Let the Flows Tell: Solving Graph Combinatorial

Optimization Problems with GFlowNets

Dinghuai Zhang* Hanjun Dai
Mila Google DeepMind

Nikolay Malkin, Aaron Courville, Yoshua Bengio, Ling Pan
Mila

Abstract

Combinatorial optimization (CO) problems are often NP-hard and thus out of
reach for exact algorithms, making them a tempting domain to apply machine
learning methods. The highly structured constraints in these problems can hinder
either optimization or sampling directly in the solution space. On the other hand,
GFlowNets have recently emerged as a powerful machinery to efficiently sample
from composite unnormalized densities sequentially and have the potential to
amortize such solution-searching processes in CO, as well as generate diverse
solution candidates. In this paper, we design Markov decision processes (MDPs)
for different combinatorial problems and propose to train conditional GFlowNets
to sample from the solution space. Efficient training techniques are also developed
to benefit long-range credit assignment. Through extensive experiments on a
variety of different CO tasks with synthetic and realistic data, we demonstrate that
GFlowNet policies can efficiently find high-quality solutions. Our implementation

is open-sourced at https://github.com/zdhNarsil/GFlowNet-CombOpt.

1 Introduction

Combinatorial optimization (CO) is a branch of op-
timization that studies problems of minimizing or
maximizing some cost over a finite feasible set. CO
problems usually involve discrete structures, such
as graphs, networks, and permutations, and require
optimizing an objective function subject to discrete
constraints in the solution space, which is often NP-
hard. CO problems have broad applications, includ-
ing in medicine, engineering, operations research,
and management (Paschos},|2010), and have spurred
the development of discrete mathematics and theo-
retical computer science for a century (Kuhnl|1955;
Kruskal, (1956} [Ford & Fulkersonl, [1956).

During the past few decades, researchers have devel-
oped numerical solvers such as GUROBI (Gurobi Op+
timization, |2023) to give approximate solutions via
integer programming. In recent years, interest in

P
- ~
~ e
\ AN
Y .

Figure 1: Illustration of GFlowNet for a toy
MIS problem where all the states form a DAG.
Every trajectory starts from the same initial
state (whose vertices are all gray). Each transi-
tion denotes adding one vertex to the solution
set, i.e., changing one vertex to black. See Sec-
tion[3.2] for details.

learning-based methods for solving CO problems has grown significantly. These approaches leverage
the power of deep networks to learn the inherent structure of CO problems and provide efficient

*Correspondence to dinghuai.zhang@mila.quebec.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/zdhNarsil/GFlowNet-CombOpt

and effective solutions. One family of machine learning methods utilizes solver-found solutions to
provide a supervised learning (SL) signal for training neural networks (Selsar et al.; 2018; Gasse
et al|,[2019} Nair et all, 2020). This line of algorithms requires expensive precomputation by the
numerical solver to produce supervision labels. On the other hand, unsupervised learning (UL)
methods search for the solution without the help of a solution oracle. One branch of UL methods,
called probabilistic methods, decodes the heatmap generated from one pass of a neural network to get
solutions|(Toenshoff et &l., 2019; Karalias & Loukas, 2020). These methods can achieve fast inference
at the cost of a large optimality gap. Another branch of unsupervised methods is reinforcement
learning (RL), which iteratively re nes or constructs the problem solution with practitioner-speci ed
MDPs (Bello et al., 2016; Deudon etlal., 2018; Wu €t/al., 2019).

Despite many recent efforts to apply deep RL to CO problems, such approaches have fundamental
limitations. For example, due to the symmetry in problem con gurations, there could be multiple
optimal solutions to the same CO problém (Li et[al., 2018). Standard RL algorithms guch as Fujimoto
et al| (2018) are grounded in the nature of cumulative reward maximization and fail to promote
diversity in the solutions. Although entropy-regularized RL (Haarnoja gt al.,|2017| 018;|Zzhang
et al| [2023p) converges to a stochastic policy instead of a deterministic one, these methods target
trajectory-level entropyather tharsolution-level entropyConsequently, the agent may get trapped

in solutions that can be reached by many trajectories and lack the ability to generate diverse candidate
solutions. In addition, the performance of RL methods largely depends on the designed reward
function and relies on a dense per-step reward for learning the value functions and policies. As a
result, it is challenging to apply RL in our problems if only a terminal reward is provided.

Although there are attempts to x these issUes (Kwon éf al., 2020; Ahn gt al.| 2020), they are mostly
problem-speci ¢ and only achieve marginal improvement. In this work, we turn to a more principled
framework, namely generative ow networks (Bengio etlal., 2021, GFlowNets), to search for high-
quality diverse candidates in CO problems. GFlowNet is a novel decision-making framework for
learning stochastic policies to sample composite objects with probability proportional to a given
terminal reward, which is suitable for problems where the solution is only related to the terminal
state of generative trajectories. We design MDPs for a variety of NP-hard CO problems, where
the intermediate states form a ow network in the latent space, and GFlowNet learns an agent
to sequentially make decisions in this environment (Figure 1). Another challenge of applying
GFlowNets is learning from long trajectories. In large-scale graph CO problems, the GFlowNet
agent will encounter a very long trajectory before termination, rendering the task of credit assignment
challenging. To this end, we develop ef cient learning algorithms to train GFlowNets from transitions
rather than complete trajectories, which greatly helps the learning process, especially in large-scale
setups. Through extensive experiments on different CO tasks, we demonstrate the advantage of our
proposed GFlowNet approach. In summary, our contributions are as follows:

* We design a problem-speci ¢ MDP for GFlowNet training on four different CO tasks.

