
Optimizing Solution-Samplers for Combinatorial
Problems: The Landscape of Policy-Gradient Methods

Constantine Caramanis
UT Austin & Archimedes / Athena RC

constantine@utexas.edu

Dimitris Fotakis
NTUA & Archimedes / Athena RC

fotakis@cs.ntua.gr

Alkis Kalavasis
Yale University

alvertos.kalavasis@yale.edu

Vasilis Kontonis
UT Austin

vkonton@gmail.com

Christos Tzamos
UOA & Archimedes / Athena RC

tzamos@wisc.edu

Abstract

Deep Neural Networks and Reinforcement Learning methods have empirically
shown great promise in tackling challenging combinatorial problems. In those
methods a deep neural network is used as a solution generator which is then trained
by gradient-based methods (e.g., policy gradient) to successively obtain better
solution distributions. In this work we introduce a novel theoretical framework for
analyzing the effectiveness of such methods. We ask whether there exist generative
models that (i) are expressive enough to generate approximately optimal solutions;
(ii) have a tractable, i.e, polynomial in the size of the input, number of parameters;
(iii) their optimization landscape is benign in the sense that it does not contain
sub-optimal stationary points. Our main contribution is a positive answer to this
question. Our result holds for a broad class of combinatorial problems including
Max- and Min-Cut, Max-𝑘-CSP, Maximum-Weight-Bipartite-Matching, and the
Traveling Salesman Problem. As a byproduct of our analysis we introduce a novel
regularization process over vanilla gradient descent and provide theoretical and
experimental evidence that it helps address vanishing-gradient issues and escape
bad stationary points.

1 Introduction

Gradient descent has proven remarkably effective for diverse optimization problems in neural net-
works. From the early days of neural networks, this has motivated their use for combinatorial
optimization [HT85, Smi99, VFJ15, BPL+16]. More recently, an approach by [BPL+16], where a
neural network is used to generate (sample) solutions for the combinatorial problem. The parameters
of the neural network thus parameterize the space of distributions. This allows one to perform gradient
steps in this distribution space. In several interesting settings, including the Traveling Salesman Prob-
lem, they have shown that this approach works remarkably well. Given the widespread application but
also the notorious difficulty of combinatorial optimization [GLS12, PS98, S+03, Sch05, CLS+95],
approaches that provide a more general solution framework are appealing.

This is the point of departure of this paper. We investigate whether gradient descent can succeed in a
general setting that encompasses the problems studied in [BPL+16]. This requires a parameterization

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

of distributions over solutions with a “nice” optimization landscape (intuitively, that gradient descent
does not get stuck in local minima or points of vanishing gradient) and that has a polynomial
number of parameters. Satisfying both requirements simultaneously is non-trivial. As we show
precisely below, a simple lifting to the exponential-size probability simplex on all solutions guarantees
convexity; and, on the other hand, compressed parameterizations with “bad” optimization landscapes
are also easy to come by (we give a natural example for Max-Cut in Remark 1). Hence, we seek to
understand the parametric complexity of gradient-based methods, i.e., how many parameters suffice
for a benign optimization landscape in the sense that it does not contain “bad” stationary points.

We thus theoretically investigate whether there exist solution generators with a tractable number
of parameters that are also efficiently optimizable, i.e., gradient descent requires a small number
of steps to reach a near-optimal solution. We provide a positive answer under general assumptions
and specialize our results for several classes of hard and easy combinatorial optimization problems,
including Max-Cut and Min-Cut, Max-𝑘-CSP, Maximum-Weighted-Bipartite-Matching and Traveling
Salesman. We remark that a key difference between (computationally) easy and hard problems is not
the ability to find a compressed and efficiently optimizable generative model but rather the ability to
efficiently draw samples from the parameterized distributions.

1.1 Our Framework

We introduce a theoretical framework for analyzing the effectiveness of gradient-based methods on
the optimization of solution generators in combinatorial optimization, inspired by [BPL+16].

