
Stabilized Neural Differential Equations for Learning
Constrained Dynamics

Anonymous Author(s)
Affiliation
Address
email

Abstract

Many successful methods to learn dynamical systems from data have recently1

been introduced. However, assuring that the inferred dynamics preserve known2

constraints, such as conservation laws or restrictions on the allowed system states,3

remains challenging. We propose stabilized neural differential equations (SNDEs),4

a method to enforce arbitrary manifold constraints for neural differential equations.5

Our approach is based on a stabilization term that, when added to the original dy-6

namics, renders the constraint manifold provably asymptotically stable. Due to its7

simplicity, our method is compatible with all common neural ordinary differential8

equation (NODE) models and broadly applicable. In extensive empirical evalua-9

tions, we demonstrate that SNDEs outperform existing methods while extending10

the scope of which types of constraints can be incorporated into NODE training.11

1 Introduction12

Advances in machine learning have recently spurred hopes of displacing or at least enhancing the13

process of scientific discovery by inferring natural laws directly from observational data. In particular,14

there has been a surge of interest in data-driven methods for learning dynamical laws in the form of15

differential equations directly from data [1, 2, 3, 4, 5, 6]. Assuming there is a ground truth system16

with dynamics governed by an ordinary differential equation17

du(t)

dt
= f(u(t), t) (with initial condition u(0) = u0) (1)

with u(t) ∈ Rn and f : Rn × R → Rn, the question is whether we can learn f from (potentially18

noisy and irregularly sampled) observations (ti, u(ti))Ni=1.19

Neural ordinary differential equations (NODEs) provide a prominent and successful method for this20

task, which leverages machine learning by directly parameterizing the vector field f of the ODE as21

a neural network [1] (see also Kidger [7] for an overview). A related approach is called universal22

differential equations (UDEs) [2] and combines mechanistic or process-based model components23

with universal function approximators, typically also neural networks. In this paper, we will refer to24

these methods collectively as neural differential equations (NDEs), meaning any ordinary differential25

equation model in explicit form, where the right-hand side is either partially or entirely parameterized26

by a neural network. Due to the use of flexible neural networks, NDEs have certain universal27

approximation properties [8, 9], which are often interpreted as “in principle an NDE can learn any28

vector field f” [10]. While this can be a desirable property in terms of applicability, in typical settings29

one often has prior knowledge about the dynamical system that should be incorporated.30

Like in other areas of machine learning – particularly deep learning – inductive biases can substantially31

aid generalization, learning speed and stability, as well as successful training in the low data regime.32

Learning dynamics from data is no exception [11]. In scientific applications, physical priors are often33

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

x
-2 -1 0 1 2

y
-2

-1

0

1

2

x
-2 -1 0 1 2

-2

-1

0

1

2
(a) (b)

NODE

SNDE

Constraint Manifold

Stabilized Trajectory

Figure 1: Sketch of the basic idea of stabilized neural differential equations, showing a simple
example of a constraint manifold M (black circle), an unstabilized vector field ((a), blue arrows) and
the corresponding stabilized vector field ((b), red arrows). The stabilization pushes any trajectory
starting away from (but near) the manifold ((b), green line) to converge to it at a rate γ (see Section 3).

not only a natural source for inductive biases, but can even impose hard constraints on the allowed34

dynamics. For instance, when observing mechanical systems, a popular approach is to directly35

parameterize either the Lagrangian or Hamiltonian via a neural network [12, 13, 14]. Constraints36

such as energy conservation can then be “baked into the model”, in the sense that the parameterization37

of the vector field is designed to only represent functions that satisfy the constraints. Finzi et al. [15]38

build upon these works and demonstrate how to impose explicit constraints in second-order ODEs.39

In this work, we propose a stabilization technique to enforce arbitrary, even time-dependent manifold40

constraints for any class of NDEs, not limited to second-order systems and not requiring observations41

in particular (canonical) coordinates. It is compatible with all common explicit differential equation42

solvers as well as adjoint sensitivity methods. All code is publicly available at [anonymized].43

2 Background and Related Work44

A first order neural differential equation is typically given as45

du(t)

dt
= fθ(u, t) u(0) = u0, (2)

where u : R → Rn and the vector field fθ : Rn × R → Rn is at least partially parametrized by46

a neural network with parameters θ ∈ Rd. We focus our attention on ground truth dynamics f47

in Equation (1) that are continuous in t and Lipschitz continuous in u such that the existence of a48

unique (local) solution to the initial value problem is guaranteed by the Picard-Lindelöf theorem. As49

universal function approximators [16, 17], neural networks fθ can in principle approximate any such50

f to arbitrary precision, i.e., the problem of learning f is realizable.51

In practice, the parameters θ are optimized via stochastic gradient descent by integrating a trajectory52

û(t) = ODESolve(u0, fθ, t) and taking gradients of the loss L(u, û). Computing these gradients53

with respect to θ can be achieved using adjoint sensitivity analysis (optimize-then-discretize) or54

automatic differentiation of the solver operations (discretize-then-optimize) [1, 7]. While these have55

different (dis)advantages [18, 7], we use the adjoint sensitivity method for all experiments due to56

reportedly improved stability [1]. We also use the standard squared loss L(u, û) = ∥u− û∥22.57

Our stabilization approach is also related to the practice of index reduction in the context of differential58

algebraic equations (DAEs). We refer the interested reader to Appendix A for a brief overview of59

these connections.60

Related work. We focus on NODEs as they can handle arbitrary non-linear vector fields f and61

outperform traditional ODE parameter estimation techniques. In particular, they do not require a62

pre-specified parameterization of f in terms of a small set of semantically meaningful parameters. The63

original NODE model [1] has quickly been extended to augmented variants that work for second order64

systems [10, 19], irregularly-sampled observations [20], Bayesian NODEs [21], partial differential65

equations [22] and more–see, e.g., [7] for an overview. All such variants can in principle be stabilized66

via our approach. We focus primarily on the standard NODE approach to demonstrate the impact67

2

of stabilization rather than comparing different NODE methods. In our empirical evaluation, we68

therefore use vanilla NODE [1] or second-order NODE (SONODE) [19] implementations.69

Originally, NODEs were introduced as the infinite depth limit of residual neural networks (typically70

for classification), where there is no single true underlying dynamic law, but “some” vector field f71

is learned that allows subsequent (linear) separation of the inputs into different classes. A number72

of techniques have been introduced to restrict the number of function evaluations needed during73

training to improve efficiency, which typically also results in relatively simple learned dynamics74

[23, 24, 25, 26, 27]. These are orthogonal to our method and are mentioned here only for completeness,75

as they could also be viewed as “regularized” or “stabilized” NODEs from a different perspective.76

A large body of related work has focused on Hamiltonian or Lagrangian dynamics with conserved,77

time-independent first integrals, such as energy conservation, as constraints on the dynamics. Grey-78

danus et al. [12] assume second-order Hamiltonian dynamics where u(t) = (q(t), p(t)) consists of79

canonical coordinates and proposed to directly parameterize and learn the Hamiltonian H (instead80

of f) from which the (autonomous) vector field can then be derived via f(q, p) = (∂H∂p ,−
∂H
∂q).81

This approach has been extended to also work on certain more general coordinates (e.g., angles) or82

when only velocities are observed instead of momenta [28], to be agnostic to the coordinate system83

altogether by modeling the underlying coordinate-free symplectic two-form directly [29], studied84

extensively with respect to the importance of symplectic integrators [30], and adapted specifically85

to robotic systems measured in terms of their SE(3) pose and generalized velocity [31]. Recently,86