* We propose an ef cient GFlowNet learning algorithm to enable fast credit assignment for the
GFlowNet agents with long trajectories that emerge in our graph CO problems.

« The empirical advantage of GFlowNets is validated through experiments on different CO problems.

2 Preliminaries

2.1 GFlowNets

Generative ow networks, or GFlowNets, are variational inference algorithms that treat sampling
from a target probability distribution as a sequential decision-making pracess (Bengio et &l., 2021,
2023). We brie y summarize the formulation and the main training algorithms for GFlowNets.

We assume that a fully observed, deterministic MDP with set of statesl set of actiond S S

is given. The MDP has a designatedial state, denotedsy. Certain states are designatedersinal
and have no outgoing actions; the set of terminal states is deKotédl states inS are assumed to
be reachable frorgy by a (not necessarily unique) sequence of actions (see Figurec®@mplete
trajectoryis a sequence of states= (s ! s ! ! Sn), wheres, 2 X and each pair of
consecutive states is related by an actian, 8i (sj;Sj+1) 2 A.

A policy on the MDP is a choice of distributioRs (s%s) for eachs 2 S n X over the states?
reachable frons in a single actiorf. A policy induces a distribution over complete trajectories via

Y 1
Pe(sop! si! ! Sn) = Pr(si+1 j Si):
i=0
The marginal distribution over the nal states of complete trajectories 5 defgted distribution
on X that may in general be intractable to compute exactlpaéx) = i« Pe (), with the
sum taken over all complete trajectories that enxl.in

A reward functions a mapping< ! R o, which is understood as an unnormalized probability mass
on the set of terminal states (we will typically make the identi catiofx) = exp(E (x)=T), where

E: X ! Risan energy function andd > 0is a temperature parameter). The learning problem
approximately solved by a GFlowNet is to t a polide (sYs) such that the induced distribution
PZ (x) is proportional to the reward functione.,

P (x)/ R(x)=exp(E (x)=T): 1)

The policyPr (ss) is parametrized as a neural network with parameteeking s as input and
producing the logits of transitioning to each possible subsequent sfaféis problem is made

dif cult both by the intractability of computind®?Z givenPg and by the unknown normalization
constant (partition function) on the right side of (1). Learning algorithms overcome these dif culties
by introducing auxiliary objects into the optimization. Next, we review two relevant objectives.

Detailed balance (DB) The DB objective (Bengio et al., 2023), requires learning two objects in
addition to a parametric forward polidt (sYs;) (we omit when it causes no ambiguity):

« A backward policy which is a distributiorPg (sjs®) over the parents (predecessors) of any
noninitial state in the MDP;
» A state owfunctionF(;):S! R.o.

The detailed balance loss for a single transisdn sis de ned as

F(s;)Pe(s9s;)
F(s%)Ps(sis’)

2

o8 (8%)= log 2
The DB training theorem states that iz (s;s%) = 0 for all transitionss ! s, then the policyPe
satis es (1),i.e, samples proportionally to the reward. The manner of selecting transgibns® on
which to minimize (2) is discussed below.

The loss that performs best for the problems in this paper (see (6) in §3.3) is equivalent to DB with a
particular parametrization dbg F (s) that bootstraps learning by expressing the log-state ow as an
additive correction to gartially accumulatedhegative energy.

Trajectory balance (TB) The TB objective (Malkin et al., 2022) features a simpler parametrization:
in addition to the action policyPr, one learns a backward polid® and only a single scalar
Z , an estimator of the partition function corresponding to the initial state Foisp) in the DB

parametrization. The TB loss for a complete trajectory(sg! s;! ! Sy, = X) Is
Qn 1 . !2
. Z o Pe(si+1]si;
(1)= log o erotGalsi) ©

R(X) "= Ps(sijsi+1;)
The TB training theorem states that{g (;) = O for all complete trajectories, then lt_he policyPe
satis es (1). FurthermoreZ then equals the normalization constant of the rewArd, wox R(X).

In practice, policies and ows are typically output in the log domaig, a neural network predicts
logits of the distribution$r (js), Pg (js% and the log- owslogF (s) andlogZ.

2Note that one can unambiguously write the policy as a distribution over subsequent states and not over
actions because the MDP is deterministic. Most GFlowNet work uses the equivalent language of directed acyclic
graphs, see analysis in Pan et al. (2023b); we use the MDP formalism to be consistent with RL terminology and
avoid clashes of notation and language with the graphs that are the inputs to CO problems.

Training policy and exploration The DB and TB losses depend on individual transitions or
trajectories, but leave open the question of how to choose the transitions or trajectories on which
they are minimized. A common choice is to train in an on-policy marireerrollout trajectories

Pe (;) and perform gradient descent stepsegn(;) oron pg(Si;Si+1;) fortransitions
si ! sj+1 in . Inthis case, DB and TB have close connections to variational (ELBO maximization)
objectives (Malkin et al., 2022).

However, an exploratory behaviour policy can also be used, for example, by samfiiomy a version

of Pg that is tempered or mixed with a uniform distribution (resembigseedy exploration in RL).

Note that, unlike policy gradient methods in RL, GFlowNet objectives require no differentiation
through the sampling procedure that yieldsThe ability to stably learn from off-policy trajectories

is a key advantage of GFlowNets over hierarchical variational models (Zimmermann et al., 2022;
Malkin et al., 2023). See related study in Section C.