Let I be a collection of instances of a combinatorial problem with common solution space 𝑆 and
𝐿(�; 𝐼) : 𝑆 ! R be the cost function associated with an instance 𝐼 2 I, i.e., 𝐿(𝑠; 𝐼) is the cost of
solution 𝑠 given the instance 𝐼 . For example, for the Max-Cut problem the collection of instances I
corresponds to all graphs with 𝑛 nodes, the solution space 𝑆 consists of all subsets of nodes, and the
loss 𝐿(𝑠; 𝐼) is equal to (minus) the weight of the cut (𝑠, [𝑛] n 𝑠) corresponding to the subset of nodes
𝑠 2 𝑆 (our goal is to minimize 𝐿).
Definition 1 (Solution Cost Oracle). For a given instance 𝐼 we assume that we have access to an
oracle O(�; 𝐼) to the cost of any given solution 𝑠 2 𝑆, i.e., O(𝑠; 𝐼) = 𝐿(𝑠; 𝐼).

The above oracle is standard in combinatorial optimization and query-efficient algorithms are provided
for various problems [RSW17, GPRW19, LSZ21, AEG+22, PRW22]. We remark that the goal of
this work is not to design algorithms that solve combinatorial problems using access to the solution
cost oracle (as the aforementioned works do). This paper focuses on landscape design: the algorithm
is fixed, namely (stochastic) gradient descent; the question is how to design a generative model that
has a small number of parameters and the induced optimization landscape allows gradient-based
methods to converge to the optimal solution without getting trapped at local minima or vanishing
gradient points.

LetR be some prior distribution over the instance space I andW be the space of parameters of the
model. We now define the class of solution generators. The solution generator 𝑝(𝑤) with parameter
𝑤 2 W takes as input an instance 𝐼 and generates a random solution 𝑠 in 𝑆. To distinguish between
the output, the input, and the parameter of the solution generator, we use the notation 𝑝(�; 𝐼;𝑤) to
denote the distribution over solutions and 𝑝(𝑠; 𝐼;𝑤) to denote the probability of an individual solution
𝑠 2 𝑆. We denote by P = f𝑝(𝑤) : 𝑤 2 Wg the above parametric class of solution generators. For
some parameter 𝑤, the loss corresponding to the solutions sampled by 𝑝(�; 𝐼;𝑤) is equal to

L(𝑤) = E
𝐼�R

[L𝐼(𝑤)] , L𝐼(𝑤) = E
𝑠�𝑝(�;𝐼;𝑤)

[𝐿(𝑠; 𝐼)] . (1)

Our goal is to optimize the parameter 𝑤 2 W in order to find a sampler 𝑝(�; 𝐼;𝑤) whose loss L(𝑤)
is close to the expected optimal value opt:

opt = E
𝐼�R

�
min
𝑠2𝑆

𝐿(𝑠; 𝐼)

�
. (2)

The policy gradient method [Kak01] expresses the gradient of L as follows

r𝑤L(𝑤) = E
𝐼�R

E
𝑠�𝑝(�;𝐼;𝑤)

[𝐿(𝑠; 𝐼)r𝑤 log 𝑝(𝑠; 𝐼;𝑤)] ,

and updates the parameter 𝑤 using the gradient descent update. Observe that a (stochastic) policy
gradient update can be implemented using only access to a solution cost oracle of Definition 1.

2

Solution Generators. In [BPL+ 16] the authors used neural networks as parametric solution gen-
erators for the TSP problem. They provided empirical evidence that optimizing the parameters of
the neural network using the policy gradient method results to samplers that generate very good
solutions for (Euclidean) TSP instances. Parameterizing the solution generators using neural networks
essentiallycompressesthe description of distributions over solutions (the full parameterization would
require assigning a parameter to every solution-instance pair(s; I)). Since for most combinatorial
problems the size of the solution space is exponentially large (compared to the description of the
instance), it is crucial that for such methods to succeed the parameterization must becompressedin
the sense that the description of the parameter spaceW is polynomial in the size of the description
of the instance familyI . Apart from having a tractable number of parameters, it is important that
theoptimization objectivecorresponding to the parametric classP can provably be optimized using
some �rst-order method in polynomial (in the size of the input) iterations.

We collect these desiderata in the following de�nition. We denote by[I] the description size ofI , i.e.,
the number of bits required to identify any element ofI . For instance, ifI is the space of unweighted
graphs with at mostn nodes,[I] = O(n2).
De�nition 2 (Complete, Compressed and Ef�ciently Optimizable Solution Generator). Fix a prior
R overI , a family of solution generatorsP = f p(w) : w 2 Wg, a loss functionL as in Equation
(1) and some� > 0.