Gruver et al. [32] have shown that what makes Hamiltonian neural nets work in practice is not so87

much the built in energy conservation or symplectic structure, but rather the fact that they inherently88

assume that the system is governed by a single second-order DE. Chen et al. [33] provides a recent89

overview of learning Hamiltonian dynamics using neural architectures. A related line of work instead90

assumes second-order Lagrangian dynamics and parameterizes the inertia matrix and divergence91

of the potential [13] or any generic Lagrangian function [14], which again uniquely determine the92

dynamics f via the Euler-Lagrange equations.93

Instead of adapting the neural net architecture to satisfy certain properties by design, Lim and Kasim94

[34] take a different approach in which they still learn f directly and manually craft different types95

of regularization terms added to the loss that aim at enforcing different constraints or conservation96

laws. While similar to our approach in that no special architecture is required for different constraints,97

the key difference is that their approach requires crafting specific loss terms for different types of98

dynamics. Moreover, tuning the regularization parameter can be rather difficult. Lou et al. [35]99

develop “Manifold ODE”, a method that directly adjusts the forward mode integration and backward100

mode adjoint gradient computation to ensure that the trajectory is confined to a given manifold. Their101

method not only requires an entirely new training procedure, but also relies on an explicit chart102

representation of the manifold, which can be cumbersome to define in practice.103

The work most closely related to ours is by Finzi et al. [15]. The present work differs in a number104

of ways with the key advances of our approach being that SNDEs (a) are applicable to any type of105

ODE, allowing us to go beyond second-order systems with primarily Hamiltonian or Lagrangian type106

constraints, (b) are compatible with hybrid models, i.e., the UDE approach where part of the dynamics107

is assumed to be known and only the remaining unknown part is learned while still constraining the108

overall dynamics, and (c) can incorporate any type of manifold constraints. Regarding (c), we can for109

instance also enforce time-dependent first integrals, which do not correspond to constants of motion110

or conserved quantities arising directly from symmetries in the Lagrangian.111

In this work, we vastly broaden the scope of learning constrained dynamics by demonstrating the112

effectiveness of our approach on both first- and second-order systems including chaotic and non-113

chaotic as well as autonomous and non-autonomous examples. We cover constraints arising from114

holonomic restrictions on system states, conservation laws, and constraints imposed by controls.115

3 Stabilized Neural Differential Equations116

General approach. Given m < n explicit constraints, we require that solution trajectories of the117

NDE in Equation (2) are confined to an (n−m)-dimensional submanifold of Rn defined by118

M = {u ∈ ; g(u) = 0}, (3)

3

where g : Rn → Rm is a smooth function with 0 ∈ Rm being a regular value of g.1 In other words,119

we have an NDE on a manifold120

u̇ = fθ(u, t) with g(u) = 0. (4)

Any non-autonomous system can equivalently be represented by an autonomous system by adding121

time as an additional coordinate with constant derivative 1 and initial condition t0 = 0. Without122

loss of generality, from now on, we will consider only autonomous systems for ease of notation. We123

highlight again that our method applies equally to non-autonomous systems.124

While there are methods that aim at constraining neural network outputs to lie on a pre-specified125

manifold, the added difficulty in our setting is that we learn the vector field f , but constrain the126

solution trajectory u that solves a given initial value problem for the ODE defined by f . Inspired by127

Chin [36], we propose the following stabilization of the vector field Equation (4)128

u̇ = fθ(u)− γF (u)g(u), [general SNDE] (5)

where γ ≥ 0 is a scalar parameter of our method and F : Rn → Rn×m is a so-called stabilization129

matrix. We call Equation (5) a stabilized neural differential equation (SNDE) and say that it is130

stabilized with respect to the invariant manifold M. We illustrate the main idea in Figure 1. While131

even small deviations from the solenoidal (divergence free) vector field can lead to (potentially132

accumulating) constraint violations (left), our stabilization adjusts the vector field near the invariant133

manifold to render it asymptotically stable while leaving the vector field on M unaffected (right).134

Theoretical guarantees. First, note that ultimately we still want fθ to approximate the assumed135

ground truth dynamics f . However, Equation (5) explicitly modifies the right hand side of the NDE.136

The following theorem provides necessary and sufficient conditions under which fθ can still learn the137

correct dynamics when using a different right hand side.138

Theorem 1 (adapted from Chin [36]). Consider an NDE139

u̇ = fθ(u) (6)

on an invariant manifold M = {u ∈ Rn ; g(u) = 0}. A vector field u̇ = hθ(u) admits all solutions140

of Equation (6) on M if and only if hθ|M = fθ|M.141

Since g(u) = 0 on M, the second term on the right-hand side of Equation (5) vanishes on M.142

Therefore the SNDE Equation (5) admits all solutions of the constrained NDE Equation (4). Next,143

we will show that under mild conditions, the additional stabilization term in Equation (5) “nudges”144

the solution trajectory to lie on the constraint manifold in the sense that M is asymptotically stable.145

Theorem 2 (adapted form Chin [36]). Suppose the stabilization matrix F (u) is chosen such that the146

matrix G(u)F (u), where G(u) = gu is the Jacobian of g at u, is symmetric positive definite with the147

smallest eigenvalue λ(u) satisfying λ(u) > λ0 > 0 for all u. Assume further that there is a positive148

number γ0 such that149

∥G(u)fθ(u)∥ ≤ γ0∥g(u)∥ (7)
for all u near M. Then the invariant manifold M is asymptotically stable in the SNDE Equation (5)150

if γ ≥ γ0/λ0.151

Proof. Consider the Lyapunov function V (u) = 1
2g

T (u)g(u). Then (omitting arguments)152

d

dt
V (t) =

1

2

d

dt
∥g(u(t))∥2 = gT

dg

dt
= gT

dg

du
u̇ = gTG(fθ − γFg), (8)

where we substite Equation (5) for u̇. With Equation (7), we have gTGfθ ≤ γ0g
T g and since the153

eigenvalues of GF are assumed to be at least λ0 > 0 we have gTGFg ≥ λ0g
T g. Hence154

d

dt
V ≤ (γ0 − γλ0)∥g∥2, (9)

so the manifold M is asymptotically stable whenever γ0 − γλ0 ≤ 0.2155

1The preimage theorem ensures that M is indeed an n−m-dimensional submanifold of M.
2We note that there is a minor error in the proof of Theorem 2 in Chin [36], which we corrected here.

