (Xr (Xr)o)> (XO X8)
k X, (X )%kkxo x5k
Dividing both sides bkx,  (x,)%, the proof is complete. O

By converging suf ciently close to the optimal solution, we can ensure Algorithm 1 is reproducible.
The near-optimal convergence rate is achieved using AGD [60] as the base algorithm.

Proof of Theorem 3.3We rst analyze the convergence guarantee.Xx.ef arg min,ox F(Xx) be
one minimizer ofF (x), andx, = argminyax F(X) be the unique minimizer d¥, (x). By the
de nition of F; (x), we have that

FOG) FOO)= Frlx) 5k xok Fr(x )+ Skx xok?
Frx) Fe(x )+ sk xok?

4
Frix) Fr(x)+ %kx xok? )
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¢+ andr will be selected later. For reproducibility, we proceed as
kx, X%k k x, x k+ kx, (%)% + k(x,)? xPk
r
2:
'
where we use the optimality condition »f by r -strong-convexity of; (x):

r
ékxr X, kK Fr(X) Fr(x,)

+2

rs
the optimality condition ofx, )°and Lemma 3.2. Setting
2
= . - _ 1 1. .
r r= min 1; D2
we guarantee th&t(x,) F(x ) andkx, x% 2 . The gradient complexity of AGD to
achieve , apptoximation error on the funcFSion value gap of asmooth and” + r)-strongly convex

functionisO( (" + r)=rlog(1=,)) = O( 'D?=), whereO hides logarithmic terms. O

A.2 Inexact Deterministic Gradient Oracle

This section contains proof of Lemma 3.4 and Theorem 3.5 for the guarantees in the inexact de-
terministic gradient case. We rst study the convergence behavior of AGDf¢r smooth and
strongly-convex functions under the inexact gradient oracle. For the sake of simplicity and to enable
a general analysis, we slightly abuse notation here to consider the optimization problem

min f (x);
wheref : X ! R satis es the following assumption.
Assumption A.2. f (x) is “-smooth and -strongly convex on the closed convex donin

We consider the inexact gradient oracle de ned below (referred teaacle in this section).

De nition 7. ( -oracle) At any querying point 2 X , the -oracle returns a vectgy(x) 2 RY such
thatkg(x) r f(x)k? 2, wherer f (x) is the true gradient df (x).

In previous work, Devolder et g27] de ne a different inexact oracle that is motivated by the exact
rst-order oracle and study the convergence behavior of rst-order algorithms including AGD.

De nition 8. ((;"; )-oracle R7]) At any querying poink 2 X , the(;"; )-oracle returns approx-
imate rst-order information(f ~. (x);g-. (X)) such that forany 2 X ,

KX yk2 o f@y) (Fo 0+ gn (07 x) KX yk? +

The lemma below characterizes that the two oracles can be transformed into each other (adapted from
Devolder et al. [27, 28]).

Lemma A.3. Under Assumption A.2. Aoracle can be transformed to@% "% 9-oracle with
O=(1=2)+1=)2,"%=2",and °= =2 A(;"; )-oracle can be transformed to &oracle
for %de nedin(7).

Proof. Given a -oracle that returng(x) at any poinix 2 X , we construct & %% 9-oracle as
2
foo ofx)="Ff(xX) —i goo o(x)= g(x):

By “-smoothness df (x) and fact(iii ) in Lemma A.1, we have that
f@yy fO+rfx)(y x)+ ‘ékx yk?
=)+ 9(x)7(y x)+(rf(x) ox)”(y x)+ ékx yK? (®)

f(x)+ g(x)”(y x)+ kx yk®+ Zj
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Similarly by -strong convexity of (x) and fact(iii ) in Lemma A.1, we have that

Fy) FOO+rfe)7(y x)+ sk« yk?

=100+ 9007 NH(rIe) g (r )+ shx Yk ®)
F00+ 9007 (v X+ gk k2 i

Combined the above two equations together, we obtain that

2
VR Ty T —+ g0 0 Tk yke 2i‘+i 2.

This concludes the proof of the rst part. For the second part, given'a )-oracle in De nition 8,
we construct a%oracle as followsg(x) = g~ (x). Takingy = x in De nition 8, we obtain8 x,

fuo X f(x) foo (X)+
Therefore, by strong-convexity 6f(x), we have tha8x;y,
flyy f)+rfx)’(y x)+ Ekx yk?
fo (X)+rfX)7(y x)+ Ekx yk?:

Combined with the second part of De nition 8, we obtain tBat y,

kx  yk?+ :

rfe) g N7 %) —

Then by a similar proof as Fgor the convex case in Devolder ef28]. Let ( x) = r f(X)
g (X)andy = x+minf 2= );r(x)g( x)=k ( x)k for r(x) = maxfr 2 Rj(x +
r ( x)=k( x)k) 2 Xg. We have that

8

2P 2(C  ); when 2—  r(x);
kr f(x) g Ok 7
5 S . .
S r(x)+ ) otherwise
Since we usg(x) = g.. (x), the proof is complete. O

Devglder et al[27] prove that AGD equipped wit; *; )-oracle in De nitigngzonverges toa
O( "= )-neighborhood of the optimal solution with accelerated Tate O( "= ):
ro s !

f(xy) f O exp T =+ + —

wherex is the output ofT -step A&[)ind is the optimal value. They further establish a lower-
bound showing tightness of tli@&( = "= ) error for any rst-order methods with accelerated rate.

Here, we are interested in the performance of AGD under ibeacle in De nition 7. Motivated by
the transformation in Lemma A.3, we choose the parameters in AGD as follows:

1
Xt+1 = x Wt fg(yt) ;

Yer1 = X1 ZTP?(Xtﬂ Xt):

The results can be implied by Devolder et[al7] together with Lemma A.3. We provide detailed
proof in the following for completeness of the paper.
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Lemma A.4. Under Assumption A.2. L&t be the unique minimizer 6f(x) and = "= be the
condition number. Given an inexactoracle in De nition 7. Starting fromyy = X, AGD with
updateg8)fort =0;1; ;T 1converges with

p- 1. 2 ,

f(xr) f(x) exp ?L f (Xo0) f(x)+kao x k¥ + -+ -

Proof. By (5) in the proof of Lemma A.3, we have that

2
FOwa) T+ 00" (Xea Y+ Tk vk +

Similarly by (6), we know for anyx 2 X ,
2
fO)  fly)+ gly)” (x yi)+ ka yik?  —
Combing the above two results, for axy2 X , we have
f(Xeer) FO)=F(xea) F)+ () F(x)

> < 1 1
gVt)” (Xeer X)+ “KXper VK2 ka yik? + > + = 2
\ § \ ) , 1.1 ,
2 (Xte1 Y1)T (Xesz X)+ KX WiK ka yi ke + > + =
N 2, o > 2 1 1 5
= KXps1 VKT 27(Xer1 Y1) (X W) ka yek® + ?-’- - 5

where in the last inequality we use the optimality condition of the projection step sudxtaiX ,
1 >
Xt¢1 Yt t > gye) (X Xea) O
Let = 1=(2p )= P = (47). Settingx = x; andx = x in the above equation, we get
(1 )(F(Xee1) (X)) 1 )kxe WK H27Q ) W) (X W)

1 1
Z(l )kxe  yik? + (1 )2*\"'* 2,

(f (xte2)  f(x)) CkXesr o YiKP 2T (X YT (X W)
7 yik? + %+ 1.
Let {:=f(x¢) f(x) 0.Summingthe above two up, by fa@) in Lemma A.1, we obtain

i1 (1) ¢ kxear YKEH2 (X W) (@ )Xt + X Yt) ka yik?
Z(l Jkxe ek + R

="kyy @ Ix¢ x K Ckxeer (@0 )xe  x K2 ka yik?

