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Abstract

This work presents FaceComposer, a unified generative model that accomplishes
a variety of facial content creation tasks, including text-conditioned face synthesis,
text-guided face editing, face animation efc. Based on the latent diffusion
framework, FaceComposer follows the paradigm of compositional generation
and employs diverse face-specific conditions, e.g., Identity Feature and Projected
Normalized Coordinate Code, to release the model creativity at all possible. To
support text control and animation, we clean up some existing face image datasets
and collect around 500 hours of talking-face videos, forming a high-quality large-
scale multi-modal face database. A temporal self-attention module is incorporated
into the U-Net structure, which allows learning the denoising process on the
mixture of images and videos. Extensive experiments suggest that our approach
not only achieves comparable or even better performance than state-of-the-arts on
each single task, but also facilitates some combined tasks with one-time forward,
demonstrating its potential in serving as a foundation generative model in face
domain. We further develop an interface such that users can enjoy our one-step
service to create, edit, and animate their own characters. Code, dataset, model, and
interface will be made publicly available.

1 Introduction

Due to the rapid development of generative models, such as diffusion models (DMs) [10, 15, 47],
VAEs [21], GANSs [6] and flow models [5] in the computer vision area, automatic content creation has
recently received an increasing amount of attention for its real-world applications. Benefiting from
these generative models, facial content creation as a critical part has recently achieved impressive
progress and simultaneously shows great application potential, e.g., virtual digital human, artistic
creation, and intelligent customer service.

Existing face generative models [20, 23, 39, 61] are usually developed as highly customized systems,
meaning that one model can only handle one task. However, this design poses two significant
challenges: 1) hard to accomplish complex tasks, such as integrating face creating, editing and then
animating the generated face in a single step; 2) redundant consumption of memory and computation.
For example, one needs to train and save a number of models to build a multi-functional system,
and perform complicated inference processes. The challenges could inevitably limit its further
applications and development.

To tackle these problems, we propose compositional FaceComposer in this work, a unified model
that is capable of simultaneously tackling versatile facial tasks, including face generation, face editing,
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face animation, and their combinations. Specifically, we decompose a given face into multi-level
representative factors, e.g., Identity Features, Projected Normalized Coordinate Code (PNCC) [64]
and Text2Face (T2F) Embeddings, and then train a powerful latent diffusion model conditioned on
them to compose the input face. This design provides the model with exceptional controllability
over facial content creation, enabling a seamless process from generating a face to utilizing it. In
particular, we have additionally incorporated temporal self-attention to enable joint learning from
both images and videos simultaneously. To optimize FaceComposer, we finally gather a high-quality
large-scale multi-modal face dataset, including 1:1 million face images from pre-existing datasets
and 500 hours of meticulously cleaned talking face videos.

Extensive quantitative and qualitative results demonstrate that FaceComposer achieves exceptional
performance in various facial content creation tasks. FaceComposer surpasses previous state-of-
the-art methods in face generation, face editing, and audio-driven face animation in terms of the
most widely-used evaluation metrics. Furthermore, we have devised intricate yet imaginative tasks to
showcase the advantages of our diverse condition composition.

2 Related work

Face generation. The goal of face generation [34, 53, 56, 57] is to generate photo-realistic face
images. Among them, StyleGAN series [17—19] boost the generation quality by introducing
controllable and interpretable latent space. After that, some variants [51, 63, 42, 41, 52] are proposed
for further quality improvement. One of them, TediGAN [51], maps text into the StyleGAN latent
space to make the text-guided face generation. Another example is LAFITE [63], which presents
a language-free training framework with a conditional StyleGAN generator. Recently, diffusion
models [10, 32, 33, 38, 37] become more and more popular in image synthesis area due to their
strong generative abilities. We find fine-tuning a pre-trained diffusion model will bring comparable
or even superior performance to the GAN paradigm.

Face editing. Face editing [20, 23, 25, 27, 54] aims to manipulate the face images guided by text
descriptions or masks. Similar to face generation, StyleGAN-based methods [51, 29, 49, 65] show
remarkable performance in face editing. Besides TediGAN, StyleClip [29] combines representation
ability of CLIP [31] and generative power of StyleGAN to optimize the editing direction. In contrast
to the above methods, CollDiff [13] trains the diffusion model with multi-modal conditions (text +
mask), in order to make them complementary. It is noted that TediGAN and CollDiff both support
face generation and editing, which differ from ours in the following aspects: 1) TediGAN is essentially
designed as a bespoke system, i.e., it can only complete one task (generation or editing) in one model
inference. 2) CollDiff uses multiple diffusion models (one model for one condition), leading to
low efficiency in training and inference stage. 3) FaceComposer only use one diffusion model in a
unified framework, and can finish different facial creation combinations in one model inference.