4

When fθ(u) and g(u) are given, M is asymptotically stable in the SNDE Equation (5) as long as156

γ ≥ ∥G(u)fθ(u)∥
λ0∥g(u)∥

. (10)

To summarize, the general form of the SNDE Equation (5) has the following important properties.157

1. The SNDE admits all solutions of the constrained NDE Equation (4) on M.158

2. M is asymptotically stable in the SNDE for sufficiently large values of γ.159

The stabilization hyperparameter γ, with units of inverse time, determines the rate of relaxation to160

the invariant manifold. In the limit γ → ∞, the SNDE Equation (5) is equivalent to a Hessenberg161

index-2 DAE, see Appendix A for more details.162

Practical implementation. This leaves us with finding a concrete instantiation of the stabilization163

matrix F (u) that should (a) satisfy that F (u)G(u) is symmetric positive definite with the small-164

est eigenvalue bounded away from zero near M, (b) efficiently computable, (c) compatible with165

gradient-based optimization of θ as part of an NDE. In our experiments, we use the Moore-Penrose166

pseudoinverse of the Jacobian of g at u as the stabilization matrix167

F (u) = G+(u) = G(u)T
(
G(u)G(u)T

)−1 ∈ Rn×m. (11)

Let us analyze the properties of this choice. Regarding the requirements (b) and (c), the pseudoinverse168

can be computed efficiently via a singular value decomposition with highly optimized implementations169

in all common numerical linear algebra libraries (including deep learning frameworks) and does not170

interfere with gradient-based optimization. In particular, the computational cost for the pseudoinverse171

is O(m2n), i.e., it scales well with the problem size. The quadratic scaling in the number of constraints172

is often tolerable in practice, where the constraint manifold is typically low-dimensional. Moreover,173

the Jacobian G(u) of g can be obtained via auto-differentiation in the respective frameworks.174

Regarding requirement (a), the pseudoinverse G(u)+ is an orthogonal projection onto the tangent175

space TuM of the manifold at u. Hence, locally in a neighborhood of u ∈ M, we consider the176

stabilization matrix as a projection back onto the invariant manifold M, see Figure 1. In particular,177

G(u) has full rank for u ∈ M and G+G = GT (GGT)−1G is symmetric and positive definite near178

M. From here on, we thus consider the following specific form for the SNDE Equation (5),179

u̇ = fθ(u)− γG+(u)g(u). [practical SNDE] (12)

The only parameter of SNDE is γ, which intuitively determines the “strength of nudging the trajectory180

back towards M”. Here, γ is neither a Lagrangian parameter (corresponding to a constraint on θ), nor181

a regularization parameter (to overcome an ill-posedness by regularization). Therefore, there is no182

“correct” value for γ. In particular, Theorem 1 holds for all γ, which implies that we can also include183

or remove the stabilization term at any time during training. For example, it may be beneficial to start184

training without stabilization until fθ is close to f and then switch on stabilization. Theorem 2 only185

requires γ to be “sufficiently large”.186

4 Results187

We now demonstrate the effectiveness of SNDEs on examples that cover autonomous first- and188

second-order systems with a conserved first integral of motion or holonomic constraints, a non-189

autonomous first-order system with a conserved quantity, a non-autonomous controlled first-order190

system with a time-dependent constraint stemming from the control, and a chaotic second-order191

system with a conservation law. As a metric for predicted state û(t) versus ground truth u(t), we use192

the relative error ∥u(t)− û(t)∥2/∥u(t)∥2, and analogous relative errors for the constraints g(u).193

We further demonstrate empirically that SNDEs are insensitive to the specific choice of γ over a large194

range (beyond a minimum value) and provide more intuition about choosing γ and the computational195

implications in Appendix B. Hence, SNDEs are easy to use in practice across a wide variety of settings196

with minimal to no tuning. Appendix C provides runtime comparisons between SNDEs and vanilla197

NODEs showing that SNDEs only incur moderate overhead in terms of computational requirements198

compared to vanilla NODEs. Finally, Appendix D provides results on additional experiments due to199

space constraints.200

5

x
-1.5 -1.0 -0.5 0.0 0.5

y

-1.0

-0.5

0.0

0.5

1.0

Time (seconds)
0 50 100

R
el

at
iv

e
E

rr
or

 (
S

ta
te

)

100

105

1010

1015

Time (seconds)
0 50 100R

el
at

iv
e

E
rr

or
 (

A
ng

. M
om

.)

100

1010

1020

y1
y2

y 3

Time (seconds)
0 400 800

R
el

at
iv

e
E

rr
or

 (
S

ta
te

)

10-3

100

103

106

109

Time (seconds)
0 400 800

R
el

at
iv

e
E

rr
or

 (
C

as
im

ir)

100

1010

1020

Time (seconds)
0 5 10 15

v 1
[V

]

-2

-1

0

1

2

Time (seconds)
0 40 80

R
el

at
iv

e
E

rr
or

 (
S

ta
te

)

100

105

1010

Time (seconds)
0 40 80

R
el

at
iv

e
E

rr
or

 (
E

ne
rg

y)

100

1010

1020

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Ground Truth SNDE (SO)NODE

-0.5
0.0

0.5
-0.5

0.0
0.5

0.7
0.8
0.9

Figure 2: Top row: Results for the two-body problem (a-c). Middle row: Results for the rigid body
rotation (d-f). Bottom row: Results for the DC-to-DC converter (g-i), where we show the voltage
v1 across the first capacitor during a single test trajectory in (g), highlighting that vanilla NODE
(blue) accumulates errors with each application of the switch. In all settings, the vanilla NODE (blue)
quickly drifts from the manifold and subsequently diverges exponentially in relative error, while the
SNDE (red) is confined to the manifold with accurate predictions over a long horizon.

4.1 Two-Body Problem [second-order, autonomous, non-chaotic, conservation law]201

The motion of two (pointlike) bodies attracting each other with a force inversely proportional to their202

square distance (e.g., gravitational interaction of unit mass objects in the non-relativistic limit) can be203

written in Cartesian coordinates as204

ẍ = − x

(x2 + y2)3/2
, ÿ = − y

(x2 + y2)3/2
, (13)

where one body is fixed at the origin and x, y are the coordinates of the other body in the plane of its205

orbit [37]. We stabilize the dynamics with respect to the conserved angular momentum L, yielding206

M = {(x, y) ∈ R2 ; xẏ + yẋ− L0 = 0}. (14)

Again, we train on 40 trajectories with initial conditions (x, y, ẋ, ẏ) = (1−e, 0, 0,
√

1−e/1+e), where207

the eccentricity e is sampled uniformly via e ∼ U(0.5, 0.7). Each trajectory consists of a single208

period of the orbit sampled with a timestep of ∆t = 0.1.209

6

The top row of Figure 2 shows that SNDE achieves stable long-term prediction over multiple orbits,210

whereas unstabilized NODEs exponentially diverge from the correct orbit.211

4.2 Motion of a Rigid Body [first-order, autonomous, non-chaotic, holonomic constraint]212

The angular momentum vector y = (y1, y2, y3)
T of a rigid body with arbitrary shape and mass213

distribution satisfies Euler’s equations of motion214 (
ẏ1
ẏ2
ẏ3

)
=

(
0 −y3 y2
y3 0 −y1
−y2 y1 0

)(
y1/I1
y2/I2
y3/I3

)
, (15)

where the coordinate axes are the principal axes of the body, I1, I2, I3 are the principal moments of215

inertia, and the origin of the coordinate system is fixed at the body’s centre of mass [37]. The motion216

of y conserves the Casimir function C(y) = 1
2

(
y21 + y22 + y23

)
, which is equivalent to conservation217

of angular momentum in the orthogonal body frame and constitutes a holonomic constraint on the218

allowed states of the system. We therefore have the manifold219

M = {(y1, y2, y3) ∈ R3 ; y21 + y23 + y23 − C0 = 0}. (16)

We train on 40 trajectories with initial conditions (y1, y2, y3) = (cos(ϕ), 0, sin(ϕ)), where ϕ is drawn220

from a uniform distribution ϕ ∼ U(0.5, 1.5). Each trajectory consists of a 15 seconds sample with a221

timestep of ∆t = 0.1 seconds.222

Again, the middle row in Figure 2 demonstrates that unlike vanilla NODE, SNDE manages to stabilize223

the predicted dynamics over a long time horizon in this first-order system.224

4.3 DC-to-DC Converter [first-order, non-autonomous, non-chaotic, conservation law]225

u

L3

1

C2

0

C1

Figure 3: Idealized
schematic of a DC-to-
DC converter.