Z(l Ykxe  yik? + 2*\4'*

Letuy:=xt (1 )x¢ ifort 1. From the update (8) of AGD, we observe
I+ =1+ I)x+(1 (Xt Xt 1)

2% (1 )Xt 1

Xt + Uy:
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Rearranging terms, we canget=(1+ )y; u and thus

ye (T )xe=ye (@ )@+ )ye uy)
=y (1 2)yt (1 ) Ut)

= (ye+(2 JUt):
It is easy to verify that the above also holds whgr= xo = Yyo. Since’ 2 = =4, we have that
w1 (1)
—ky:+(@  Hu x k¥ —ku x k2 — kx  yk?+ i+1 2
4 t t 4 t+1 4 t >
S k@ ) X )+ 0 XK ki XK - kx yke+ —4 12
4 t t 4 t+1 4 t 2\
1 1
Z(1 Ykuy  x k2 Zkut+1 x k% + >t 2.
where we use fadiiv) in Lemma A.1. Rearranging terms, we then obtain
t41 + —KUt41 x k2 (1 ) t+ —kuy X k> + i+ 1 2.
4 4 2
Unrolling the recursion, we have that
f(xt) f(x) T+ ZkuT x k?
T 2 T 1 1 1 2
(1 ) 0+Zku0 x ko + (1 ) + +(1 Y+1 27\+7
exp( T) f(xo) f(x)+ Zkuo x k2 £ 1 2i+1 2
=exp ?L f (Xo) f(x)+zkx0 x k2 +P- }+E 2.
where we use the fact that+ e;8 2R O

Lemma 3.4 immediately follows from Lemma A.4. With the above results at hand, we are ready to
show proof of Theorem 3.5 below.

Proof of Theorem 3.5For the convergence guarantee, similarly to the perturbed initialization case
in (4), forx 2 argminyzx F(X) andx, =argminyzx Fr(x), we have that
rD 2
F(xr) F(Xx) Fe(xr) Fe(x)+ T:
For the reproducibility guarantee, usingtrong-convexity of; (x), we can obtain that
kx,  x%k k x;  x.k+ kx, x%k
r

.
2(Fr(xr) Fr(x)) | 20 () Fr(x,)).

r r
Applying Lemma 3.4, ifInexact-AGD)is used as the base algoritthknandx, is the output given
initializationyg = X afterT iterations, since = =D? °, we know that
Fr(xr) Fr(x) ;
r
r r 9 +r 1 2,
exp o5 7 Fr(Xo) Fr(X)+ gkxo X k* + P
r r
T r r
P 5 o Fr(xo) Fr(x,)+ kao x, k> +5 2 3

21



Wth settingl’ = O(p “=r log(r32= 2)), this means the algorithm convergestax,) F,(X,)
6 2 "=(2r3) andkx, x,k® 122 "=(2r5). Therefore, since = =D ?, we have that

2

3=2 + !

F(xr) F(x) O
and the reproducibility i&x, x°k? O ( 2=5%2), O

The results suggest that to achievapproximation error on the function value gap, we need to set

O ( %), which is a smaller regime compared toO ( ) in the previous work] when 1.
Furthermorepoptimal reproducibilit( 2= ?) is not attained. We observe from the proof that the
additionalO(" )-factor in the last term of the error bound in Lemma A.4 leads to this degradation.
Since we set = O( ) to balance tIF convergence rate and approximation error introduced through
regularization, this factor canpl@( 1=). Based on the lower-bound in Devolder et[al7] for
(;; )-oracle such that thi®(" )-factor is unavoidable for an accelerated convergence rate and
the transformation between the two inexact oracles in Lemma A.3, we thus make the conjecture here
that the above results cannot be further improved. Algorithms that achieve optimal convergence and
reproducibility under this setting require better designs and we leave it for future work.

B Preliminary Results in the Minimax Case

In this section, we provide proof of some preliminary results in the minimax setting. We start with a
proof of the lower-bounds in Lemma B.3. Sub-optimal guarantees of gradient descent ascent (GDA)
in the deterministic case, as well as optimal guarantees of stochastic gradient descent ascent (SGDA),
are provided in Section B.2. Sub-optimal results of Extragradient (EG) are proved in Section B.3.

Before that, we introduce some notations and helpful lemmas that will be used in the analysis. We let
z=(x;y)andrF(z)=(r xF(xy); r yF(xy)) for simplicity of the notation in the remaining
of the paper. The following results will be frequently used.

Lemma B.1. Under Assumption 4.1, the operatdiF is monotone and-Lipschitz. That is8z;; z, 2
X Y kfFF(z1) rF(z)k “kzz zkand(rF(z;) rF(z))%(zz z) 0. Moreover,
822X Y ,krF(2)k L wherewe dend :=minkrF(z )k+ 2D for minimum taking
w.r.t. any saddle poirg = (x ;y ) of F(X;y).

Proof. Lipschitzness of F directly follows from™-smoothness of (x;y). The fact that™F is
monotone whelk (x;y) is convex-concave is well-known in the literature (e.g., see Theorem 1 in
Rockafellar [65]). For the last statement, taking any saddle goinve have tha8z 2 X Y

kifF(2)k k FF(z )k+ kfrF(z) rF(z )k
k rF(z )k+ kz z k
The proof is complete since the domdinandY have a diameter db. O
LemmaB.2. UnderAssumpILpn 4.1. Forsome inteder 1,letz; = (X;y:) fort =0;1,; T 1

andzr = (x7;yr) = (@=T) ['(xaw). 822X Y ,(A=T) 'rF@) (@ 2)
then it satis es thamaxyoy F(X1;y) minyox F(X; yT)

Proof. SinceF (x;y) is convex-concave, we getthé¢ = (x;y)2X Y
Fixi;y) FGyd = F(xiy) Fxey)+ F(xey)  FGy)
r xFXoy)” (xe x) 1 yF(Xoyd)” (e y)
=rF@) (2 2):
Summingup fromt =0 toT 1 and dividing both sides by, by Jensen's inequality, we have that

1 X!

Fixriy) Flxyr) £ rF@)7 @ 2)
t=0

Takingy = arg max,oy F(xt;Vv) andx =argmin.x F(U;yt), we conclude the proof. O
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B.1 Lower-bounds for Reproducibility

The lower-bounds follow from the minimization setting [1].

Lemma B.3. For smooth convex-concave minimax optimization under Assumption 4.1, the repro-
ducibility, i.e.,(; )-deviation, of any algorithrA is at least(i) ( 2) for the inexact initialization
oracle;(ii) (2= ?2) for the deterministic inexact gradient oraclgii ) ( 2=(T 2)) for the stochas-

tic gradient oracle, wherd is the total number of iterations of the algorithm.

Proof. The lower-bound of reproducibility in Ahn et 4lL] for smooth convex minimization problems

is also a valid lower-bound for smooth convex-concave minimax problems. To show this, we consider
a special case of the minimax probl€fr) where the domaitY is a singleton, i.e.Y = fypqg for
someyp. Then the original smooth convex-concave minimax probieim,,x maxysy F(X;y)

is equivalent to the smooth convex minimization probl@in,.x F (X;yo). For all three inexact
oracles, le(%; §) and (%% y9 be the -approximate outputs of independent two runs of the same
algorithm, i.e., the duality gap can be upper-bounded, biyen the reproducibilitk® ~ 2%2 + k¢

P%2 = k& 2%2 sincey = 4° = yg. Moreover,® andk®are also -approximate solutions of the
functionF (X; yo) based on the de nition of duality gap. Thus the lower-bound in the minimization
setting fL] directly implies the lower-bound in the minimax setting. To be speci c, the lower-bound
is: (i) ( ?) for the inexact initialization cas¢ii) ( 2= 2) for the inexact deterministic gradient
case; andiii ) ( 2=(T 2)) for the stochastic gradient case. O

B.2 Guarantees of Gradient Descent Ascent

This section provides proof of Theorem 4.2 for the sub-optimal guarantees of GDA in the deterministic
setting and Theorem 5.1 for the optimal guarantees of SGDA in the stochastic setting. We rst provide
a general analysis and then expand it for three different inexact oracles in subsequent sections.