1. We say thatP is completeif there exists somew 2 W such thatL (w) � opt + " , where
opt is de�ned in(2).

2. We say thatP is compressedif the description size of the parameter spaceW is polynomial
in [I] and inlog(1=").

3. We say thatP is ef�ciently optimizableif there exists a �rst-order method applied on the
objectiveL such that afterT = poly([W]; 1=") many updates on the parameter vectors,
�nds an (at most)� -sub-optimal vectorbw, i.e.,L (bw) � L (w) + � :

Remark 1. We remark that constructing parametric families that are complete and compressed,
complete and ef�ciently optimizable, or compressed and ef�ciently optimizable (i.e., satisfying any
pair of assumptions of Question 1 but not all 3) is usually a much easier task. Consider, for example,
the Max-Cut problem on a �xed (unweighted) graph withn nodes. Note thatI has description size
O(n2). Solutions of the Max-Cut for a graph withn nodes are represented by vertices on the binary
hypercubef� 1gn (coordinatei dictates the side of the cut that we put nodei). One may consider
the full parameterization of all distributions over the hypercube. It is not hard to see that this is a
complete and ef�ciently optimizablefamily (the optimization landscape corresponds to optimizing
a linear objective). However, itis not compressed, since it requires2n parameters. On the other
extreme, considering a product distribution over coordinates, i.e., we set the value of nodei to be+1
with probabilitypi and� 1 with 1� pi gives acomplete and compressedfamily. However, as we show
in Appendix B, the landscape of this compressed parameterization suffers from highly sub-optimal
local minima and therefore, it isnot ef�ciently optimizable.

Therefore, in this work we investigate whether it is possible to have all 3 desiderata of De�nition 2at
the same time.
Question 1. Are there complete, compressed, and ef�ciently optimizable solution generators (i.e.,
satisfying De�nition 2) for challenging combinatorial tasks?

1.2 Our Results

Our Contributions. Before we present our results formally, we summarize the contributions of
this work.

• Our main contribution is a positive answer (Theorem 1) to Question 1 under general
assumptions that capture many combinatorial tasks. We identify a set of conditions (see
Assumption 1) that allow us to design a family of solution generators that are complete,
compressed and ef�ciently optimizable.

• The conditions are motivated by obstacles that are important for any approach of this nature.
This includes solutions that escape to in�nity, and also parts of the landscape with vanishing
gradient. See the discussion in Section 3 and Figure 1.

3

• We specialize our framework to several important combinatorial problems, some of which
are NP-hard, and others tractable: Max-Cut, Min-Cut, Max-k-CSP, Maximum-Weight-
Bipartite-Matching, and the Traveling Salesman Problem.

• Finally, we investigate experimentally the effect of the entropy regularizer and the fast/slow
mixture scheme that we introduced (see Section 3) and provide evidence that it leads to
better solution generators.

We begin with the formal presentation of our assumptions on the feature mappings of the instances
and solutions and on the structure of cost function of the combinatorial problem.
Assumption 1(Structured Feature Mappings). Let S be the solution space andI be the instance
space. There exist feature mappings S : S ! X , for the solutions, and, I : I ! Z , for the
instances, whereX; Z are Euclidean vector spaces of dimensionnX andnZ , such that

1. (Bounded Feature Spaces)The feature and instance mappings are bounded, i.e., there exist
DS ; D I > 0 such thatk S (s)k2 � DS , for all s 2 S andk I (I)k2 � D I , for all I 2 I .

2. (Bilinear Cost Oracle)The cost of a solutions under instanceI can be expressed as a
bilinear function of the corresponding feature vector S (s) and instance vector I (I), i.e.,
the solution oracle can be expressed asO(s; I) = I (I)> M S (s) for anys 2 S; I 2 I ,
for some matrixM with kM kF � C.

3. (Variance Preserving Features)There exists� > 0 such thatVar s� U (S) [v � S (s)] � � kvk2
2

for anyv 2 X , whereU(S) is the uniform distribution over the solution spaceS.