We now consider an idealized DC-to-DC converter [38, 39] illustrated in226

Figure 3 with dynamics227

C1v̇1 = (1− u)i3, C2v̇2 = ui3, L3i̇3 = −(1− u)v1 − uv2, (17)

where v1, v2 are state voltages across capacitors C1, C2, respectively, i3 is228

the state current across an inductor L3, and u ∈ {0, 1} is a control input (a229

switch) that can be used to transfer energy between the two capacitors via230

the inductor. The total energy in the circuit, E = 1
2 (C1v

2
1+C2v

2
2+L3i

2
3),231

is conserved, yielding the manifold232

M = {(v1, v2, i3) ∈ R3 ; C1v
2
1 + C2v

2
2 + L3i

2
3 − E0 = 0}. (18)

We train on 40 trajectories integrated over 10 seconds with a timestep of ∆t = 0.1 seconds, where233

C1 = 0.1, C2 = 0.2, L3 = 0.5, and a switching period of 3 seconds, i.e., the switch is toggled every234

1.5 seconds. The initial conditions for (v1, v2, i3) are drawn from a uniform distribution U(0, 1).235

The bottom row of Figure 2 shows the voltage across C1 over multiple switching events (g), with236

NODE (blue) accumulating errors every time the switch is applied, whereas SNDE remains accurate.237

Panels (h,i) show the familiar exponentially accumulating errors for vanilla NODE versus constant238

relative errors for SNDE.239

4.4 Controlled Robot Arm [first-order, non-autonomous, non-chaotic, time-dependent control]240

Next, we apply SNDEs to solve a data-driven inverse kinematics problem [40], that is, learning the241

dynamics of a robot arm that satisfy a prescribed path p(t). We consider an articulated robot arm242

consisting of three connected segments of fixed length 1 illustrated in Figure 4(a). Assuming one243

end of the first segment is fixed at the origin and the robot arm is restricted to move in a plane, the244

endpoint e(θ) of the last segment is given by245

e(θ) =

(
cos(θ1) + cos(θ2) + cos(θ3)
sin(θ1) + sin(θ2) + sin(θ3)

)
, (19)

where θj is the angle of the j-th segment with respect to the horizontal and θ = (θ1, θ2, θ3). The246

problem consists of finding the motion of the three segments θ(t) such that the endpoint e(θ) follows247

7

Figure 4: Controlled robot arm. (a) Schematic of the robot arm. (b) Snapshot of a single test
trajectory. After 100 seconds the NODE (blue) has drifted significantly from the prescribed control
while the SNDE (red) accurately captures the ground truth dynamics (black). (c) Relative error in the
endpoint e(θ) averaged over 100 test trajectories. NODE (blue) accumulates errors and leaves the
prescribed path, while SNDE (red) remains accurate. Shadings in (c) are 95% confidence intervals.

a prescribed path p(t) in the plane, i.e., e(θ) = p(t). Minimizing ||θ̇(t)||, it can be shown [41] that248

the optimal path satisfies249

θ̇ = e′(θ)T
(
e′(θ)e′(θ)T

)−1
ṗ(t), (20)

where e′ is the Jacobian of e. These will be our ground truth equations of motion.250

We stabilize the SNDE with respect to the (time-dependent) manifold251

M = {(θ, t) ∈ S× R ; e(θ)− p(t) = 0}. (21)

In particular, we prescribe the path252

p(t) = e0 −
(

sin(2πt)/2π
0

)
, (22)

where e0 is the initial position of the endpoint, such that e(θ) traces a line back and forth on the x-axis.253

We train on 40 trajectories, integrated over 5 seconds with timestep ∆t = 0.1 and initial conditions254

(θ1, θ2, θ3) = (θ0,−θ0, θ0), where θ0 is drawn from a uniform distribution θ0 ∼ U(π/4, π/8).255

Additionally we provide the network with ṗ, the time derivative of the prescribed control.256

Figure 4 shows that the unconstrained NODE drifts substantially from the prescribed path, while the257

SNDE implements the control to a high degree of accuracy and without drift.258

4.5 Double Pendulum [second-order, autonomous, chaotic, conservation law]259

Finally, we apply stabilization to the chaotic dynamics of the frictionless double pendulum system.260

The total energy E of the system is conserved [42], yielding the manifold,261

M = {(θ1, θ2, ω1, ω2) ∈ S2 × R2 ; E(θ1, θ2, ω1, ω2)− E0 = 0}, (23)

where θi is the angle of the i-th arm with the vertical and ωi = θ̇i. We refer the reader to, for example,262

Arnold [42] (or the excellent wikipedia entry) for the lengthy equations of motion and expression263

for the total energy. For simplicity we take m1 = m2 = 1kg, l1 = l2 = 1m, and g = 9.81ms−2.264

We train on 40 trajectories, each consisting of 10 seconds equally sampled with ∆t = 0.05, and265

with initial conditions (θ1, θ2, ω1, ω2) = (ϕ, ϕ, 0, 0), where ϕ is drawn randomly from a uniform266

distribution ϕ ∼ U(π/4, 3π/4). We emphasize that this is a highly limited amount of data when it267

comes to describing the chaotic motion of the double pendulum system, intended to highlight the268

effect of stabilization in the low-data regime.269

Figure 5(a,b) shows that while initially SNDE only marginally outperforms vanilla NODE in terms of270

the relative error of the state, the longer term relative error in energy is substantially larger for NODE271

than for SNDE. A certain relative error in state is in fact unavoidable for chaotic systems.272

8

https://en.wikipedia.org/wiki/Double_pendulum

Time (seconds)
0 2 4

R
el

at
iv

e
E

rr
or

 (
S

ta
te

)

10-2.5

10-2.0

10-1.5

10-1.0

10-0.5

Time (seconds)
0 250 500

R
el

at
iv

e
E

rr
or

(E
ne

rg
y)

10-4

10-2

100

𝛾

0 1 2 4 8

H
el

lin
ge

r
D

is
ta

nc
e

0.1

0.2

0.3

0.4

(a) (b) (c)

SNDE

NODE

Figure 5: Results for the double pendulum. (a) Relative error in the state over 300 short test trials,
shown with 95% confidence intervals (shaded). Compared to the SNDE, the NODE diverges rapidly
as it begins to accumulate errors in the energy. (b) Relative error in the energy averaged over 5 long
test trials. (c) Comparison of the double pendulum’s invariant measure estimated by the NODE/SNDE
versus ground truth, with 95% confidence intervals.