Face animation. Face animation [39, 36, 50, 55, 35, 30, 61, 62, 26, 44] intends to make the target
face move according to a driving video or audio. Video-driven methods [39, 36, 50, 55, 35] focus
on modeling the motion relationships between source and target face. For example, FOMM [39]
decouples appearance and motion and introduces keypoints representation to support complex motions.
PIRenderer [36] employs 3DMM to better control the face motions. Compared with keypoints and
3DMMs, the PNCC we used contains more dense and intuitive facial structure information, making it
easier to be learned by the model. Audio-driven methods [30, 61, 62, 26, 44] pay more attention to
the lip synchronization (lip-sync) between the audio and the mouth of target face. MakeltTalk [62]
disentangles the content and speaker information to control lip motions. By learning from a powerful
lip-sync discriminator, Wav2lip [30] improves lip-sync accuracy. PC-AVS [61] generates pose-
controllable talking faces by modularizing audio-visual representations. However, all of them only
consider intra-frame information for reconstruction, ignoring inter-frame relationship, which is fixed
by adding a temporal attention module in our FaceComposer.

3 FaceComposer

Recent days have witnessed the powerful generative ability of Latent Diffusion Models (LDMs) [37],
which is consequently equipped as the backbone of our FaceComposer. We model various facial
content creations as a multiple-condition-driven denoising process. Fig. 1 shows the overview of



Figure 1: The framework dfaceComposerwhich taked frames and ve face-related conditions as
input, uses LDMs to predict the noise added in the latent space. We can combine diverse conditions to
nish face generation/editing/animation or their combinations. For example, the gresamditions

are for face generation, yellow for face editing, and retl for face animation.

FaceComposer In the uni ed framework, the inputs of different tasks are expressed as diverse
conditions, including Mask, PNCC, Sketch, Identity Feature and T2F Embedding. We achieve
versatile facial content creations through condition combinations (Sec. 3.2). Different from the
standard LDMs that is only designed for image generati@eceComposesupports both static and
dynamic content creationgge. our dataset contains both images and videos. So we introduce a
temporary attention module into LDMs for the two modalities joint training (Sec. 3.3 and Sec. 3.4).

3.1 Preliminaries

We denote the input frames axo 2 Rf 2 # W whereH andW are height and width of input
frames (we seitl = W = 256 in experiments).

Latent diffusion model. To save the computational resources of DMs, we follow LDMs to encode
frames into latent spacey = E(x) 2 Rf Caen N W with a pre-trained image encodEr,
whereCiaent means the dimension of latent spabeandw are set to 32 in practice. And in
the end of denoised process, the mglwill be mapped into pixel space with image decoBer

o = D(®) 2 R" 2 H W Inthe latent space, the diffusion model can be parameterized to
predict the added noise:

Lsimple = Ez; xc K Z (&Zo+ ¢ ;C)kg ; (1)

whereC denotes the condition,2 f 1;:::;Tg, 2 N (0;1) is the random Gaussian noisg,and
are two scalars related toWe freezeE andD, and start from a pre-trained LDMs.

Compositional generation pipeline. As a pioneering work of compositional generation,
Composer 12] decomposes an image into eight conditions to improve the controllability of
image synthesis, inspiring us to treat the inputs of different facial content creations as multiple
conditions, i.e.C in EqQ.1 is a condition set. And we adopt the sagn@ance directiongs [L7]:

2 (z;C)="12z (z¢;¢2)+(1 ')z (z:;c1), where! is the guidance weight; andc, are two
subsets o, respectively.

3.2 Diverse face-speci c conditions

Condition decompositionWe convert different inputs into the following ve face-speci ¢ conditions.

Mask: Mask is used to forcBaceComposeto generate or edit a face in a certain region. Based on

the nine parsing areas of fac&’], we randomly mask one or all of them. Wher 1, different

frames mask the same region. Before taken as a condition, masks are also mapped into latent space
throughE.



Table 1: Versatile creations based on condition compositighs PNCCs ID andT2F are short for
Mask, Sketch, PNCC sequence, Identity Feature, and T2F Embedding, respectively.

Single Creation Versatile Creations
Task Conditions Task Conditions
- T2F - PNCCsT2F
face generation- S face generation+animation PNCCs-D
® .. ® ..
- M+T2F - ID+M
face editing - M+S face generation+editing ID+T2F

® .. ® ..

face animation M+T2F+PNCCs face generation+editing+animation ID+T2F+PNCCs

PNCC:PNCC [p4] represents the geometric information of the face, a pre-de ned PNCC sequence
can effectively guide facial animation generation. We use FLAME Fittig fo extract the PNCC of

all frames. Different from the mask, the distribution of PNCC differs signi cantly from the original
frame, so we add a trainable modig to encode the PNCC.