Conditional GFlowNets The MDP and the reward function in a GFlowNet can depend on some
conditioning information. For example, in the tasks we study, a GFlowNet policy sequentially
constructs the solution to a CO problem on a grgpand the set of permitted actions depends on

g. The conditional GFlowNets we train achieve amortization by sharing the policy model between
differentg, enabling generalization @ not seen in training.

2.2 Graph combinatorial optimization problems

We focus on the following four NP-hard CO problems on graphs: maximum independent set (MIS),
maximum clique (MC), minimum dominating set (MDS), and maximum cut (MCut). A CO problem
can be described with an undirected graph (V; E), whereV is the set of vertices arfd is the set

of edges. Such problems typically require one to optimize over variables in a nite composite space
to maximize or minimize some particular graph properties, as follows. Without loss of generality, we
assume that all the graph weights equal one for simplicity, as our method can be easily extended to
weighted graphs.

Maximum independent set In graph theory, an independent set is a set of verficiesa given
graph structurg where any pair of verticefd;j g S are not neighborse,, 8i;j 2 S;(i;j) ZE.
The MIS problem is to nd such an independent set that has the largest possihi8jsize

Maximum clique A clique is a subset of the vertic& V where all pairs of vertices are adjacent,

i.e, 8i;j 2 S;(i;j) 2 E. The MC problem is to nd a clique that has the largest size. We also
remark that MC can be considered as a complementary problem of MIS, in the sense that the MC of
any graph is actually the MIS of its complementary graph.

Minimum dominating set A dominating se§S V for a graphg is a subset of vertices such that,
for any vertex in this graph, it is either B, or it has a neighbor i§. The MDS problem is to nd
the smallest dominating set for a given graph structure.

Maximum cut Given a subset of graph verticBs V, the cut is de ned as the number of edges
betweers andV nS. The MCut problem is to nd a set of verticé&sthat maximizes the cut.

3 Methodology
3.1 Optimization as probabilistic inference

A CO problem can be seen as a constrained energy minimization problem in a discrete composite
spacearg min, .y E(x), whereE is the target energy function aidis the solution space or feasible

set. This optimization problem can be considered roughly as sampling from an energy-based model
pr (x) / expfE (x)=Tg, whereT is the temperature parameter that controls the smoothness of the
density landscape. Sampling from such highly structured space is non-trivial, therefore we propose to
use GFlowNets to amortize this inference process. According to the GFlowNet theory, a perfectly
trained GFlowNet with the reward functidR(x) = exp fE (x)=Tg will be able to accurately
sample fronp; (x). In this way, GFlowNets trained with a reasonably small temper&turan be

used to search for solutions to given CO problems, as stated below.

Proposition 1. Assume that the GFlowNet is perfectly trained for a given temperature., the
training loss over a policy with full support equals zero. Thef, if1 , the distribution sampled

(a) Independent set (b) Clique

(c) Dominating set (d) Cut

Figure 2: Our proposed MDP designs for different CO tasks. All the tasks aim at a set of vertices as
the problem solution, thus we uBel= to represent “not in the set" / “in the set" / "unspeci ed" for

each vertex, which corresponds to white / black / gray in the gures. For each gure, the rst arrow
denotes conducting one action (marked with hammer), and the second arrow denotes the designed
transition to guarantee any intermediate state represents a valid independent set / clique / dominating
set / cut. The rightmost graph in each gure shows a feasible solution for the CO problem, where all
vertices are speci edi ., belongs to the GFlowNet terminal state spAde

by GFlowNet will converge to a uniform distribution & if T ! 0, the distribution sampled by
GFlowNet will converge to the uniform distribution on optimal solutions to the optimization problem.

Notice that each graph corresponds to one unique sampling problem; thus, here we learn a graph
conditional GFlowNet to amortize this condition distributipfxjg), i.e., every learnable GFlowNet
component (like the forward / backward policy or the ow function) is conditioned on the ggaph

3.2 Designing Markov decision processes for GFlowNets

This section illustrates the design of appropriate Markov decision process (MDP) formulations for
GFlowNet learning; see Figure 2 for a summary.

State For all the CO problems studied in this work, the solutiois a subset of vertices for a given

that thei-th vertex belongs to the set artl = 0 indicates that it does not. Note that the feasible
solution spac& is a subset of the full spad®; 1gV!, as some binary vectors encode a vertex set
outside the feasible set.gg, a non-independent set in the MIS problem). The solution space is also
the GFlowNet's terminal state space. The design of the GFlowNet state space is inspired by that in
Zhang et al. (2022b). We begin by de ning

S, f(sti;dV)si210;1;, g ;d=1;::::jVjg; (4)
where represents an unspeci ed “void” or “yet unspeci ed” situation for a particular vertex.
Notice thatS is a superset of the terminal state spxceThe initial state is the all-void vector
So=(; ;::i;). Inour MDP design, we only allow transforming vertex values from voidl {o
non-void Q or 1) according to problem-speci ¢ rules. The trajectory terminates when all the entries

are non-voidj.e., every entry is eithe® or 1. Notice that we do not need to have an explicit stop
action in the agent's action space.

Notice that not all vectors i that have no void entries lie X . Therefore, we must restri& so
that the set of terminal states is exactly the set of vectors encoding feasible saXutidose precise,
we de ne the state spacto be the set of states2 S such that there exists at least on@ X that
can be obtained frora by valid transitions.