In addition to predicting individual trajectories of the double pendulum, we also consider an additional273

important task: learning the invariant measure of this chaotic system. This can be motivated in rough274

analogy to climate predictions, where one also focuses on long-term prediction of the invariant275

measure of the system, as opposed to predicting individual trajectories in the sense of weather276

forecasting, which must break down after a short time due to the highly chaotic underlying dynamics.277

With an analogy to hybrid models of the Earth’s climate, we choose a slightly different training278

strategy than before, namely a hybrid setup in line with the UDE approach mentioned above, in which279

the dynamics of the first arm θ̈1 are known, while the dynamics of the second arm θ̈2 are inferred280

from data. We train on a single trajectory of duration 60 seconds with ∆t = 0.05. For each model,281

we then integrate ten trajectories of duration one hour – far longer than the observed data – each with282

initial conditions drawn from the same invariant set. An invariant measure is estimated from each283

long trajectory (see Appendix E) and compared with the ground truth via the Hellinger distance.284

Figure 5(c) shows that as we set γ to non-zero values, the accuracy in learning the double pendulum’s285

invariant measure increases dramatically due to stabilization, demonstrating that the ‘climate’ of this286

system is captured much more accurately by SNDE than by NODE.287

5 Conclusion288

We have introduced stabilized neural differential equations (SNDEs), a method for learning ordinary289

differential equation systems from observational data, subject to arbitrary explicit constraints such as290

those imposed by physical conservation laws. Our approach is based on a stabilization term that can291

be computed efficiently for arbitrary constraint functions and provably renders the invariant manifold292

asymptotically stable while allowing for all trajectories of the ground truth dynamics. A key benefits293

of our stabilization are its simplicity and generality, which make it compatible with all common294

NODE architectures and training methods without requiring any changes to the architecture. Crucially,295

SNDEs vastly broaden the scope of which constrained dynamics can be learned. We demonstrate296

their consistent efficacy in a range of settings including first- and second-order, autonomous and non-297

autonomous (controlled) systems, with constraints stemming from holonomic constraints, conserved298

first integrals of motion, as well as time-dependent restrictions on the system state. SNDEs are299

robust with respect to the only tuneable parameter and only incur moderate computational overhead300

compared to vanilla NODEs.301

The current key limitations and simultaneously interesting directions for future work include gener-302

alizations to partial differential equations, allowing observations and constraints to be provided in303

different coordinates, and scaling the method to high-dimensional settings such as learning dynamics304

from pixel observations, for example in fluid dynamics or climate modelling. Finally, we emphasize305

that high-dimensional, non-linear dynamics may not be identifiable from just a small number of306

solution trajectories. Hence, care must be taken when using learned dynamics in high-stakes scenarios307

(e.g., human robot interactions), especially when going beyond the training distribution.308

9

References309

[1] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary310

differential equations. 2018. doi: 10.48550/ARXIV.1806.07366. URL https://arxiv.org/311

abs/1806.07366. 1, 2, 3312

[2] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit313

Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations314

for scientific machine learning. 2020. doi: 10.48550/ARXIV.2001.04385. URL https:315

//arxiv.org/abs/2001.04385. 1316

[3] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations317

from data by sparse identification of nonlinear dynamical systems. Proceedings of the National318

Academy of Sciences, 113(15):3932–3937, 2016. doi: 10.1073/pnas.1517384113. URL https:319

//www.pnas.org/doi/abs/10.1073/pnas.1517384113. 1320

[4] Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression.jl,321

2023. 1322

[5] Hananeh Aliee, Fabian J Theis, and Niki Kilbertus. Beyond predictions in neural odes: Identifi-323

cation and interventions. arXiv preprint arXiv:2106.12430, 2021. 1324

[6] Sören Becker, Michal Klein, Alexander Neitz, Giambattista Parascandolo, and Niki Kilbertus.325

Predicting ordinary differential equations with transformers. In International Conference on326

Machine Learning (ICML), 2023. 1327

[7] Patrick Kidger. On neural differential equations. 2022. doi: 10.48550/ARXIV.2202.02435.328

URL https://arxiv.org/abs/2202.02435. 1, 2329

[8] Takeshi Teshima, Koichi Tojo, Masahiro Ikeda, Isao Ishikawa, and Kenta Oono. Universal ap-330

proximation property of neural ordinary differential equations. arXiv preprint arXiv:2012.02414,331

2020. 1332

[9] Han Zhang, Xi Gao, Jacob Unterman, and Tom Arodz. Approximation capabilities of neural333

odes and invertible residual networks. In International Conference on Machine Learning, pages334

11086–11095. PMLR, 2020. 1335

[10] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in336

neural information processing systems, 32, 2019. 1, 2337

[11] Hananeh Aliee, Till Richter, Mikhail Solonin, Ignacio Ibarra, Fabian Theis, and Niki Kilbertus.338

Sparsity in continuous-depth neural networks. In Advances in Neural Information Processing339

Systems (NeurIPS), 2022. 1340

[12] Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks, 2019. 2, 3341

[13] Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as342

model prior for deep learning, 2019. 2, 3343

[14] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley344

Ho. Lagrangian neural networks, 2020. 2, 3345

[15] Marc Finzi, Ke Alexander Wang, and Andrew Gordon Wilson. Simplifying hamiltonian and346

lagrangian neural networks via explicit constraints, 2020. 2, 3347

[16] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are348

universal approximators. Neural networks, 2(5):359–366, 1989. 2349

[17] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of350

control, signals and systems, 2(4):303–314, 1989. 2351

[18] Yingbo Ma, Vaibhav Dixit, Michael J Innes, Xingjian Guo, and Chris Rackauckas. A comparison352

of automatic differentiation and continuous sensitivity analysis for derivatives of differential353

equation solutions. In 2021 IEEE High Performance Extreme Computing Conference (HPEC),354

pages 1–9. IEEE, 2021. 2355

10

https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/2001.04385
https://www.pnas.org/doi/abs/10.1073/pnas.1517384113
https://www.pnas.org/doi/abs/10.1073/pnas.1517384113
https://www.pnas.org/doi/abs/10.1073/pnas.1517384113
https://arxiv.org/abs/2202.02435

[19] Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On second356

order behaviour in augmented neural odes. Advances in Neural Information Processing Systems,357

33:5911–5921, 2020. 2, 3358

[20] RT Chen, D Duvenaud, and Y Rubanova. Latent odes for irregularly-sampled time series.359

Advances in Neural Information Processing Systems, 32, 2019. 2360

[21] Raj Dandekar, Karen Chung, Vaibhav Dixit, Mohamed Tarek, Aslan Garcia-Valadez, Kr-361

ishna Vishal Vemula, and Chris Rackauckas. Bayesian neural ordinary differential equations.362

arXiv preprint arXiv:2012.07244, 2020. 2363

[22] Maximilian Gelbrecht, Niklas Boers, and Jürgen Kurths. Neural partial differential equations364

for chaotic systems. New Journal of Physics, 23(4):043005, 2021. 2365

[23] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your366

neural ode: the world of jacobian and kinetic regularization. In International conference on367

machine learning, pages 3154–3164. PMLR, 2020. 3368

[24] Arnab Ghosh, Harkirat Behl, Emilien Dupont, Philip Torr, and Vinay Namboodiri. Steer:369

Simple temporal regularization for neural ode. Advances in Neural Information Processing370

Systems, 33:14831–14843, 2020. 3371

[25] Jacob Kelly, Jesse Bettencourt, Matthew J Johnson, and David K Duvenaud. Learning differen-372

tial equations that are easy to solve. Advances in Neural Information Processing Systems, 33:373

4370–4380, 2020. 3374

[26] Avik Pal, Yingbo Ma, Viral Shah, and Christopher V Rackauckas. Opening the blackbox: Accel-375

erating neural differential equations by regularizing internal solver heuristics. In International376