B.2.1 General Analysis

Algorithm 4 Gradient Descent Ascent
Input: Stepsize > 0, initialization (Xo; Yo), number of iteration3 > 0.
fort=0;1;, T 1do
Vier = v+ r yF(Xei W),
Xev1 = x (Xt r xF(Xe;¥t))-
output: (x7;yr) =L =T) " (Xi; V).

We consider (stochastic) gradient descent ascent (GDA/SGDA) outlined in Algorithm 4 for solving
minimax problemg1) or (3). The algorithm iteratively updates the varialblgsndy; using exact
gradients F(X¢;Vt), or inexact gradient&(x;;Y;), or stochastic gradientsf (x¢;y;; t) based on
different types of the inexact oracles in De nition 4.

We rst analyze the behavior of GDA with access to exact gradients. It is well-known that the last
iterate of GDA can diverge ﬁ‘@” for bilinear functio®$[9, 36], and the average iterates converge

with a sub-optimal rat® (1= T). We provide proof for completeness.

Lemma B.4. Under Assumption 4.1. When setting the stepsizeztadl :(‘p T), the average iterates
(Xt ;yT1) of GDA converges with

. D2+ 12=(2))
; ; —P=":
%%XF(XT y) min F(x; yr) =

This suggest® (1= ) gradient complexity is required to achievesaddle point.

Proof. Recallz; = (X¢;yt) andrF(z) = (r xF(Xe;¥0); r yF(Xe;y1)). The GDA updates in
Algorithm 4 can be simpli ed to

Ziv1 = xy (% rF(z)): 9)
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Since the projection step is nonexpansive [12], we have8hat(x;y) 2 X Y
kzio1 zk? kzz  rF(z) zK?
=kz zK®> 2 rF(z) (zx 2)+ 2krF(z)k?:

Rearranging terms and using Lemma B.1, we can obtain that

> 1 2 2 L 2
rF(z) (zz 2) 5 kz, zk® Kk z+1 zk® + —:
Taking summation fromm=0 to T 1 and dividing both sides by, by Lemma B.2, we thus have
. D? L 2
%@XF(XT,Y) min F (5 yT) S

When setting = 1:(‘Io T), this means the complexity is required tobe (‘D2 + L2=(2"))2=2
to achieve an-saddle point such thataxyoy F(X7;y) minyox F(X; yT) O

Lemma B.5. Under Assumption 4.1, the GDA updd® is (1 + 2°2)-expansive. That is, if
(Xt+1; Yi+1 ) is obtained through 1-step of the update giv&mn y;), and(x?,; ;y%, ) is obtained
given(x?; y9), we have that

kxtsr  XQ Ko+ Ky Yoa K L+ 2% ke xPk%+ kyr yek

Proof. Recallz; = (x¢;yt) andz? = (x%y9). By the updates of GDA (9), we get that

kzw  Za K2 k(e Z)  (FF(z) rF(E@)K
kz zX°+ 2krF(z) rF@E)k* 2 (FF(z) rF@))°(z 29
1+ 22) kx; x%*+ky, yX®;

where we use the fact that the projection step is nonexpansive and Lemma B.1. O

B.2.2 Inexact Initialization Oracle

Theorem B.6(Restate Theorem 4.2, pd)). Under Assumptions 4.1. The average itergte; yt)
of GDA satis esmaxygyp F(xT;y) mingex F(x;yr) O () with complexityT = O(1=?) if
setting stepsize = 1=("" T). The reproducibility, i.e.(; )-deviation between outputst ;yr) and
(x%;y9) of two independent runs given different initializatiorkisr x2k?+ kyr y¥k? O ( 2).

Proof. The convergence analysis directlyﬁoﬂows from Lemma B.4. For the reproducibility analysis,
by Lemma B.5 and the choice that=1=(""" T), we havethatfot=1;2;, ;T 1,

kxe  xXZ+kyr  yok® L+ %) kxe 1 X K+ Ky 1y oKP

1
= 1+c kxe 1 X0 K2+ kyy 1y ,K?
t
1+ % kxo Xx9K2+ kyo y9K? :
The above also trivially holds fdr= 0. Therefore, by Jensen's inequality, we can obtain that
R 1
kxt  x2K%+ kyr  yok2 ?1 kxy  x%2+ ky,  yx?
t=0
'5( 1 t
2 E 1+ l
T 5 T
e 2
The choice of is to avoid exponential dependence’an the reproducibility bound. O
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B.2.3 Inexact Deterministic Gradient Oracle

When only given an inexact gradient oracle in De nition 4, the updates of GDA become
Zv1 = xy (z G(z)); (10)

where we l1eG(z;) = ( Gx(Xt; Y1)  Gy(X¢; yr)) for the inexact gradients.

Theorem B.7(Restate Theorem 4.2, pdiit)). Under Assumptions 4.1. Given an inexact determin-

istic gradient oracle in De nition 4 with O (). The average iteratéxr ;yr) of GDA satis es

maxyzy E(XT;y) mingx F(X;yr) O () with complexityT = O(1= ?) if setting stepsize
=1="" T). Furthermore, the reproducibility iexr  x%k?+ kyr y%k? O ( 2=2).

Proof. We rst show the optimization guarantee. By the GDA updatefl®) and De nition 4 such
thatkrF(z) G(z)k?® ?,wehavethatforang=(x;y)2X Y ,
kzis1 zk? kzz zZK? 2 G(z) (zz z)+ 2kG(z)k?
kz zk* 2 rF(z) (zx 2)+2 2krF(z)k?
+2 (FF(z) G(z) (e 2)+2 %kG(z) rF(z)k?
kz zk* 2 FF(z) (zzx z)+2 2L2+2p§D +2 22
Taking summation fromm=0toT 1, we obtain that

X1 2 _
1 Ry @ 9 M L s 4 P
T 2T

(11)

t=
Supposing :(2p 2D) and setting = 1:(‘p T), by Lemma B.2, this means

D2+ (L2+ 2)=
— + =
T 2
-saddle point is guaranteed wh&re c= 2 for some constant  4('D?+ (L2 + 2)=")2.

rynzeyle (xTiy) minF(xyr)

We then prove the reproducibility guarantee. Ertgl., andfzlgyl., be the trajectories of two
independent runs of GDA with the same initial patgt2 X Y and stepsize> 0. By the GDA
updates (10) and Lemma B.5, we have that

kzewn 220k k (zz 2D (G(z) G(2))k

k(z z) (FF(z) rFE))k+2 (12)
1+ 2%z zk+2 :
Since the initializatiorzy = zJ is the same, we obtain that for aby 1; 2; T 1,
kzy zXk pﬁtkzo z9k +2 1+pﬁ+ + pﬁt '
K1
=9 1+ 2°2)i=2

i=0
2 t@1+ T2
& =0. Setting = 1= T), the reproducibility is
X1

P
The above also holds far= 0 denoting |

1
kxt  x9KZ+ kyr  y9K? - kxe  x%2+ kyy  y%k?
t=0
422 X1
- (1 + Z‘Z)T t2
t=0
de ,_
3z 1
which isO( 2= 2) whenT = c= 2 as required in the convergence analysis of GDA. O
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B.2.4 Stochastic Gradient Oracle
For the stochastic minimax problefd), with access to a stochastic gradient oracle in De nition 4,
SGDA updatesfot=0;1; ;T 1,

zZi1 = xy (& rf(z; 1), (13)

whererf (z; ¢) = (1 xf (Xe;¥e; 0); 1 yf (X v 1)) andf (g, * are i.i.d. samples.