Care must be taken to modify the set of permitted actions from each state accordingly, so that actions
always produce states # This turns out to be doable in the problems we study (as, for example, any
subset of an independent set is independent). As an example, we next describe our action / transition
/ reward design for the MIS problem. Details for other tasks are deferred to the Appendix B.

Action The initial state is all-void, meaning that the partially constructed independent set is
initialized with the empty set. The action of the MIS MDP is simply to choose one void vertex and
add it to the current solution set by turning the entry value of the chosen vertex friom.

Algorithm 1 GFlowNet training algorithm

Require: Graph dataset, GFlowNet model
with parameters, reward function.
repeat

Sample graplg from dataset;

Sample with the GFlowNet forward

policy Pe (j ;95);

Randomly choose transitions from

to creatp buffeB;

s 2. [FU(s:s%g;)

(as per Equation 6);

Update with some optimizer;

until some convergence condition

Figure 3: lllustration of transition-based GFlowNet
training. We break complete trajectories into transi-
tions, and then randomly choose some of the them
to form a buffer to train the GFlowNet agent. We
usex to denote the terminal stasg. E() denotes
designed intermediate learning signals.

Transition To ensure that the state can always be completed to an independent set, it is essential to
carefully handle the actions taken. When a void vertex is chosen and its entry value is modi,ed to
we also update the entry values of all its neighboring verticés which excludes the possibility

of getting two adjacent vertices in the following steps. This proactive approach ensures that the
independent set constraint is not violated in subsequent steps.

We remark that the feasible 96tin this problem consists not of all independent sets, burdér-
maximalindependent setgge., those to which no vertex can be added while keeping them independent.
Non-order-maximal independent sets cannot be constructed with such transitions.

Reward We set the log reward to be the resulting independent setigizé&(x) = j Xj;, where
jXj1 denotes thé; norm,i.e, the number ol's in the binary vectox.

3.3 Factors affecting training ef ciency

Transition-based GFlowNet training Most successful GFlowNet implementatiomsg, those
in https://github.com/GFNOTrg/) require a complete trajectory to compute the training loss and its
gradient. Existing implementations with DB also specify the training loss at the trajectory level:

1X 1t
L(;)= o pB(St;St+1;)i =(S0;S1;::15Sn);)
t=0
and calculate the parameter gradient update #ith (y[r L(;)] with some potentially off-
policy distribution (). This is also the case for other GFlowNet algorithms, such as ow matching
(Bengio et al., 2021) and subtrajectory balance (Madan et al., 2023).

These implementations work well for moderate-scale trajecto-

ries, as previous GFlowNet works have shown (Malkin et al.,

2022; Madan et al., 2023). However, for very long trajectories,

such a design hinders ef cient training: for a single complete

trajectory which containa transitions, one needscalls of the

neural network forward passes and storing all the intermediate

feature maps and parameters in the GPU memory. Each forward

pass contains multiple message passing operations on given

graph structures, which is computationally expensive (linearly

increasing wit) in terms of speed and memory storage. In

our experiments, we encounter large-scale problems where the _ _
trajectory is as long as 400in length: nonetheless, with suctigure 4. Comparison between dif-
graphs, our adopted graph neural networks can only suppgfgnt GFlowNet variants.

forward and backward passes with batch size approximagywhich is much smaller tha#00) on
a40GB GPU memory device. This prohibits the usage of these trajectory-based GFlowNet training
objectives on large-scale graph applications. In addition, the correlation between consecutive samples
may incur stability issues (Mnih et al., 2015).

To this end, we turn to use a transition-based GFlowNet training approach wihtout the knowledge
of complete trajectories, which is rst proposed in Deleu et al. (2022) and has shown effective-
ness in Nishikawa-Toomey et al. (2022); Deleu et al. (2023). We randomly s&Bnpiansi-

tionsB = I:t(sb; s‘p)gﬁz1 from a complete trajectory and construct detailed balance-based loss:

L()= Bi Ezl (s %). This enables GFlowNets to be ef ciently trained with long trajectories
and limited GPU memory, which also converges faster. A corresponding schematic illustration of
the algorithm can be found in Figure 3. In Figure 4, we show a comparison of learning ef ciency
between transition-based and trajectory-based GFlowNet implementations, where “-traj” denotes the
latter variant. Different methods here share similar speed for one epoch training, thus from the gure
we can see that transition-based approaches learn more ef ciently. Besides the improved computation
ef ciency, our transition-based approach is also more memory ef cient — as the memory occupation
is proportional to the batch size instead of trajectory lengths (as for trajectory-based implementation),
demonstrating its applicability to long-horizon problems.

Improving credit assignment with intermediate learning signals For normal GFlowNet training
methods, the only learning signal in a trajectory comes from the terminal states and their associated
reward values. This results in a relatively slow credit assignment process, and is inef cient to
propagate information from near-terminal states to the early states due to the dif culty of attributing
credits of each action in a long trajectory. The ability to learn from incomplete trajectories is especially
important in our proposed transition-based training, since we are not using all the transitions from
the complete trajectories. Therefore, we incorporate intermediate learning signals via the forward-
looking (Pan et al., 2023a, FL) technique:

N . 0. — . (0 0. - 0. 2.
FL(s;s;)= E(s) +log F(s;)+log Pr(ss;)+ E(s®) logF(s%) logPs(sjs®) ; (6)

whereE() : S! Ris a continuation of the reward energ{) : X ! R which is only de ned

in the terminal state spac¢é. For simplicity, here we ignore the conditioning on graph structure

This FL method enables dense supervision signals to GFlowNet training, resulting in faster credit
assignment as can be seen in Figure 3. Notice here that we need to design a handcraftd®{ sgward
for all possible latent states to re ect our estimation on intermediate signals. For MIS problems, we
naturally de ne E(s) to be the number of vertices in the current &et, the number ofl. entries

in states. This semantically coincides with the de nition of an MIS terminal reward. We defer the
intermediate reward design for other tasks to the Appendix. The effectiveness of FL against the DB
or TB algorithms can be seen in Figure 4. We summarize the resulting algorithm in Algorithm 1.