Conference on Machine Learning, pages 8325–8335. PMLR, 2021. 3377

[27] Patrick Kidger, Ricky TQ Chen, and Terry J Lyons. " hey, that’s not an ode": Faster ode adjoints378

via seminorms. In ICML, pages 5443–5452, 2021. 3379

[28] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ode-net: Learning380

hamiltonian dynamics with control. arXiv preprint arXiv:1909.12077, 2019. 3381

[29] Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi. Neural symplectic form: learn-382

ing hamiltonian equations on general coordinate systems. Advances in Neural Information383

Processing Systems, 34:16659–16670, 2021. 3384

[30] Aiqing Zhu, Pengzhan Jin, and Yifa Tang. Deep hamiltonian networks based on symplectic385

integrators. arXiv preprint arXiv:2004.13830, 2020. 3386

[31] Thai Duong and Nikolay Atanasov. Hamiltonian-based neural ode networks on the se (3)387

manifold for dynamics learning and control. arXiv preprint arXiv:2106.12782, 2021. 3388

[32] Nate Gruver, Marc Finzi, Samuel Stanton, and Andrew Gordon Wilson. Deconstructing the389

inductive biases of hamiltonian neural networks. arXiv preprint arXiv:2202.04836, 2022. 3390

[33] Zhijie Chen, Mingquan Feng, Junchi Yan, and Hongyuan Zha. Learning neural hamiltonian391

dynamics: A methodological overview. arXiv preprint arXiv:2203.00128, 2022. 3392

[34] Yi Heng Lim and Muhammad Firmansyah Kasim. Unifying physical systems’ inductive biases393

in neural ode using dynamics constraints. arXiv preprint arXiv:2208.02632, 2022. 3394

[35] Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser Nam Lim, and395

Christopher M De Sa. Neural manifold ordinary differential equations. Advances in Neural396

Information Processing Systems, 33:17548–17558, 2020. 3397

[36] Hong Sheng Chin. Stabilization methods for simulations of constrained multibody dynamics.398

PhD thesis, University of British Columbia, 1995. URL https://open.library.ubc.ca/399

collections/ubctheses/831/items/1.0080031. 4, 14400

11

https://open.library.ubc.ca/collections/ubctheses/831/items/1.0080031
https://open.library.ubc.ca/collections/ubctheses/831/items/1.0080031
https://open.library.ubc.ca/collections/ubctheses/831/items/1.0080031

[37] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration, vol-401

ume 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second402

edition, 2006. ISBN 3-540-30663-3; 978-3-540-30663-4. Structure-preserving algorithms for403

ordinary differential equations. 6, 7404

[38] N.E. Leonard and P.S. Krishnaprasad. Control of switched electrical networks using averaging405

on lie groups. In Proceedings of 1994 33rd IEEE Conference on Decision and Control, volume 2,406

pages 1919–1924 vol.2, 1994. doi: 10.1109/CDC.1994.411098. 7407

[39] Simone Fiori. Manifold calculus in system theory and control—fundamentals and first-order408

systems. Symmetry, 13(11), 2021. ISSN 2073-8994. doi: 10.3390/sym13112092. URL409

https://www.mdpi.com/2073-8994/13/11/2092. 7410

[40] Suhan Park, Mathew Schwartz, and Jaeheung Park. Node ik: Solving inverse kinematics with411

neural ordinary differential equations for path planning, 2022. 7412

[41] Ernst Hairer. Solving differential equations on manifolds. 2011. URL https://www.unige.413

ch/~hairer/poly-sde-mani.pdf. 8414

[42] Vladimir Igorevich Arnold. Mathematical methods of classical mechanics, volume 60. Springer415

Science & Business Media, 2013. 8416

[43] C. W. Gear. Differential-algebraic equation index transformations. SIAM Journal on Scientific417

and Statistical Computing, 9(1):39–47, 1988. doi: 10.1137/0909004. URL https://doi.418

org/10.1137/0909004. 14419

[44] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Problems420

in Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, 1995.421

doi: 10.1137/1.9781611971224. URL https://epubs.siam.org/doi/abs/10.1137/1.422

9781611971224. 14423

[45] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Differential Equations424

and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, USA,425

1st edition, 1998. ISBN 0898714125. 14426

[46] Linda Petzold. Differential/algebraic equations are not ode’s. SIAM Journal on Scientific and427

Statistical Computing, 3(3):367–384, 1982. doi: 10.1137/0903023. URL https://doi.org/428

10.1137/0903023. 14429

[47] J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical systems.430

Computer Methods in Applied Mechanics and Engineering, 1(1):1–16, 1972. ISSN 0045-7825.431

doi: https://doi.org/10.1016/0045-7825(72)90018-7. URL https://www.sciencedirect.432

com/science/article/pii/0045782572900187. 14433

[48] Suyong Kim, Weiqi Ji, Sili Deng, Yingbo Ma, and Christopher Rackauckas. Stiff neural ordinary434

differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(9), 09 2021.435

ISSN 1054-1500. doi: 10.1063/5.0060697. URL https://doi.org/10.1063/5.0060697.436

093122. 14437

[49] Ludwig Arnold, Christopher KRT Jones, Konstantin Mischaikow, Geneviève Raugel, and438

Ludwig Arnold. Random dynamical systems. Springer, 1995. 16, 17439

[50] Mickaël D Chekroun, Eric Simonnet, and Michael Ghil. Stochastic climate dynamics: Random440

attractors and time-dependent invariant measures. Physica D: Nonlinear Phenomena, 240(21):441

1685–1700, 2011. 16, 17442

[51] David Diego, Kristian Agasøster Haaga, and Bjarte Hannisdal. Transfer entropy computation443

using the perron-frobenius operator. Phys. Rev. E, 99:042212, Apr 2019. doi: 10.1103/PhysRevE.444

99.042212. URL https://link.aps.org/doi/10.1103/PhysRevE.99.042212. 17445

[52] Kristian Agasøster Haaga, George Datseris, Inga Kottlarz, Alistair White, HeineRugland,446

and Steven G. Johnson. Juliadynamics/complexitymeasures.jl: v2.7.2, April 2023. URL447

https://doi.org/10.5281/zenodo.7862020. 17448

12

https://www.mdpi.com/2073-8994/13/11/2092
https://www.unige.ch/~hairer/poly-sde-mani.pdf
https://www.unige.ch/~hairer/poly-sde-mani.pdf
https://www.unige.ch/~hairer/poly-sde-mani.pdf
https://doi.org/10.1137/0909004
https://doi.org/10.1137/0909004
https://doi.org/10.1137/0909004
https://epubs.siam.org/doi/abs/10.1137/1.9781611971224
https://epubs.siam.org/doi/abs/10.1137/1.9781611971224
https://epubs.siam.org/doi/abs/10.1137/1.9781611971224
https://doi.org/10.1137/0903023
https://doi.org/10.1137/0903023
https://doi.org/10.1137/0903023
https://www.sciencedirect.com/science/article/pii/0045782572900187
https://www.sciencedirect.com/science/article/pii/0045782572900187
https://www.sciencedirect.com/science/article/pii/0045782572900187
https://doi.org/10.1063/5.0060697
https://link.aps.org/doi/10.1103/PhysRevE.99.042212
https://doi.org/10.5281/zenodo.7862020

[53] Harald Cramér. Mathematical methods of statistics, volume 26. Princeton university press,449