Proof of Theorem 5.1We rst show the convergence guarantee. By the SGDA updat@s3ingiven
all the information up to iteratiohand taking expectation with respect towe have8z 2 X Y

E kzis1 2zK* kze zk* 2 E[rf(z; ) (2 2]+ 2Ekrf(z; )k
=kzy zK* 2 FF(z) (zx z)+ °Z2Ekrf(z; k%
Taking full expectation, rearranging terms, and summing up fren® toT 1, we have that
1 X _h Dok k(L2 2
= E rr > + :
T - (z)" (z  2) T 2
Therefore, by slightly modifying the proof of Lemma B.2 through taking expectations, and then
settingx = arg min yox E[F (u; y7)] andy = argmaxyzy E[F (X7;V)], we get
. - : D?  (L?+ 7).
MaxE[F (xT:y)]  MInEFOGyn)] o+ ————

We obtain thamaxyoy E[F(x7;y)] mingox E[F(x;yr)] (D2+(L2+ 2)=2")) if the
inexactness = O(1),andweset =1=CT),T 1=2

We then show the reproducibility guarantee. For two independent runs of SGE)avith output
fz.g_, andfz%,, by Lemma B.5, we have that forany0;1; ;T 1,

E.. okzsa 20 K
Ek(zz 2 (rf(z; ) rfE )k
kz, z&%* 2 (FF(z) rF@))(z 29+ Z2Ekrf(z; ) rf(z k2
kze zX* 2 (FF(z) rF@)(z 29+ 2EkrF(z) rF()k?
+ Z2Ek(rf(z; ) rf@dd) (FF(z) rF@E)K
1+ *dkzy, zX*+4 22

Unrolling the recursion, noticingy = z3, we have that forany=0;1;, ;T 1,

X1 _
Ekzy zX*> 422 (1+ 22
i=0
SinceT 1=2,weknow =1=CT) 1:(‘p T). The reproducibility is thus
E
T t=0
4 22X 1K1
T

E kxt  x3K2+ kyr  y2K? E kxe xPk2+ kyy  yX&®

(1+ 2‘2)i

t=1 i=0
422X1 17
T t 1+ =
t=1

202 °T

The last step uses the choice ofuch that 2T = 1=("? 2T). O
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B.3 Guarantees of Extragradient

This section provides proof of Theorem 4.3 for the sub-optimal guarantees of Extragradient (EG).

B.3.1 General Analysis

Algorithm 5 Extragradient
Input: Stepsize > 0, initialization (Xo; Yo), number of iteration§ > 0.
fort=0;1, T 1do
Yisr=2 = vt + 1 yF(Xe;Wt)),
Xte1=2 = x (Xt r xF(Xe;¥t)).
Yirer = vVt + 1 yF(Xte1 225 Y41 =2)) s
Xt+1 = x (Xt I xF (Xte1 =23 Yig1 =2)) -
Output: (Xt4+1=2;Y74+1=2) = (1 =T) thol(Xt+1 =2, Yt+1=2)-

For deterministic smooth convex-concave minimax optimization, Extragradient [48, 72] (EG), sum-
marized in Algorithm 5, achieves the optim@(1=) convergence rate. When only given inexact
gradients or stochastic gradients, the true gradients are just repla€ckhy:) orr f (X¢;yt; ).

We provide proof of itsD(1=) convergence for completeness. The proof is standard in the literature,
e.g., see Nemirovski [59] or Section 4.5 of Bubeck [20].

Lemma B.8. Under Assumption 4.1. When setting the stepsize1ol =", the average iterates
(XT+1 =2; YT1+1 =2) Of EG converges with
\D 2

rynng(xTu:z;y) min F (X, yr+1 =2) B

This suggest® (1= ) gradient complexity is required to achiewvesaddle point.
Proof. Recallz; = (x¢;y) andriF(z) = (r x<F(X;;y); r yF(Xt;yt)). The EG updates in
Algorithm 5 can be simpli ed to

Zii1=2= xv (z rF(z));

Zti1 = xv (zx rMF(z1=2):

By fact (i) in Lemma A.1, we have that foramy2 X Y

(14)

kzis1  zK2+ kzewn  zk? kK zz zZK2=2(zee1 7)) (zis1 2)
2 FF(zts1=2)" (2 Z141);

where we use the optimality condition of the projection step such(thgtu) u)” (v c(u))
0; 8v 2 C. For the same reason, we can obtain that

kzis1=2 z2k2+ KZpun=p 2k K 2o 21 K2 =2(Zii =2 2) (Zs1=2 Zie1)
2 rF(z)” (zta Ztva=2):
Summing up the above two inequalities, we get
kzis1r  zK? k zz ZK? K Zis1=2  ziK% K Ziyni=p 201 K242 FF(Zie122)" (2 Zis1)
+2 FF(z) (zZte1 Zts1=2)
=kzy zK* K zp1=2 zk? K Zn—p 2 K242 FF(Z122)" (2 Zin =)

+2 (FF(zt) FF(Zi1=2)" (Ztvr Zis1 =):
(15)

According to Lemma B.1, we can obtain

(FF(zt) FF(Zie1=2)" (Zte1 Ziea=2) Kzt Zieg KKZis1  Zpsq 2K

2 2.
Ekzt Zy41 =K + ékzﬁl 2441 =2K":
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Therefore, rearranging terms, by the choice of stepsizel=", we haveBz 2 X Y

FF(Zi+1=2)" (Zts1=2 2)

1 1 1
7 kz, zk? k Zi+1 zk? 7k2t+1 =2 %4 k2 7k2t+1 =2 Zi+1 k?
+(FF(z) FF(zt1=2)" (Ztn Zis1=2)
1 1 -
? th Zk2 k Zt+1 Zk2 7 E th+1 =2 Zt k2 7 é th+1 =2 Zt+1 k2
zi kz, zk? k z4q zK? :
(16)
Taking summation fromm=0 toT 1, by Lemma B.2, we have
. kzo zk?
max F(XT+1=21Y) min F (X YT +1=2) 02#'
Sincekzo zk? 2D?and =1=",the proofis complete. O

The following results are motivated from Boob and Guzman [16].
Lemma B.9. Under Assumption 4.1. Let,; = (Xt+1;VYi+1 ) be obtained through 1-step of EG
update(14) givenz; = (X;t), andz?,, is obtained giverz?. Setting ~ 1=", then we have

kzeon 200k kzp zk+2L°2 3%

Proof. For anyz = (x;y) 2 X Y , we dene an operatoP,, () : X Y I X Y as
P, (z)= xvy (z "F(z)), and the EG updates can be writtereag = Pz, (P (z)). When
the stepsize  1=", the operatoP,, () is nonexpansive, i.e8z;;z, 2 X Y ,
kP2 (z1) Pz (z2)k krF(z1) rF(z2)k
) kZl 22k
k z1 2zk:
Since the domaiX Y is anonempty bounded closed convex set, by Theorem 4.19 in Bauschke et al.
[12], the nonexpansive operatey, ( ) admits xed points. Denote one xed pointags 2 X Y
suchthau; = xv (z rrF(ut)) = P (ut). The nonexpansiveness®f, () implies

kzi+1 uik = szt (Pzt (Zt)) PZt (PZt (ut)) K

(C)%kze  uk
- 17)
krF (u)k
321

The same holds true faf,; anduf = P,o(uf) de ned for z. As a result, we can obtain that
kzern 200K K zeer ugk+ kup  udk+ ku?  z%, k

0 ~2 3 (18)

ku uk+2L :

By optimality conditions ofu; = xvy (z rE(w) andu? = xv (22 rF@d), we
obtain that for ang;z°2 X Y