4. (Bounded Dimensions/Diameters)The feature dimensionsnX ; nZ , and the diameter bounds
DS ; D I ; C are bounded above by a polynomial of the description size of the instance space
I . The variance lower bound� is bounded below by1=poly([I]).

Remark 2 (Boundedness and Bilinear Cost Assumptions). We remark that Items 1, 4 are simply
boundedness assumptions for the corresponding feauture mappings and usually follow easily assum-
ing that we consider reasonable feature mappings. At a high-level, the assumption that the solution
is a bilinear function of the solution and instance features (Item 2) prescribes that “good” feature
mappings should enable a simple (i.e., bilinear) expression for the cost function. In the sequel we see
that this is satis�ed by natural feature mappings for important classes of combinatorial problems.
Remark 3 (Variance Preservation Assumption). In Item 3 (variance preservation) we require that the
solution feature mapping has variance along every direction, i.e., the feature vectors corresponding to
the solutions must be “spread-out” when the underlying solution generator is the uniform distribution.
As we show, this assumption is crucial so that the gradients of the resulting optimization objective are
not-vanishing, allowing for its ef�cient optimization.

We mention that various important combinatorial problems satisfy Assumption 1. For instance,
Assumption 1 is satis�ed by Max-Cut, Min-Cut, Max-k-CSP, Maximum-Weight-Bipartite-Matching
and Traveling Salesman. We refer the reader to the upcoming Section 2 for an explicit description of
the structured feature mappings for these problems. Having discussed Assumption 1, we are ready to
state our main abstract result which resolves Question 1.
Theorem 1. Consider a combinatorial problem with instance spaceI that satis�es Assumption 1.
For any priorR overI and� > 0; there exists a family of solution generatorsP = f p(w) : w 2 Wg
with parameter spaceW that is complete, compressed and, ef�ciently optimizable.

A sketch behind the design of the familyP can be found in Section 3 and Section 4.
Remark 4 (Computational Barriers in Sampling). We note that the families of generative models
(a.k.a., solution generators) that we provide have polynomial parameter complexity and are opti-
mizable in a small number of steps using gradient-based methods. Hence, in a small number of
iterations, gradient-based methods converge to distributions whose mass is concentrated on nearly
optimal solutions. This holds, as we show, even for challenging (NP-hard) combinatorial problems.
Our results do not, however, proveP = NP , as it may be computationally hard tosamplefrom our
generative models. We remark that while such approaches are in theory hard, such models seem to
perform remarkably well experimentally where sampling is based on Langevin dynamics techniques
[SE20, SSDK+ 20]. Though as our theory predicts, and simulations support, landscape problems
seem to be a direct impediment even to obtain good approximate solutions.

4

Remark 5 (Neural Networks as Solution Samplers). A natural question would be whether our results
can be extended to the case where neural networks are (ef�cient) solution samplers, as in [BPL+ 16].
Unfortunately, a benign landscape result for neural network solution generators most likely cannot
exist. It is well-known that end-to-end theoretical guarantees for training neural networks are out of
reach since the corresponding optimization tasks are provably computationally intractable, see, e.g.,
[CGKM22] and the references therein.

Finally, we would like to mention an interesting aspect of Assumption 1. Given a combinatorial
problem, Assumption 1 essentially asks for thedesignof feature mappings for the solutions and the
instances that satisfy desiderata such as boundedness and variance preservation. Max-Cut, Min-Cut,
TSP and Max-k-CSP and other problems satisfy Assumption 1 because we managed to design
appropriate (problem-speci�c) feature mappings that satisfy the requirements of Assumption 1. There
are interesting combinatorial problems for which we do not know how to design such good feature
mappings. For instance, the "natural" feature mapping for the Satis�ability problem (SAT) (similar
to the one we used for Max-k-CSPs) would require feature dimension exponential in the size of the
instance (we need all possible monomials ofn variables and degree at mostn) and therefore, would
violate Item 4 of Assumption 1.