4 Related work

GFlowNets GFlowNets were intended as diversity-seeking samplers for biological sequence and
molecule design, an application area that continues to motivate research (Bengio et al., 2021; Jain
et al., 2022, 2023b; Shen et al., 2023; Jain et al., 2023a). However, much recent work has used
GFlowNets as samplers for Bayesian posterior distributiergs,causal discovery (Deleu et al., 2022;
Nishikawa-Toomey et al., 2022; Atanackovic et al., 2023), amortized variational EM with discrete
latents (Hu et al., 2023), neurosymbolic inference (van Krieken et al., 2022), and feature attribution in
classi ers (Li et al., 2023). The theory and optimization techniques for GFlowNets have also evolved,
with improved training objectives and exploration techniques (Malkin et al., 2022; Madan et al., 2023;
Pan et al., 2022, 2023a; Shen et al., 2023), better understanding of their connections to variational
methods (Zhang et al., 2022a; Malkin et al., 2023; Zimmermann et al., 2022), and extensions to
stochastic (Zhang et al., 2023c; Pan et al., 2023b) and continuous (Lahlou et al., 2023) MDPs.

ML for combinatorial optimization The surge of machine learning for CO problems alleviates

the reliance on hand-crafted heuristics while enabling generalization to new instances (Bengio et al.,
2018; Cappart et al., 2021). Some methods (Li et al., 2018; Gasse et al., 2019; Gupta et al., 2020;
Sun & Yang, 2023) rely on supervised information from expert solvers, which can be hard to obtain.
Alternative approaches that leverage reinforcement learning (Dai et al., 2017; Kool et al., 2019; Chen
& Tian, 2019; Yolcu & PAdczos, 2019; Ahn et al., 2020; Delarue et al., 2020; Drori et al., 2020)
or other unsupervised learning objectives (Karalias & Loukas, 2020; Sun et al., 2022; Wang et al.,
2022) broaden the applicability of learning for CO problems. However, the mode-collapse issue
might hinder the diversity and thus the solution coverage. In this regard, GFlowNets are easy to train
while also designed for discovering multiple modes. As the rst example to show the advantage of

Table 1: Max independent set experimental results. We report the absolute performance, approxi-
mation ratio (relative t&K AMIS), and inference time. All algorithms fall into three categories: OR

(operations research), SL (supervised learning), and UL (unsupervised learning). “—" denotes no
reasonable result is achieved by the corresponding algorithm in 10 hours. Time shown as H:M:S.
SMALL LARGE SATLIB

METHOD TYPE

Size" DRop# TIME# SizE" DRrRopP# TIME# SIZE" DRoOP# TIME #

GUROBI OR 1998 001% 47:34 4090 521% 2:10:26 42595 000% 3:43:19
KAMIS OR 2010 000% 1:24:12 4315 (000% 2:03:36 42596 000% 4:15:41

PPO UL 1901 542% 1:17 3232 2510% 7:33 42149 105% 13:12
INTEL SL 1847 811% 13:04 3447 2012% 20:17 — — —
DGL SL 1736 1361% 12:47 3450 2005% 23:54 — —

OuRs UL 19.18 457% 0:32 37.48 13:14% 4:22 423.54 0:57% 23:13

GFlowNets in CO problems, Zhang et al. (2023a) tackles the robust job scheduling problem that is
central to compiler optimization. In our paper, we formalize CO under the GFlowNet framework
with principled MDP design and demonstrate its effectiveness in a wide range of graph CO tasks.

5 Experiments

We conduct extensive experiments on various graph CO tasks to demonstrate the effectiveness of the
proposed GFlowNet approach. For MIS problems, we follow the setup in the MIS benchmark from
Bother et al. (2022), while for other tasks, we follow the experimental setup in Sun et al. (2022).

Datasets As Dai et al. (2021) have pointed out that problems in existing synthetic graph data are
relatively easy for MIS and MC, we take the more complicated RB graphs (Xu & Li, 2000) following
Karalias & Loukas (2020). For realistic data, we take the SATLIB dataset (Hoos et al., 2000), which
is reduced from SAT instances in conjunctive normal form. For the other two tasks, namely MDS
and MCut, we adopt BA graphs (Barabasi & Albert, 1999) following Sun et al. (2022). For all types
of synthetic graph data, we generate two scales of datasets (d&Swted andLARGE), which
respectively contain arourDOto 300vertices and00to 1200vertices.