(W z+ FEU))(Z w) O
W 22+ rF@Wd)”(°® u) o
Takingz = uf andz®= u; and using the fact that F is monotone by Lemma B.1, we obtain that
kug  u%k? (ue W) (z D) (FF(w) rFUY))” (e W)
k u  ukkz z%:
Combined with (18), the proof is complete siftag  uk k z  z%. O
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Remark 6. We can alternatively derive the relation betwéep.;  z%,; k andkz,  z% as follows:
kzeor 204 K2

kz zX* 2 (z 2z (FF(ztsn=2) FFE% o)+ 2KOF(Zisr=)  FF(22 )k

kze zK*+2° kzy zXKkzpp=z 20 oK+ P kzaop Z0 oKP

1+2" P 1+ 22+ 221+ 22Kz 2%P
= 1+° P 1+ 22 2kzt 7%

Here, we use Lemma B.1 and B.5. The above results will lead to reproducibility that grows with
O(e"), which is similar to the results of AGD for the minimization setting [6].
B.3.2 Inexact Initialization Oracle

Theorem B.10(Restate Theorem 4.3, pdif)). Under Assumptions 4.1. The average iterate
(X1+122; Y141 =2) Of EG satis esmaxyoy F(Xt+1=2;Y) mMinox F(X;yr+1=2) O () with
complexityT = O(1=) if setting stepsize = 1=". Furthermore, the reproducibility, i.e(,; )-
deviation between outputs of two independent runs of EG given different initializali@r is -,

X0 K+ Kyraz2 Y9, K O (minf 2e%; 2+1=2D?g).

Proof. The convergence part directly follows from Lemma B.8 with= c= for some constant
¢ 'D2. For reproducibility, by Lemma B.5, B.9 and the stepsize 1=", we have that for
t=1,;2 ;T 1,

KXi4+1 =2 X?+1:zk2+ Kyt41 =2 yto+1:2k2 1+ 22) kx X?kz"' Kyt ytokz
2(kzo zk+2L°2% 3t)2

2
2L
2 + ft

The above also holds far= 0. Therefore, by Jensen's inequality, we obtain

1 X
KXT 41 =2 X$+1 :2k2 + KyT41 =2 Y$+1 :2k2 T KXt+1 =2 X?+1 :2k2 + Kyie1 =2 yto+1 :zkz
t=0
2 X1 oL, 2
h + =t
T t=0
16L2
2 2.
4+ ?T :

Alternatively, by Remark 6, we know théz., -, 22, ,k* 2(1+ P 2)?' 2 and thus the
reproducibility iskxt+1 =p  X%,; K2+ kyra1=2 ¥, ,k* O (e' 2). The proof is complete
by taking the minimum between the two results and replagingth c= . O

B.3.3 Inexact Deterministic Gradient Oracle

When only given inexact gradie(Gx (X:; Y1); Gy (Xt; Yt)), the updates of EG becomes
Ziii=2= xv (z G(z));
Zis1 = xv (z G(zi+1 =2));

where exact gradientSF (z;) in (14) are replaced b§(z;) = ( Gx(Xt; ¥t); Gy (Xt; Yi)).

Theorem B.11(Restate Theorem 4.3, pdiit)). Under Assumptions 4.1. Given an inexact deter-
ministic gradient oracle in De nition 4 with O (). The average iteratéxt .1 =»; Y1 +1 =2) Of EG
satis esmaxyoy F(Xt41-2;y)  Minyox F(X;yr41=2) O () with complexityT = O(1=) if
setting stepsize = 1=". Furthermore, the reproducibility i©(minf %€~ ;1= ?;D?q).
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Proof. Let ( z) = G(z) [ F(z). We knowk ( z)k by De nition 4. Using (15)in the
proof of Lemma B.8, we have th8z 2 X Y
kzsy  ZK* Kzt ZK® K Zna=p ZiK% K Zisi=p a1 K2+ 2 G(Zis1=2)" (2 Zisn =2)
+2 (G(z1) G(zt+1=2))" (zt+1  Zts1=2)
=kzt zK* Kz zK® K Zpa—p 2 K242 FF(2122)7 (2 Zia1 =)
+2 (FF(z) FF(z=2)" (2t Za=2)+2 ( 2n=2)" (2 Ziw1=)
+2 ((z) (zt+1=2)" (Zt+1 Zisa=2)
kze zK* Kz 2K Kz zak+2 CF(Z1=2) (2 Zia=2)
+2 (FF@) FF@a2) (@a  Zuio)+6 2D -

The above is the same @k5) up to an additional error i®( ). Following the same proof aft¢l5),
with  =1=", we obtain that

. ‘D2 pP_
%@XF(XT‘& =2,Y) min F (X Yr+1=2) - +3 2D:
When :(6p 2D) andT = c= for some constart  2'D 2=, we get -saddle point.

We then show the reproducibility guarantee. uete  x v (z ~F(ut)) be the same as in the
proof of Lemma B.9. Similarly to (17), we have that

kzt+1 Utk kG(ZtH_:z) rF(Ut)k
KrF(zi+1=2) FF(U)k+ kG(Zi41=2) IMF(Z+1=2)K
“KZie1p Uk +
2kG(z:) rF(u)k+
22kz, uk+(1+ )
B +@1+ )

As aresult, the same as (18), since 1=", we can obtaintha8t =0;1; ;T 1,

kz, zXk kz 1 20 k+2 2L+2(1+ )
t(2 2L +2(1+ ) )

E(L +2 )

Therefore, by Jensen's inequality and (12) in Section B.2.3 for the guarantee of GDA, we know

1 X!
kXtarzz  XFa1 2K+ Kyriaza Y940 oK KXirnz2 X oK+ Kyisnm Yo K

t=0

1 X!

- 20+ 22z, zK2+4 22
t=0

1X*'g

T = 22(L+2 )2+ 2
t=0

128 ,_, 322_, 8 ,

37 T+ 32 T+ 5 =
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Note thaiT = c= and O (). Thus the reproducibility i©(1= ). Alternatively, by Remark 6
and similarly to (12), we have that

0
I(Zt+1 Zin k

kzy zX2+2  kzx zKkzs1= Z
;

0 222 0
LS, Kzts1 =2 20y K +2

p— 2 pP—
1+ 1+ 272 kz zXk2+4 22 1+ 1+ 22 kz zk+4 42242

P
= 1+ 1+ 22 kz zk+2 (1+ )

1+ pé)kzt 2% + 4—

Thuskzi -,  Z0,; ok p?kzt zk+2 =" 0O (e =) and the reproducibility i©( 2€=).
The proof is complete by taking the minimum between the two results. O

B.3.4 More Discussions

In this section, we show that Extragradient can also be optimally reproducible by a different selection
of parameters. Although it will suffer from a sub-optimal convergence@dfie= =2) instead of
O(1=), this is still an improvement on th@(1= ?) rate of GDA.

Theorem B.12. Under Assumptions 4.1. The average iter@te., -»; yr+1 =») of EG satis es
maxyoy F(Xri1=2;y)  Mincox F(Xyr+1=2) O () with complexityT = O(1=( *=* 32)) if
setting stepsize = min f 1="; ( =(2°2T))*3g. The reproducibility iO( ?).

Proof. The same as Section B.3.2, by the choice of stepsigech that 3T =22, we obtain
2 X1 2
kxrii=2 X7 K2+ Kyranzs Y71 oK T +2L°% %t
t=0
42+421°% °T)?
4(L%2+1) %

By Lemma B.8, when the stepsize 1=", we have that

. D2
ryzng(xM =2,Y) min F(X; Y7141 =2) T
‘D? D2(2‘2: )l=3
R N A—
T T2=3

This means ®(1=( 172 3%2)) convergence rate with reproducibili@( 2). In the case = O(1),
the gradient complexity i© (1= 37?). O

Theorem B.13. Under Assumptions 4.1. Given an inexact deterministic gradient oracle in De nition
4 with O (). The average iteratéxt +1 =2; yY1+1=2) of EG sargis esmaxyoy F(Xt+1-2;Y)

mineox F(X;yr41-2) O () with complexityT = O(1=( )) if setting stepsize =

minf 1="; ( =(2°2))1*2g. The reproducibility i<D( 2= ?).