Sketch:Sketch describes the contours of different parts of the face (e.g., face shape, eye size, mouth
location), it contains local details with low semantics. We adopt the same methbd &s gxtract

the sketches. Similar to PNCC, we input sketch information into a trairiablaodule to obtain the
condition.

Identity Feature:ldentity Feature indicates the identity attribute, excluding trivial information (such
as hair color, texture, expression). It can direct the model to generate a face with the speci ed ID. We
use ArcFace [3] to get the Identity Feature.

T2F Embedding: Text2Face (T2F) Embedding has two functions: 1) complementing Identity
Feature with detailed information; 2) enabling text control. Speci cally, during the training stage,
T2F Embedding is extracted from reference image with Face Gliptp feed facial details into
FaceComposer In the denoising process, besides the reference image, we can also obtain T2F
Embedding from text prompt with an extra prior model (similar to DALL-E 2 [33]).

Conditioning mechanisms Considering Mask, PNCC and Sketch represent the spatial local
information of frames, they are all extracted frotp and concatenated with; in the channel
dimension. In contrast, Identity Feature and T2F Embedding de ne the global semantic information,
hence we get them from the reference image, and add the projected ldentity Feature into time
embedding, serve T2F Embeddingkeyandvaluefor cross attention module af (corresponding

to Spatial Attin Fig. 1). Note that, except for PNCC, which needs to be tted in advance, all left
conditions are extracted on-the-y. We adopt a similar condition training strategy to Composer:
setting 0.5 dropout probability for each condition, 0.1 to drop all conditions, and 0.1 to reserve them
all.

Condition composition As we mentioned above, we can support versatile tasks: face generation,
face editing, face animation and their combinations by combining our diverse conditions.

We list some representative creations in Tab. 1. Taking face animation as an example, we use the
PNCC sequence (predicted by audio), Mask (masking the mouth region of the target face), and
T2F Embedding (providing texture information from reference image) to generate Talking Head.
It is worth mentioning thaFaceComposercan nish face generation + editing + animation with a
one-time forward by conditioning on Identity Feature (guiding face generation), T2F Embedding
(extracted from editing prompt) and PNCC sequence (obtained from reference video). More details
are shown in Sec. 4.3.

3.3 Temporal self-attention module

In order to create static and dynamic contents simultaneously, we prepare a multi-modal database,
consisting of both images and videos. And we argue that joint image-video training is important



Figure 2: The qualitative results of face generation.

for our FaceComposerconsidering face image will align facial content and text description, while
video will link spatial and temporal information of face sequences.

Inspired by {0, 11], we introduce a temporary self-attention (TSA) layer into LDMs (corresponding
to Temporal Att in Fig. 1), and select half batch samples from imaged (el for 0:5B) and the
other half from videos (i.ef =5 for left 0:5B) to make the joint strategy fully bene t each other
within each batch (see ablation study in Sec. 4.4), wBergthe total batch size. Assuming the input
of TSAisintheshape ® f Ciwr h° w0 itwillbearrangedtdB h® wly f Ciner
before entered into TSA, whef@ner ; h% wPare the intermediate channel dimension and feature
map size. Whefi =1, TSA degrades to an identity transformation.

3.4 Multi-modal face database

To empoweFaceComposewith image and video generation capabilities, we construct a high-quality
large-scale multi-modal face database comprising 1.1 million face images with text annotations and
approximately 500 hours-long talking face videos.

Image data. To construct the image part of our database, we carefully clean up LAION-Eé&kard
merge the cleaned dataset with CelebA-H@ and FFHQ [L7]. We clean up LAION-Face using

two approaches. Firstly, We use CLIPI] to Iter out the image-text pairs whose text descriptions

do not match the images. Speci cally, for each image-text pair, we compute the cosine similarity
between CLIP features extracted from the image and the text and Iter out the pair if the similarity is
lower than a prede ned threshold. Secondly, we use an off-the-shelf face det§dtwdptect faces

in images and Iter out images with no faces detected. Finally, we obtain the cleaned LAION-Face
dataset. It contains 1 million face images with corresponding text captions.

Video data. To construct the video part of our database, we collect talking face videos from Youtube,
BBC television, and some other web data. We manually clean collected videos to ensure high video
quality and audio-visual coherence. Our collected talking face dataset includes more than 500 hours
720P 1080P videos with the audio track. We will release the dataset when the paper is made public.
For more details, please refer$wupplementary Material

4 Experiments

4.1 Experimental setup

Implementation details. During the training, our model starts from a pre-trained LDMsd is
further trained on our multi-modal face database through a joint training mechanism. To enable text

*https://github.com/Stability-Al/stablediffusion