1.3 Related Work

Neural Combinatorial Optimization. Tackling combinatorial optimization problems constitutes
one of the most fundamental tasks of theoretical computer science [GLS12, PS98, S+ 03, Sch05,
CLS+ 95] and various approaches have been studied for these problems such as local search methods,
branch-and-bound algorithms and meta-heuristics such as genetic algorithms and simulated annealing.
Starting from the seminal work of [HT85], researchers apply neural networks [Smi99, VFJ15,
BPL+ 16] to solve combinatorial optimization tasks. In particular, researchers have explored the power
of machine learning, reinforcement learning and deep learning methods for solving combinatorial
optimization problems [BPL+ 16, YW20, LZ09, DCL+ 18, BLP21, MSIB21, NOST18, SHM+ 16,
MKS+ 13, SSS+ 17, ER18, KVHW18, ZCH+ 20, CCK+ 21, MGH+ 19, GCF+ 19, KLMS19].

The use of neural networks in combinatorial problems is extensive [SLB+ 18, JLB19, GCF+ 19,
YGS20, MSIB21, BPL+ 16, KDZ+ 17, YP19, CT19, YBV19, KCK+ 20, KCY+ 21, DAT20, NJS+ 20,
TRWG21, AMW18, KL20, Jeg22, SBK22, ART23] and various papers aim to understand the the-
oretical ability of neural networks to solve such problems [HS23b, HS23a, Gam23]. Our paper
builds on the framework of the in�uential experimental work of [BPL+ 16] to tackle combinatorial
optimization problems such as TSP using neural networks and reinforcement learning. [KP+ 21]
uses an entropy maximization scheme in order to generate diversi�ed candidate solutions. This
experimental heuristic is quite close to our theoretical idea for entropy regularization. In our work,
entropy regularization allows us to design quasar-convex landscapes and the fast/slow mixing scheme
to obtain diversi�cation of solutions. Among other related applied works, [KCK+ 20, KPP22] study
the use of Transformer architectures combined with the Reinforce algorithm employing symmetries
(i.e., the existence of multiple optimal solutions of a CO problem) improving the generalization
capability of Deep RL NCO and [MLC+ 21] studies Transformer architectures and aims to learn
improvement heuristics for routing problems using RL.

Gradient Descent Dynamics. Our work provides theoretical understanding on the gradient-descent
landscape arising in NCO problems. Similar questions regarding the dynamics of gradient descent
have been studied in prior work concerning neural networks; for instance, [AS20] and [AKM + 21]
�x the algorithm (SGD on neural networks) and aim to understand the power of this approach (which
function classes can be learned). Various other works study gradient descent dynamics in neural
networks. We refer to [AS18, AS20, ABAB+ 21, MYSSS21, BEG+ 22, DLS22, ABA22, AAM22,
BBSS22, ABAM23, AKM + 21, EGK+ 23] (and the references therein) for a small sample of this line
of research.

2 Combinatorial Applications

We now consider concrete combinatorial problems and show that there exist appropriate and natural
feature mappings for the solutions and instances that satisfy Assumption 1; so Theorem 1 is applicable
for any such combinatorial task. For a more detailed treatment, we refer to Appendix G.

5

Min-Cut and Max-Cut. Min-Cut (resp. Max-Cut) are central graph combinatorial problems where
the task is to split the nodes of the graph in two subsets so that the number of edges from one subset
to the other (edges of the cut) is minimized (resp. maximized). Given a graphG with n nodes
represented by its Laplacian matrixL G = D � A, whereD is the diagonal degree matrix andA
is the adjacency matrix of the graph, the goal in the Min-Cut (resp. Max-Cut) problem is to �nd a
solution vectors 2 f� 1gn so thats> L G s=4 is minimized (resp. maximized).

We �rst show that there exist natural feature mappings so that the cost of every solutions under
any instance/graphG is a bilinear function of the feature vectors, see Item 2 of Assumption 1.
We consider the correlation-based feature mapping S (s) = (ss>)[2 Rn 2

, where by(�)[we
denote the vectorization/�attening operation and the Laplacian for the instance (graph), I (G) =
(L G)[2 Rn 2

. Then simply setting the matrixM to be the identityI 2 Rn 2 � n 2
the cost of any

solutions can be expressed as the bilinear function I (G)> M S (s) = (L [
G)> (ss>)[= s> L G s.

We observe that for (unweighted) graphs withn nodes the description size of the family of all
instancesI is roughlyO(n2), and therefore the dimensions of the feature mappings S ; I are
clearly polynomial in the description size ofI . Moreover, considering unweighted graphs, it holds
thatk I (G)k2; k S (s)k2; kM kF � poly(n). Therefore, the constantsDS ; D I ; C are polynomial in
the description size of the instance family.