Proof. The same as Section B.3.3,sinte l1and 2 =(2'2), we have that

1
4 .
KXTs120 X35 oK2 + Kyra10 Y9, k2 8 2 %+ T (2 ¥2L+4 %2
t=0
8 (2L‘2 2)2 2T2+8 2 2T2+ 2 2
8(L%2+9) (T )%
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When the stepsize  1=", we also have
D? p

MAxXF (Xru1=2iy)  MINF(Gyra=) < +3 2D
E+ +p§\D2+3p§D-
T T ’

To guarante®( )-saFggle point, we need to ensureO () and T = c= for some constart.
This means ®©(1=(  )) convergence rate with reproducibili@( 2=?2). Since O (), the
gradient complexity i©(1= 372). O

Finally, we want to mention that the analysis can also be extended to reproducibility under stochastic
gradient oracle and stability of Extragradient [16] that matches with SGDA. We will not provide all
details here. The key is to select stepsiz® balance the convergen€g1=( T )) in Lemma B.8

and the error tern®( 3T) that appears according to Lemma B.9. Moreover, we also acknowledge
that it is unclear whether the analysis of EG is tight since the speci ¢ lower-bound is unknown. We
leave this problem for future exploration.

C Near-optimal Guarantees in the Minimax Case

This section discusses near-optimal guarantees for algorithmic reproducibility and gradient complexity
in smooth convex-concave minimax optimization.

C.1 Useful Lemmas

We rst establish the convergence behavior of gradient descent ascent (GDA) and Extragradient (EG)
[48] for smooth and strongly-convex—strongly-concave (SC-SC) functions under the inexact gradient
oracle in De nition 4. For the sake of simplicity and to enable a general analysis, we slightly abuse
notation here to consider the minimax optimization problem

min maxf (x;y);
x2X y2Y :y)

wheref : X Y ! R satis es the following assumption.

Assumption C.1. The functiorf (x;y) is “-smooth and —strongly-convex—strongly-concave on the
closed convex domaX Y .

Assumption C.2. We assume the existence of an inexact gradient oracle that returns a vector
g(x;y) = (g (xy);gy(x;y)) at any querying poin{x;y) 2 X Y such thatkr f (x;y)
gx;y)k?  2wherer f(x;y)=(r xf(x;y);r yf (x;y)) is the true gradient ax; y).

The lemma below shows the convergence behavior of GDA under the inexact gradient oracle presented
above, also referred to as Inexact-GDA.

Lemma C.3. Under Assumption C.1. Let = (x ;y ) 2 X Y be the unique saddle point of
f(x;y)and := "= be the condition number. Given an inexact gradient oracle in Assumption C.2.
Denotez; = (X¢;yr) ande(z) = (O (Xt Yt);  Oy(Xe;yr)). Starting fromzg 2 X Y , GDA that
updatesfot =0;1;, ;T 1,

zv1 = xy (z &z)); (Inexact-GDA)
with stepsize = = (4°2) converges with
kzr z k> exp 8T—2 kzog z K?+ %+32 2.
Proof. Let r'f (z) = (r xf (X;;¥1); 1 yf (X¢;¥1)). Itholdsthatz = xv (z rf(z))

since the saddle point problem and the projection problem share the same optimality condition when
f (x;y) is convex-concave (see Proposition 1.4.2 in Facchinei and Pang [32]) such that

rf(z)( z) 0 8z=(xy)2X Y :
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Therefore, similarly to (11), by the GDA updates, we have
kzn z K=k xvy (2 &z)) xvy (2 rf(z )k
k(z z) (9z) rf(z)K
=kzy zk* 2(@z) rf@) (z z)+ %kez) rf(z)k%
Sincer f is —strongly-monotone if (x;y) is —strongly-convex—strongly-concaveq 35, i.e.,
821;2,2X Y ;(rFf(z1) rf(z)”(z1 2) kz: z,k?, we have that

(8z) @) (@ z)=(rf(z) rf@) (z z)+(e=z) rf@) (z z)
kze zk® kz zk
2
Ekzt z k? >

where we use Assumption C.2 such tkgtz;) rf(z)k and fact(iii ) in Lemma A.1. Then
by “-smoothness df (x;y), we can obtain that

ke(z) f(z)k?  2ke(z) rf(z)k®+2krf(z) rf(z)k?
22+2%kz,  z K%

Combining all three results together, when choosing the stepsize= (4'2), we get that

kzer z k2 (@@ +2 2%kz, z K+ —+2 2 2
20
) 1 .2 1 (20)
- 1 W th z k + ﬁ 1+ ﬁ
Unrolling the recursion, we thus obtain
kzr z k? |
17 , 2 1 1 1 Tt
1 ﬁ kZo z k + ﬁ 1+ ﬁ 1+ 1 ﬁ + + 1 ﬁ
T 1 2
exp g ko zk+ S+ 5 2
This means @®( 2) convergence rate to@( 2) neighborhood, where = "= is the condition
number. O

The lemma below establishes the convergence performance of EG under Assumption C.1 and C.2.

Lemma C.4. Under Assumption C.1. Let = (x ;y ) 2 X Y be the unique saddle point of
f(x;y) and := "= be the condition number. Given an inexact gradient oracle in Assumption
C.2. Denotez; = (Xt;yt) ande{zr) = (O (Xt;Yt); Gy(Xesye)). Starting fromzg 2 X Y,
Extragradient that updates far=0;1; T 1,

Zi=2= xvy (zz  &z)):
Zis1 = xv (z #HZi+1 =2))

with stepsize = 1=(2") converges with

(Inexact-EG)

2
kzr z k®> exp 8Lkzo zk2+8—3+1

Proof. Letr f (z;) = (r xf (Xg;y1); r yf(Xe;w)) and ( z) = 9(z) rf(z). By (15)in the
proof of Lemma B.8, setting = z , we have that,

kzier 2z k? Kz ZK K Zisr—o zk® K Zis1=2 2 K2 +2 1 (Zis122)" (2 Zis1=2)
+2 (Ff(z) M (Z1=2)" (@1 Z1=2)+2 ( Z1=2)" (2 Zie1=2)

+2 ((z) (zt11=2))" (Zt+1 Zis1=2):
(21)

33



By strong-convexity-strong-concavity of the functib(x; y), we know that
f(X i Yie1=2)  F(Xesr=2iVier=2) + T xf (Xps1 =225 Vie1 =2)” (X Xps1=2) + EkXHl 2 XK

f (Xte1=2:Y ) f (Xte1=2:Yie122) T yF (Keer =25 Y1 22)" (Y Yier=2) + Ekyt+1 2 YK
Summing up the above two inequalities, using the de nition of saddle points, we have
Ff(zi1=2)" (2 Zea=2)+ ( Zs1=2)" (2 Zts1=2)
f(X iYter=2)  F(Xer1=23y ) Ekzﬁl 2 ZK+ (21272 za=2)

Ekzt+1 2 Z K+ K( Zu12)Kkz  Zig ok

) (22)

Zkzt+1 » zZ K+ —
2 2 2
gkzt z k“+ Zkzt Zi+1 —2Ko+ —;
where we use fadiii ) in LemmaA.1ankz, z k> 2kzy  Zi41 —2K?> +2Kzis1 -2  Z K. By
smoothness df (x;y) and fact(iii ) in Lemma A.1, we also have that

(Ff(z) f(zn=2)" (@1 Z1=2)+(( z1) ( Zs1=2)" (Zte1 Zis1 =)

Kzt Zpr1 =2KkZtr Zpn =K+ 2 Kzier Zpeg 0K (23)
s 2
ékzt Zirn 2K + TKZisr Zpag oK%+ 27
Plugging (22) and (23) back into (21), choosings 1=(2"), we obtain that
kzeer z K21 - ke z k2 1 - kua= zk?
. 2 1
(1 2 )kz- zakP+2 2 T+ = (24)
2
1 — kz z K+ — §+ 1
8
Unrolling the recursion, sinck + e ,8 2 R,we getthat
T 2 2 1 T 1
k k¥ 1 — k K+ — c+= 1+ 1 — + + 1 —
Zr Z & Z0 Z ~ < g &
T 2.2 1
1 ey kZO z k2 + 87 < + —
8
This means @( ) convergence rate to@( 2) neighborhood, where = "= is the condition
number. O

Lemma 4.5 directly follows from Lemma C.4 observing tidix; y)+ r(X Xo;Yo V)isa -inexact
gradient ofF; (x;y). Next, we provide a useful lemma showing how to satisfy the stopping criteria
for the auxiliary smooth SC-SC sub-problem in Algorithm 2 when presented with inexact gradients.
The results are motivated from Yang et al. [74].