1999. 17450

[54] James H Verner. Numerically optimal runge–kutta pairs with interpolants. Numerical Algo-451

rithms, 53(2-3):383–396, 2010. doi: 10.1007/s11075-009-9290-3. URL https://doi.org/452

10.1007/s11075-009-9290-3. 17453

[55] Christopher Rackauckas and Qing Nie. DifferentialEquations.jl–a performant and feature-rich454

ecosystem for solving differential equations in Julia. Journal of Open Research Software, 5(1),455

2017. 17456

[56] Michael Innes, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco Concetto Rudilosso,457

Neethu Mariya Joy, Tejan Karmali, Avik Pal, and Viral Shah. Fashionable modelling with flux.458

CoRR, abs/1811.01457, 2018. URL https://arxiv.org/abs/1811.01457. 17459

[57] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. 17460

[58] Ch Tsitouras. Runge–kutta pairs of order 5 (4) satisfying only the first column simplifying461

assumption. Computers & Mathematics with Applications, 62(2):770–775, 2011. 17462

13

https://doi.org/10.1007/s11075-009-9290-3
https://doi.org/10.1007/s11075-009-9290-3
https://doi.org/10.1007/s11075-009-9290-3
https://arxiv.org/abs/1811.01457

A Differential Algebraic Equations463

A differential algebraic equation (DAE) in its most general, implicit form is464

F (t, x, ẋ) = 0, (24)

where x ∈ Rn and F : R × Rn × Rn → Rn. When ∂F/∂ẋ is nonsingular, Equation (24) is an465

implicit ODE and by the implicit function theorem may be written as an explicit ODE in the form466

ẋ = f(x, t) [43]. In the more interesting case of singular ∂F/∂ẋ, an important special case of467

Equation (24) is given by semi-explicit DAEs in Hessenberg form, for example,468

ẏ = f(t, y, z) (25a)
0 = g(t, y, z), (25b)

where x = (y, z). We call y the differential variables, since their derivatives appear in the equations,469

and z the algebraic variables, since their derivatives do not. The semi-explicit form of Equation (25)470

highlights the connection between certain classes of DAEs and ODEs subject to constraints.471

It is generally possible to differentiate the constraints Equation (25b) a number of times and sub-472

stitute the result into Equation (25a) to obtain a mathematically equivalent ODE. The number of473

differentiations required to do so is the differential index of the DAE, and corresponds loosely to474

the “distance” of the DAE from an equivalent ODE. The differential index – and related measures of475

index not directly based on differentiation – is used extensively to classify DAEs, especially in the476

context of numerical methods for their solution [44]. Each differentiation of the constraints reduces477

the index of the system by one (ODEs have index 0).478

Of particular interest in the context of this paper are constrained ODEs of the form479

u̇ = f(t, u) (26a)
0 = g(t, u), (26b)

where u ∈ Rn, f : R× Rn → Rn, and g : R× Rn → Rm. Equation (26) can be written as a semi-480

explicit Hessenberg index-2 DAE, with u as the differential variables and m Lagrange multipliers as481

the algebraic variables, for example,482

u̇ = f(t, u)−D(u)λ (27a)
0 = g(t, u), (27b)

where λ ∈ Rm and D(u) is any bounded matrix function such that GD, where G = gu is the483

Jacobian of g, is boundedly invertible for all t [45]. We can therefore approach the task of solving484

the constrained ODE Equation (26) from the perspective of solving the Hessenberg index-2 DAE485

Equation (27).486

DAEs are not ODEs, however, and a number of additional complications are encountered when we487

seek numerical solutions [46]. Generally, the higher the index, the harder it is to solve a given DAE.488

For this reason, it is common to first perform an index reduction (i.e. differentiate the constraints)489

before applying numerical methods. However, the numerical solution of the resulting index-reduced490

system may exhibit drift off from the invariant manifold defined by the original constraints. For this491

reason, Baumgarte [47] proposed a stabilization procedure for index-reduced DAEs that renders the492

invariant manifold asymptotically stable. Baumgarte’s stabilization is, in turn, a special case of the493

stabilization procedure later proposed by Chin [36] and adapted by us in this paper. We emphasize,494

however, that our stabilization procedure addresses a different application and problem than these495

related methods; while Baumgarte and Chin sought to stabilize drift off from the invariant manifold496

due to discretization error in an index-reduced DAE, we seek to constrain some learned dynamics497

imperfectly approximated by a neural network.498

Finally, one may ask why a neural network could not be incorporated directly into Equation (27)499

and the resulting index-2 DAE solved directly. While possible in principle, DAEs require implicit500

numerical methods, with the result that the computational cost of computing gradients of solutions501

– whether via automatic differentiation or adjoint sensitivity analysis – scales with the cube of the502

system size [48], rather than the efficient linear scaling when computing gradients of explicit solvers.503

14

Table 1: Training time of (SO)NODEs vs SNDEs. All experiments are trained for 1,000 epochs on an
Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz. Statistics are calculated over 5 random seeds.

Training Time (seconds)

Two-Body Problem Rigid Body DC-to-DC Converter

Model γ Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

NODE - 10,580 271 9,730 71 14,000 316

0.1 12,060 206 12,000 283 18,060 524
1 12,180 194 12,500 126 18,020 549
2 12,160 102 12,340 301 18,280 240

SNDE 4 12,980 147 14,160 280 18,020 354
8 14,000 268 15,320 376 18,200 482

16 14,260 162 15,680 519 - -
32 15,300 167 17,140 680 - -

B The Choice of γ and Runtime Implications504

We assess the computational cost of SNDEs compared to vanilla (SO)NODEs. SNDEs require the505

computation of (and backpropagation through) the pseudoinverse of the Jacobian of the constraint506

function g. Additionally, as γ is increased, SNDEs may require more solver steps at a given error507

tolerance, with the SNDE eventually becoming stiff for sufficiently large γ. Naively, one may thus508

expect a noticeable increase in runtime. However, as described in Section 2, the computational cost of509

training NDEs also depends on the “complexity” of the learned dynamics, which in turn determines510

how many function evaluations are required by the solver. This leads to nontrivial interactions511

between the added computation of enforcing constraints and the thereby potentially regularized512

“simpler” dynamics, which may require fewer function evaluations by the solver.513

In Table 1, we report comparisons of training times between NODEs and SNDEs for different values514

of γ for three settings. SNDEs take roughly 1.2 to 1.8 times longer to train, with smaller values of γ515

incurring less overhead. Overall, this is a manageable increase for most relevant scenarios.516

To complement these results, Figure 6 shows that the relative error remains almost unchanged for517

a large range of γ values, that is, beyond a certain minimum value SNDEs are not sensitive to the518

specific choice of γ. Even a value of γ = 1 works well in the settings we have considered, indicating519

that we can typically get away with runtime increases of a factor of 1.2. However, larger values of γ520

only lead to slightly increased training times, while potentially enforcing the constraints to a higher521

degree of accuracy.522

Finally, we also show inference times in Table 2. Here, the trend reverses and larger values of γ lead523

to lower inference times. This is because the solver requires fewer steps (has higher acceptance rates524

of proposed step sizes) for stronger stabilization. Hence, while predictive performance is largely525

unaffected, one can use the specific choice of γ as a tuning knob that trades off training time versus526

inference time.527

C Runtime Evaluation528

After the main paper deadline, we found it more natural to merge appendices Appendix B and529

Appendix C into one. This section is now empty, since runtime evalutions and comparisons with530

vanilla (SO)NODEs are already discussed in Appendix B.531

D Additional Experiments532

D.1 Stable Time533

The unstabilized, vanilla NODEs of Figure 2 are characterized by an initial drift from the invariant534

manifold that gives way to a subsequent rapid divergence. In practice, however, certain test trials535

may remain stable for significantly longer than others. In this section, we characterize the stable time536

15

0 50 100

R
el

at
iv

e
E

rr
or

 (
S

ta
te

)

10-3

10-2

10-1

100

0 50 100

R
el

at
iv

e
E

rr
or

 (
A

ng
. M

om
.)