It remains to show that our solution feature mapping satis�es the variance preservation assumption,
i.e., Item 3 in Assumption 1. A uniformly random solution vectors 2 f� 1gn is sampled by setting
eachsi = 1 with probability1=2 independently. In that case, we haveE[v � x] = 0 and therefore
Var (v � x) = E[(v � x)2] =

P
i 6= j vi vj E[x i x j] =

P
i v2

i = kvk2
2; since, by the independence of

x i ; x j , the cross-terms of the sum vanish. We observe that the same hold true for the Max-Cut problem
and therefore, structured feature mappings exist for Max-Cut as well (whereL(s; G) = � s> L G s).
We shortly mention that there also exist structured feature mappings for Max-k-CSP. We refer to
Theorem 4 for further details.
Remark 6 (Partial Instance Information/Instance Context). We remark that Assumption 1 allows for
the “instance” I to only contain partial information about the actual cost function. For example,
consider the setting where each sampled instance is an unweighted graphG but the cost oracle takes
the formO(G; s) = (L G)[M (ss>)[for a matrixM ij = ai wheni = j andM ij = 0 otherwise.
This cost function models having aunknown weight function, i.e., the weight of edgei of G is ai if
edgei exists in the observed instanceG, on the edges of the observed unweighted graphG, that the
algorithm has to learn in order to be able to �nd the minimum or maximum cut. For simplicity, in
what follows, we will continue referring toI as the instance even though it may only contain partial
information about the cost function of the underlying combinatorial problem.

Maximum-Weight-Bipartite-Matching and TSP. The Maximum-Weight-Bipartite-Matching
(MWBP) problem is another graph problem that, given a bipartite graphG with n nodes and
m edges, asks for the maximum-weight matching. The feature vector corresponding to a matching
can be represented as a binary matrixR 2 f 0; 1gn � n with

P
j Rij = 1 for all i and

P
i Rij = 1

for all j , i.e.,R is a permutation matrix. Therefore, for a candidate matchings, we set S (s) to be
the matrixR de�ned above. Moreover, the feature vector of the graph is the (negative �attened)
adjacency matrixE [. The cost oracle is thenL(R; E) =

P
ij E ij M ij Rij perhaps for an unknown

weight matrixM ij (see Remark 6). For the Traveling Salesman Problem (TSP) the feature vector is
again a matrixR with the additional constraint thatR has to represent a single cycle (a tour over all
cities). The cost function for TSP is againL(R; E) =

P
ij E ij M ij Rij . One can check that those

representations of the instance and solution satisfy the assumptions of Items 1 and 4. Showing that
the variance of those representations has a polynomial lower bound is more subtle and we refer the
reader to the Supplementary Material.

We shortly mention that the solution generators for Min-Cut and Maximum-Weight-Bipartite-
Matching are also ef�ciently samplable.

3 Optimization Landscape

Exponential Families as Solution Generators. A natural candidate to construct our family of
solution generators is to consider the distribution that assigns to each solutions 2 S and instanceI 2
I mass proportional to its scoreexp(� �L (s; I)) = exp(� � I (I)> M S (s)) = exp(� �z > Mx)

6

	Introduction
	Our Framework
	Our Results
	Related Work
	Combinatorial Applications
	Optimization Landscape
	Complete, Compressed and Efficiently Optimizable Solution Generators
	Experimental Evaluation
	Preliminaries and Notation
	The Proof of remark:just some properties
	Completeness
	Compression
	Efficiently Optimizable
	Quasar Convexity of the Regularized Loss
	The Proof of prop:quasar-vec
	Bounded Gradient Lemma and Proof
	Correlation Lower Bound Lemma and Proof
	Convergence for Quasar Convex Functions
	Deferred Proofs: Variance under Almost Uniform Distributions
	Applications to Combinatorial Problems
	Maximum Cut, Maximum Flow and Max-k-CSPs
	Maximum Cut
	Minimum Cut/Maximum Flow
	Max-k-CSPs
	Bipartite Matching and TSP
	Maximum Weight Bipartite Matching
	Travelling Salesman Problem
	Sampling and Counting
	Details of the Experimental Evaluation