Lemma C.5. Under Assumption C.1 and C.2. Suppose the domdaamdY have a diameter dD.
Denotez = (x ;y ) be the unique saddle point b{x;y). Forany2 = (%;§) 2 X Y , we let
8(2) = (% 9): g(&¢)anddene2] =(X] ;[§] )for 2 tobe

2 = xv 2 leg@)

which is obtained through one step of GDA starting fidmith inexact gradients. Denote the true
gradientas™f ([2] ) = (r xT([R] ;191 ), r yf([R] ;[¥] )). Then we have th&z = (x;y) 2
X

Yl
s |

rf(2] ) (2] 2) 2p§Dk2 zk+p§D (2+p§) —+3
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Moreover, it also holds that[2] z k (1 + pi‘z k2 z k+ (1=p7+ P ).

Proof. We construct a “ghost” poir; = (%X1;$1) 2X Y tobe
1
2= xv 2 -—o(2])

2, can be regarded as performing one update of inexact-EG with stesizstarting from2.
Therefore, by(16) and(19) in the convergence analysis of EG, sirflce  1=", we obtain that
8z=(x;y)2X Y ,

FE(2] ) (2] 2) Ekfz zk? Ekz\l zk2+3péD
=5 )@ z+m z)+3péD

E(kz zk+k?y zk k2 z+% zk+3péD:

By (24) in the proof of Lemma C.4, since 2" and *, we have that
ke, zk® k 2 zk2+£+22-
Therefore, we can obtainthie®; z k k 2 z k+2 :pf+ p? :pi, and thus,
FE(2] ) (2] 2) pi D(k? zk+k? z k)r+3p25D 1
P30k zk+"2D 2 j+ 2 43

For the last statement, sinf&} is obtained through 1-step of GDA with inexact gradients(23)
in the proof of GDA for SC-SC problems before, we have that

22 12
2 2 2
K2l zK 1+, ke z KR+ 2 —+ S

P

Therefore, we obtain th&{?] z k (1+ p?‘: k2 z k+ (1:p7+ 2=). O

The above lemma also applies to the case when exact gradients are available setihgnd
2] = xy 2 2irf(2) forthe true gradientsf (2). This implies the stopping criteria

rf(2>( z) %8z2X Y inAlgorithm 2 and 3 can be translatedkd z k? O ("?),
which can be satis ed withifD(log(1=")) complexity using Lemma C.3 and C.4 with= 0 (or
existing results in Tseng [72] or Facchinei and Pang [32]).

C.2 Regularization Helps!

Proof of Theorem 4.4 and 4.6 for the near-optimal guarantees of Algorithm 2 is provided here.

C.2.1 Inexact Initialization Oracle

We also uséXo; Yo) as the initialization point when solving the auxiliary strongly-convex problem.
Note that the gradient steps starting fréxa; yo) remain the same o (x;y) andF, (x;y).

Proof of Theorem 4.4We rst show the convergence guarantee. ket (X, ;y;). By fact(i) in
Lemma A.1, we haveth@z = (x;y) 2 X Y ,

>

re(z) (z z)= rF(z) (z 2z2) (z 2)
= rF(z) (z z)+r§kzo zk? rékzr zok? rékzr zk2 (25)

L+ 1D?:
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According to Lemma B.2, this meansaxyoy F(Xr;y) minwx F(Xyr) + D2

We then show the reproducibility guarantee. Denote the saddle pdi(xfy) given(Xo;Yo) as
(xb;y,), and the saddle point &F2(x;y) = F(x;y) + (r=2)kx x3k? (r=2)ky y3k? given
(x3;y9) as((x,)% (y,)9. By Lemma B.4 in Appendix B.3 of Zhang et al. [78], we have that

kx,  (X)%K2+ Ky, (V)% Kk xo xS5k?+ kyo yok*:

Letz, = (Xr;¥r), 2, = (X,;Y,) andzg = ( Xo; yo) for simplicity of the notationz?, (z, )°andzd
can be de ned in the same way. Similarly to the minimization case, we have
kzz 2%k kz zk+kz (z)%+k(z)? 2%k
r
2,
r

+2

where we usé&z, (z,)% k zp 23k and optimality ofz, by r strong-convexity—strong-
concavity (SC-SC) oF, (x;y) (the same holds true fa® and(z, )°as well):

r r
S X K+ Skye Y ke F(xeye)  Fo(sy) + Faye) ek yn)
maxFr (xry) - minF (X yr)
r
Thus setting = =D2and , = minfl; 2=8D?)g, we guarantee thabax,oy F(Xr;Yy)
mineox F(Xy:) 2 andkx, x%?+ ky, y°%? 4 2. Applying Lemma C.5 with =0,
the complexity using Extragradient (EG)Z, 57] to achieve  -error onr-SC-SC(" + r)-smooth
minimax optimization i€ ((*=r +1)log(1=)) = O('D ?=), whereO hides logarithmic terms. [J
C.2.2 Inexact Deterministic Gradient Oracle

This section contains proof of Theorem 4.6 for the near-optimal guarantees in the inexact deterministic
gradient case. The proof is based on Lemma 4.5 (restated and proved as Lemma C.4 in Section C.1)
and Lemma C.5.

Proof of Theorem 4.6For the convergence guarantee, the same as (25), we have that

_ . _ 2.
|;nz§xF(xr,y) )T(T;IXI']F(X,yr) r+ 1D

For the reproducibility guarantee, we can obtain that

kzz 2%k kz zk+kz z%:
Letzr be the output off -step Extragradient with initializatiory. By Lemma 4.5, we have that
872 2 L1

| —

r

kzo z K*+ -
+r r +r r
r 16 2
< —7

exp kzo z K+

Bl ®

S&gingT (32°=r)log(rD= ) andr = =D 2, this means the algorithm convergektn  z, k
3 2D?( = ). Therefore, accordir}gjo Lemma C.5, if we choase [z7],, sincel 'D?=,we
can guarantee thaz, z k 3(2 2+1)D?( =) and that

. p_ 'D? p_
maxF (Xr;y) minF(X;y,) 4C 2+7)—+3 2 D + :
y2Y x2X
The reproducibility iskz,  z%«?>  36(9 + 4p 2)D4( %=2). O
C.3 Inexact Proximal Point Method

Proof of Theorem 4.7 and 4.8 for the guarantees of Algorithm 3 is provided in this section.
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C.3.1 General Analysis

We first analyze the convergence of the inexact proximal point method (Inexact-PPM). Given initial-
ization (Xo;Yyo) and >0, fort=0;1; ;T 1, each step of Inexact-PPM is

. 1 1
(Xt+1; Ye+1) is an inexact solution to min max Fe(X;y) = F(X;y) + —kx xk? ——ky yk?:
XeX yey 2 2

Lemma C.6. If we run Inexact-PPM and make sure that for each sub-problem rlft(zHl)T(zHl
z) Aforall z = (xy) 2 XY, where zgey = (Xes1sYer1) and PR(Zer) =
(rxFe(Xeen; Yir1);  FyFe(Xer1; Ye+1)), then we have 8z 2 XY,

kzg zk2

+
2T

maxF (Xt+1;y)  MIinF(X;yt+1)
yey XEX

Proof. The proof is similar to Proposition 7 in Mokhtari et al. [58]. The same as (25), for any
z=(y)2X Yandanyt=0;1,; :T 1, we have that
T

1
FF@e1) @er 2)= PRZe) ~@1 20 (21 2)
1 2 1 2 1 2 T
=gkze 2K ke 2K kze 2k P (Zie1) | (Zeat
1 1
z—kzt zk? 2—k2t+1 K%+~
Taking summation fromt =0to T 1 and dividing both sides by T, we conclude that
1> kzg zk?
= PFZe) @ 7)) 4
T 2T
The proof is completed by Lemma B.2. O

C.3.2 Inexact Initialization Oracle

This section provides proof of Theorem 4.7.