10-4

10-3

10-2

0 400 800

R
el

at
iv

e
E

rr
or

 (
S

ta
te

)

10-4

10-2

100

0 400 800

R
el

at
iv

e
E

rr
or

 (
C

as
im

ir)

10-5

10-4

10-3

10-2

Time (seconds)

0 40 80

R
el

at
iv

e
E

rr
or

 (
S

ta
te

)

10-3

10-2

10-1

100

Time (seconds)

0 40 80

R
el

at
iv

e
E

rr
or

 (
E

ne
r g

y)

10-4

10-3

10-2

10-1

100

101

102

(a) (b)

(c) (d)

(e) (f)

𝛾

0.1
1
2
4
8
16
32

Figure 6: Effect of γ on relative errors. Top row: Two-body problem (a-b). Middle row: Rigid body
(c-d). Bottom row: DC-to-DC converter (e-f). As in Figure 2, all relative errors are averaged over
100 test trials. Beyond a certain value, SNDEs are not highly sensitive to the choice of γ, although
larger values may enforce the constraints more accurately.

Tstab of an individual test trial as the time elapsed until the relative error E(t) in the predicted system537

state û(t) exceeds a given threshold value Estab, i.e.538

Tstab = max {t |E(t) < Estab}. (28)

Taking Estab = 103, Table 3 shows Tstab for the the two-body problem, rigid body, and DC-to-DC539

converter experiments. Across several thousand test trials in this paper, we did not observe a single540

SNDE model diverge.541

E Invariant Measure542

Given that the double pendulum is a chaotic system, predictions of individual trajectories will break543

down after short times. We therefore also quantify the performance of NODEs and SNDEs in terms544

of their ability to capture the double pendulum’s invariant measure. We refer to Arnold et al. [49] and545

Chekroun et al. [50] for detailed definitions of invariant measures; in short, a measure µ is said to be546

invariant under some flow Φ if µ(Φ−1(t)(A)) = µ(A) for all measurable sets A. Invariant measures547

are commonly used to characterise the long-term dynamical characteristics of chaotic dynamical548

16

Table 2: Inference time and (adaptive) solver statistics of (SO)NODEs vs SNDEs for the two-body
problem experiment. Inference time statistics are calculated using the same 100 test initial conditions
as in Figure 2, integrated for 20 seconds (short enough so that the NODE solution does not diverge).
Solver step statistics are reported for a single test trial, intended to illustrate the observed trends in
inference time. SNDEs are cheaper at inference time due to significantly fewer rejected solver steps.

Model Inference Time (seconds) Solver Steps

Type γ Median Mean Accepted Rejected RHS Evaluations

NODE - 2.44 2.51 ± 0.04 2,379 3,343 34,335

0.1 2.14 2.17 ± 0.03 2,040 2,874 29,487
1 2.19 2.19 ± 0.03 2,054 2,704 28,551
2 2.22 2.27 ± 0.04 2,061 2,541 27,615

SNDE 4 2.07 2.15 ± 0.05 2,180 2,382 27,375
8 2.05 2.07 ± 0.04 2,355 1,877 25,395

16 1.98 2.03 ± 0.05 2,677 1,437 24,687
32 1.96 1.99 ± 0.04 3,219 1,029 25,491

Table 3: Stable time of NODEs for the same 100 test trials as shown in Figure 2. SNDE models (not
shown) did not not diverge during any trial.

NODE Stable Time (seconds)

Experiment Trial Length (seconds) Min. Max. Median Mean Std. Dev.

Two-Body Problem 200.0 52.0 182.8 121.7 117.3 30.3
Rigid Body 1600.0 341.7 1600.0 1600.0 1349.9 468.4
DC-to-DC Converter 160.0 19.3 160.0 113.9 110.49 45.6

systems (see, for example, Arnold et al. [49], Chekroun et al. [50] for a discussion of the invariant549

measure of the paradigmatic Lorenz-63 system). Since the double pendulum is an ergodic system,550

averages over long times approximate ensemble averages. We can therefore obtain a sample of551

the invariant measure numerically by integrating the system for a very long time. Concretely, we552

estimate the invariant measure from a single long trajectory using an algorithm due to Diego et al.553

[51], implemented in ComplexityMeasures.jl [52], based on a numerical estimate of the transfer554

operator. We then use the Hellinger distance [53] to compare the resulting probability distribution555

with the ground truth value for the double pendulum.556

F Architecture and Training557

Training trajectories are generated using the 9(8) explicit Runge-Kutta algorithm due to Verner558

[54], implemented in DifferentialEquations.jl [55] as Vern9, with absolute and relative tolerances of559

10−24. Each trajectory is split into non-overlapping chunks of 3 timesteps each, with all chunks then560

randomized and split into training and validation sets in the ratio 75:25.561

Networks are implemented in Flux.jl [56] and consist of fully-connected dense layers with ReLU562

activation functions. All experiments are trained for 1,000 epochs using the AdamW optimizer563

[57] with weight decay of 10−6 and an exponentially decaying learning rate schedule. During564

training, trajectories are integrated using the 5(4) explicit Runge-Kutta algorithm due to Tsitouras565

[58], implemented in DifferentialEquations.jl [55] as Tsit5, with absolute and relative tolerances of566

10−6567

The stabilization hyperparameter γ as well as network sizes and learning rates are optimized for each568

experiment and are summarized in Table 4.569

In Figure 2 and Figure 4, average relative errors are calculated over 100 test trials with initial570

conditions drawn from the same distribution as the training trajectories. In Figure 5, average relative571

errors are calculated over 300 test trials.572

17

Table 4: Additional hyperparameters.

Experiment

Two-Body Problem Rigid Body DC-to-DC Converter Robot Arm Double Pendulum

γ 8 32 8 16 16
Hidden Layers 2 2 2 2 2
Hidden Width 128 64 64 128 128
Max LR 10−3 10−4 5× 10−3 10−3 10−2

Min LR 10−5 10−5 10−5 10−5 10−4

18

	Introduction
	Background and Related Work
	Stabilized Neural Differential Equations
	Results
	Two-Body Problem gray [second-order, autonomous, non-chaotic, conservation law]
	Motion of a Rigid Body gray [first-order, autonomous, non-chaotic, holonomic constraint]
	DC-to-DC Converter gray [first-order, non-autonomous, non-chaotic, conservation law]
	Controlled Robot Arm gray [first-order, non-autonomous, non-chaotic, time-dependent control]
	Double Pendulum gray [second-order, autonomous, chaotic, conservation law]

	Conclusion
	Differential Algebraic Equations
	The Choice of gamma and Runtime Implications
	Runtime Evaluation
	Additional Experiments
	Stable Time

	Invariant Measure
	Architecture and Training