Baselines For MIS problems, we compare with the baselines in the MIS benchmark. For classical
operation research (OR) methods, we include a general-purpose mixed-integer program solver
(GuroBI) and a MIS-speci ¢ solver (Lamm et al., 201RAMIS). For learning-based methods, we
compare with a reinforcement learning-bag®iOmethod (Ahn et al., 2020), and supervised learning
with tree search re nement, in two different implementations (Li et al. (2048¢L) and Béther et al.
(2022,DGL)). For the non-MIS tasks, we compare with tBeROBI solver, two heuristic methods
which are greedy and mean- eld annealing (Bilbro et al., 1988A), and two state-of-the-art
probabilistic methods (Karalias & Loukas, 2020) and the annealed version (Sun et al., 2022). We
useERDOSandANNEAL to denote these two learning-based methods. For max-cut problems, we
also adopt a semi-de nite programming baseline (coiB&Pin the result tables) which aims at a
relaxation of the MCut task. We set its maximal running timé&@dours. For the methods already
contained in the MIS benchmark, we train them from scratch and report performance with the same
protocol; for other algorithms, we write our own implementations and test them in the same way.

Results & analysis We evaluate both the performance and the inference time and report the mean
value of the objectivedg, set size in MIS) and the approximation ratio relative to the best-performing
non-ML solver, treated as an oracléhe time denotes the total latency of evaluating on the test
set. The best results among non-OR methods are marked in bold. MIS results are demonstrated in
Table 1, where the problem-speci ¢ solMérMIS is served as the gold standard for calculating the
drop. For MIS methods, the larger the size of the independent set found, the better the algorithm.
The “UL" (unsupervised learning) refers to the algorithms that do not need laleels@lutions

found by solvers) in the training set. For SATLIB, none of the supervised learning baselines can

3The approximation ratio is computed on the total cost aggregated over the test set and is de ned as the

algorithm F : oracle inimi i
Dropr(1 oracie) for maximization problems and theA® (1 m) for minimization problems.

Table 2: Max clique, min dominating set, and max cut results on small grgphbétweer?00and

300). We report absolute performance, approximation ratio, and inference time. All algorithms fall
into three categories: OR (operations research), H (heuristic), and UL (unsupervised learning). The
time latency is shown in the form of hour:minute:second.

MC MDS MCuTt

Size" DRorP# TIME# SIzZE# GAP# TIME# OSIZE" DRoOP# TIME #

METHOD TYPE

GuroBl OR 1905 (:00% 1:55 27:89 (0:00% 1:47 73247 (000% 13:04

SDP OR — — —_- — — — 700:36 438% 35:47
GREEDY H 13:53 2898% 0:25 37:39 2541% 2:13 68831 603% 0:13
MFA H 1482 2215% 0:27 36:36 2329% 2:56 704.03 3:88% 1:36

ERDOS UL 1202 3690% 0:41 30:68 209% 1:00 69345 533% 0:46
ANNEAL UL 14:10 2598% 0:41 2924 462% 1:01 69673 488% 0:45
OURS UL 16.24 14:75% 0:42 28.61 2:52% 2:20 704.30 3:85% 2:57

Table 3: Max clique, min dominating set, and max cut results on large graphs (y¥hjosebetween
800and1200. We use the same format as Table 2.

MC MDS MCuTt
Size" DRoP# TIME# SiIZE# GAP# TIME# SizE" DROP# TIME #

METHOD TYPE

GuroBl OR 3389 (00% 16:40 10380 (0:00% 13:48 291529 (00% 1:05:29

SDP OR — — — — — — 278600 443% 10:00:00
GREEDY H 2671 2117% 0:25 14052 2613% 35:01 276106 529% 3:07
MFA H 2794 17.56% 2:19 12656 1798% 36:31 283386 279% 7:16
ERDOS UL 2543 2496% 2:16 11676 11:10% 3:56 2870.34 1:54% 2:49

ANNEAL UL 2746 1897% 2:16 11150 691% 3:55 286323 179% 2:48
OURs UL 31.42 7:29% 4:50 110.28 5:88% 32:12 286461 174% 21:20

achieve meaniningful results (average MIS sizd00) within 10 hours, thus we use—" to mark
performance. One can see that GFlowNets surpass all the learning-based baselines in the sense of
achieving the largest independent set solution.

For the MC & MDS & MCut problems, we exhibit the experimental results on small graphs in Table 2
and results on large graphs in Table 3, wh@rgroBI serves as the gold standard to calculate the
performance drop ratio. Notice that for MDS problems, the smaller the vertex size result, the better
the performance, which is opposite to other tasks. We observe that GFlowNet outperforms other
baselines across different tasks and problem scales, with the only exception being the large-scale
max-cut problem. This re ects the fairly universal effectiveness of the proposed method. We also
notice that GFlowNets require a longer inference time compared to other methods. This is because
the GFlowNet only adds one vertex into the set at each step, thus it needs multiple steps to output
a vertex set solution. In contrast, probabilistic methods such ao%des neural” (Karalias &
Loukas, 2020) only require one neural network forward pass during inference time to give a coarse
estimate of the solution. We can see how this compares with a sequential generation approach as in
GFlowNets, where each decision is taken in the context of the previously already taken decisions,
ensuring a better coordinated set of decisions.

Ablation study We now conduct in-depth ablation studies to evaluate the key design choices in
our method. We rst study the difference between a series of GFlowNet variants in Figure 4, based
on the MIS task with small scale graph data. We compare transition-based FL, trajectory-based FL,
transition-based DB, trajectory-based DB, and TB (which only has trajectory-based implementation).
Our result indicates that GFlowNet's transition-based FL implementation learns the fastest for CO
tasks, which supports our modeling choice in Section 3.3. Figure 5 in Section C summarizes
additional ablation studies including the temperature annealing, off-policy exploration strategy, and
network architectures. We vary the GFlowNet's temperature coef cient which scales the temperature
hyperparameter; we ablate the off-policy exploration during the rollout stage of GFlowNet training;
we also ablate the GFlowNet architecture. Our results indicate that the GFlowNet is robust to a

wide range of hyperparameters, making it appealing to be applied to different CO problems, which
validates the effectiveness of our proposed methodology from another perspective.