P
Proof of Theorem 4.7. Let zt+1 = (X1 +1;Y1+1) = (1=T) th_ol(le;yHl). By Lemma C.6 and
the choice that = 1=*,7= 2=(2 T?2), we immediately have
‘D2 <2

max F (x ; min F (x; i
max (XT+1:Y) min (X yT+1) T * 572

O(1=T) convergence rate is guaranteed for O(pT). Note that the condition number of F¢(X; )
is O(1) when = 1=*. Therefore, to guarantee an -saddle point of F (X;Y), a total complexity of
O(T log(1=") = O((1= ) log(1=( ))) is sufficient for various algorithms including GDA [32] and
EG [72] applying Lemma C.5 with = 0.

Let z{ = (X{;Y¢) be the unique saddle point of Fe(X;y) with proximal center z, and (z¢) be the
saddle point when the proximal center is z{. For the reproducibility guarantee, similarly to Section
C.2.1, we can obtain that

Kztv1  Zgaq K Kzewr  zik+kzi  (Z0)k+k(z8)  ziaq.k
| g—
o (26)
kze zik+2 —;
where we use Lemma B.4 in Zhang et al. [78] and (1= )-SC—SC of F¢(X;y):

1
PRze) @1 ) Fkeny))  FOGiyen) + okze ZK

> kzerr  ZpK2:
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Therefore, by induction, we have that forany t =1;2; T,

| g
n

2
kze zk  kzo zpk+2t —
+2 —

3:

The reproducibility is then kzt+1 25 ,,k? 9 2 using Jensen’s inequality. O

C.3.3 Inexact Deterministic Gradient Oracle

For Theorem 8] we provide proof when using GDA as the base algorithm. According to Lemma
[C4] EG can also be applied here with a similar argument.

Proof of Theorem[4.8] When setting = 1=, the auxiliary problem is ‘-strongly-convex—strongly-
concave and 2*-smooth. Let z[€ be the output of K-step GDA with initialization z{ on the minimax
problem MiNny ey MaXyey Fi(X;y) at iteration t. Denote its saddle point as z;. By Lemma if
K  32log(8“2D?=(3 2)), we have that

0 *[,2
kz; z{kc+

17

kzK  z7k?  exp %

32
;2:

By Lemma we can thus set Z¢+1 = [2{<]>+ and guarantee that
P- P
FFP(Zes1) (Zee1 zZ) (4 6+5 2+4) D; 82X Y:

According to Lemma|C.6| we then have

. ‘D2
max F ; min F (x; — +21 D:
ye))/( XT+1:Y) erX (X Y1+1) T

When =(42D), T  2‘D?= is required to obtain an -saddle point, and the total gradient
complexity is TK = (64‘D?= ) log(8?D?=(3 ?)) = O(1= ) with O hiding logarithmic terms.
We tlﬁg show the reprodbcibility guarantee. From Lemma we know that kz¢v+1  z{K
1+ 2=2)kzf z;k+" 2 =¢ 45 =*. By (26), we have that

9
Kzer1  Zpqk  kze zik+ —:

By induction, we conclude thatkzy zik  9t( =*), and thus the reproducibility is kzt+1  Z4 . ,K?
81 2T2=*2 = 324D*( 2= ?). O

D Numerical Experiments

Some numerical experiments that demonstrate the effectiveness of regularization to improve repro-
ducibility are provided in this section. We test the algorithms on two problems: a minimization
problem with a quadratic objective and a minimax problem with a bilinear objective. The experiments
are conducted on a single local machine.

Minimization. We first compare the performance of gradient descent (GD), accelerated gradient
descent (AGD), Algorithm [T with GD as the base algorithm (Reg-GD), and Algorithm [I]with AGD
as the base algorithm (Reg-AGD) on a quadratic minimization problem

min }kAx bk?:
xeRd 2

Here, b 2 RY with each entry sampled from the Gaussian distribution with mean 0 and standard
deviation 10 and A 2 R%*9 is a random positive semi-definite matrix with rank d 1 that makes
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Function Value Deviation in Trajectory

4]
—— AGD 107 AcD
. —— GD 103] — GD
Reg-AGD Reg-AGD
- Reg-GD 1021 = Reg-GD
10%4 /
1024 10%4
10—1_
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100 10! 102 103 10% 100 10! 102 103 104
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Figure 1: Comparisons among GD, AGD, and their regularized version on the quadratic minimization
problem with -inexact gradients. The left figure plots the convergence behavior and the right shows
the reproducibility. Both axes are plotted utilizing a logarithmic scale.

sure the problem is convex but not strongly-convex. To be specific, we let A=U UT where U is a
random orthogonal matrix drawn from the Haar distribution, and  is a diagonal matrix with 1 entry
being 0 and the others uniformly sampled from [0:1; 10]. This ensures that the problem is smooth
with a parameter smaller than 100.

We implement an inexact gradient oracle that returns AT(Ax b) + e where e 2 RY is an all-
one vector and 2 R controls the inexactness level. We test the aforementioned four algorithms
with this inexact gradient oracle on both convergence performance measured by function value and
reproducibility performance measured by the deviation compared to the trajectory obtained from
using the true gradient when = 0. In the experiments, we let d = 100 and = 0:1. For all four
algorithms, we set the number of iterations to be T = 10000, and the stepsize to be 0.01 based on the
fact that the smoothness parameter is at most 100. For the regularization-based methods, we set the
regularization parameter of the auxiliary problem to 0.05. All other parameters are set according to
the theoretically suggested values. The results are illustrated in Figure[T]

In Figure[I] we see AGD converges faster than GD, but the deviation in iterates is much larger. When
introducing regularization, i.e., Reg-AGD, the reproducibility guarantee is greatly improved with
only a small degradation in the convergence performance. It is worth mentioning that Reg-GD also
has a smaller deviation bound compared to GD. All the results align with our theoretical analysis.
Changing the inexactness level or the random seed for sampling the matrix A and the vector b does
not influence the phenomenon too much, so we do not report the results with different selections.

Minimax. We also test the performance of gradient descent ascent (GDA), Extragradient (EG), and
their regularized counterparts (Reg-GDA and Reg-EG) in Algorithm[2]on a bilinear matrix game

minmax x ' Ay:

XEX yeY
Here, A 2 RY9%9 is generated the same as in the quadratic minimization example, X = fx 2
RAjkxk DgandY = fy 2 R9jkyk Dg are d-dimensional balls with diameter 2D measured
by the Euclidean norm. The projection onto these balls can be easily achieved. We implement an

inexact gradient oracle that returns Ay + e and ATX + e for the partial gradients w.r.t. X and y
respectively, where e 2 RY is an all-one vector and 2 R controls the inexactness level.

We test the aforementioned four algorithms with this inexact gradient oracle on both convergence
performance measured by the duality gap (computable due to bounded domain) and reproducibility
performance measured by the deviation compared to the trajectory obtained from using the true
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