6 Conclusion

Our work focuses on the challenges of solving CO problems using unsupervised learning approaches.
This work contributes to this growing eld by proposing to apply the principled GFlowNet decision-
making framework to CO tasks. By combining the power of probabilistic inference and sequential
decision-making, GFlowNets offer a promising direction for nding a diverse set of high-quality
candidate solutions in CO problems. Technically, we have developed problem-speci c MDPs and
ef cient learning algorithms to address the challenges associated with learning from long trajectories,
making our approach practical and scalable in large-scale setups. Our extensive numerical results
showcase the effectiveness and ef ciency of GFlowNets in solving NP-hard level CO problems,
highlighting their ability to generate a set of diverse high-quality solutions. We believe that our work
opens up new possibilities for addressing the limitations of existing approaches and paves the way
for future research at the intersection of machine learning and combinatorial optimization.

Acknowledgement

The authors are thankful to Yuandong Tian, David Wei Zhang, Haoran Sun, Zhiging Sun, Taoan
Huang, Sophie Xhonneux, and Zhaoyu Li. Yoshua acknowledges funding from CIFAR, NSERC,
Intel and Samsung. Aaron is supported by Hitachi, Samsung, Canadian Research Chair and CIFAR.
Dinghuai acknowledges Daozhen Lin for being his tour guide during their visit to beautiful Italy.

References

Ahn, Sungsoo, Seo, Younggyo, and Shin, Jinwoo. Learning what to defer for maximum independent
sets.International Conference on Machine Learning (ICMRP20.

Atanackovic, Lazar, Tong, Alexander, Hartford, Jason, Lee, Leo J., Wang, Bo, and Bengio, Yoshua.
DynGFN: Bayesian dynamic causal discovery using generative ow netw@ik§v preprint
2302.041782023.

Barabasi, Albert-Laszlo and Albert, Reka. Emergence of scaling in random netv&miksice286
5439:509-12, 1999.

Bello, Irwan, Pham, Hieu, Le, Quoc V., Norouzi, Mohammad, and Bengio, Samy. Neural combinato-
rial optimization with reinforcement learningrXiv preprint 1611.0994X2016.

Bengio, Emmanuel, Jain, Moksh, Korablyov, Maksym, Precup, Doina, and Bengio, Yoshua. Flow
network based generative models for non-iterative diverse candidate genéxatimal Information
Processing Systems (NeurlP3021.

Bengio, Yoshua, Lodi, Andrea, and Prouvost, Antoine. Machine learning for combinatorial optimiza-
tion: a methodological tour d'horizorkur. J. Oper. Re$290:405-421, 2018.

Bengio, Yoshua, Deleu, Tristan, Hu, Edward J., Lahlou, Salem, Tiwari, Mo, and Bengio, Emmanuel.
G ownet foundations.Journal of Machine Learning Research (JML.RD23.

Bilbro, Griff L., Mann, Reinhold, Miller, Thomas K., Snyder, Wesley E., van den Bout, David E., and
White, Mark W. Optimization by mean eld annealinleural Information Processing Systems
(NIPS) 1988.

Bother, Maximilian, Ki3ig, Otto, Taraz, Martin, Cohen, Sarel, Seidel, Karen, and Friedrich, Tobias.
What's wrong with deep learning in tree search for combinatorial optimizatioternational
Conference on Learning Representations (ICLRP2.

Cappart, Quentin, Chételat, Didier, Khalil, Elias, Lodi, Andrea, Morris, Christopher, anckaelt,
Petar. Combinatorial optimization and reasoning with graph neural networtksnational Joint
Conference on Arti cial Intelligence (IJCAIR021.

Chen, Xinyun and Tian, Yuandong. Learning to perform local rewriting for combinatorial optimiza-
tion. Neural Information Processing Systems (Neur|28)L9.

10

Dai, Hanjun, Khalil, Elias B., Zhang, Yuyu, Dilkina, Bistra, and Song, Le. Learning combinatorial
optimization algorithms over graphBleural Information Processing Systems (NIPZE)17.

Dai, Hanjun, Chen, Xinshi, Li, Yu, Gao, Xin, and Song, Le. A framework for differentiable discovery
of graph algorithms. 2021.

Delarue, Arthur, Anderson, Ross, and Tjandraatmadja, Christian. Reinforcement learning with
combinatorial actions: An application to vehicle routifdeural Information Processing Systems
(NeurlPS) 2020.

Deleu, Tristan, G'ois, Ant'onio, Emezue, Chris C., Rankawat, Mansi, Lacoste-Julien, Simon, Bauer,
Stefan, and Bengio, Yoshua. Bayesian structure learning with generative ow netvbrker-
tainty in Arti cial Intelligence (UAI), 2022.

Deleu, Tristan, Nishikawa-Toomey, Mizu, Subramanian, Jithendaraa, Malkin, Nikolay, Charlin,
Laurent, and Bengio, Yoshua. Joint bayesian inference of graphical structure and parameters
with a single generative ow network.ArXiv, abs/2305.19366, 2023. URitps://api.
semanticscholar.org/CorpusID:258987383

Deudon, Michel, Cournut, Pierre, Lacoste, Alexandre, Adulyasak, Yossiri, and Rousseau, Louis-
Martin. Learning heuristics for the tsp by policy gradient.Itegration of Al and OR Techniques
in Constraint Programming2018.

Drori, Iddo, Kharkar, Anant, Sickinger, William R., Kates, Brandon, Ma, Qiang, Ge, Suwen,
Dolev, Eden, Dietrich, Brenda L, Williamson, David P., and Udell, Madeleine. Learning to
solve combinatorial optimization problems on real-world graphs in linear t#820 19th IEEE
International Conference on Machine Learning and Applications (ICMipft) 19—-24, 2020.

Ford, Lester Randolph and Fulkerson, Delbert Ray. Maximal ow through a netwakadian
Journal of Mathematics8:399 — 404, 1956.

Fujimoto, Scott, Hoof, Herke, and Meger, David. Addressing function approximation error in
actor-critic methodslnternational Conference on Machine Learning (ICMRP18.

Gasse, Maxime, Chételat, Didier, Ferroni, Nicola, Charlin, Laurent, and Lodi, Andrea. Exact combi-
natorial optimization with graph convolutional neural networKgural Information Processing
Systems (NeurlPS2019.

Gupta, Prateek, Gasse, Maxime, Khalil, Elias, Mudigonda, Pawan, Lodi, Andrea, and Bengio, Yoshua.
Hybrid models for learning to branciNeural Information Processing Systems (Neur|28p0.

Gurobi Optimization, LLC. Gurobi Optimizehttps://www.gurobi.com , 2023.

Haarnoja, Tuomas, Tang, Haoran, Abbeel, Pieter, and Levine, Sergey. Reinforcement learning with
deep energy-based policidsternational Conference on Machine Learning (ICMRD17.

Haarnoja, Tuomas, Zhou, Aurick, Abbeel, P., and Levine, Sergey. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic daternational Conference
on Machine Learning (ICML)2018.

Hoos, Holger H., Stltzle, Thomas, Gent, lan P., van Maaren, Hans, and Walsh, Toby. SATLIB: An
online resource for research on SAT. 2000.

Hu, Edward J., Malkin, Nikolay, Jain, Moksh, Everett, Katie, Graikos, Alexandros, and Bengio,
Yoshua. GFlowNet-EM for learning compositional latent variable modieisrnational Conference
on Machine Learning2023.

Jain, Moksh, Bengio, Emmanuel, Garcia, Alex, Rector-Brooks, Jarrid, Dossou, Bonaventure F. P.,
Ekbote, Chanakya Ajit, Fu, Jie, Zhang, Tianyu, Kilgour, Micheal, Zhang, Dinghuai, Simine, Lena,
Das, Payel, and Bengio, Yoshua. Biological sequence design with GFlowhétsnational
Conference on Machine Learning (ICML12022.

Jain, Moksh, Deleu, Tristan, Hartford, Jason, Liu, Cheng-Hao, Hernandez-Garcia, Alex, and Bengio,
Yoshua. GFlowNets for Al-driven scienti ¢ discoverpigital Discovery 2023a.

11

Jain, Moksh, Raparthy, Sharath Chandra, Hernandez-Garcia, Alex, Rector-Brooks, Jarrid, Bengio,
Yoshua, Miret, Santiago, and Bengio, Emmanuel. Multi-objective g owndtgernational
Conference on Machine Learning (ICML2023b.

Karalias, Nikolaos and Loukas, Andreas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphBleural Information Processing Systems (Neurl28p0.

Kool, Wouter, van Hoof, Herke, and Welling, Max. Attention, learn to solve routing problems!
International Conference on Learning Representations (ICRR)9.

Kruskal, Joseph B. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Sogci&}):48-50, 1956.

Kuhn, Harold W. The Hungarian method for the assignment probleaval Research Logistics
Quarterly, 2(1-2):83-97, 1955.

Kwon, Yeong-Dae, Choo, Jinho, Kim, Byoungjip, Yoon, Iljoo, Min, Seungjai, and Gwon, Youngjune.
POMO: Policy optimization with multiple optima for reinforcement learnitgural Information
Processing Systems (NeurlP3020.

Lahlou, Salem, Deleu, Tristan, Lemos, Pablo, Zhang, Dinghuai, Volokhova, Alexandra, Hernandez-
Garcia, Alex, Ezzine, Léna Néhale, Bengio, Yoshua, and Malkin, Nikolay. A theory of continuous
generative ow networkslnternational Conference on Machine Learning (ICMRP23.

Lamm, Sebastian, Sanders, Peter, Schulz, Christian, Strash, Darren, and Werneck, Renato F. Finding
near-optimal independent sets at scalk. Heuristics 23(4):207-229, 2017. doi: 10.1007/
s10732-017-9337-x. URhttps://doi.org/10.1007/s10732-017-9337-x

Li, Wengian, Li, Yinchuan, Li, Zhigang, Hao, Jianye, and Pang, Yan. DAG Matters! GFlowNets en-
hanced explainer for graph neural networkgernational Conference on Learning Representations
(ICLR), 2023.

Li, Zhuwen, Chen, Qifeng, and Koltun, Vladlen. Combinatorial optimization with graph convolutional
networks and guided tree seardeural Information Processing Systems (Neurl28)1 8.

Madan, Kanika, Rector-Brooks, Jarrid, Korablyov, Maksym, Bengio, Emmanuel, Jain, Moksh, Nica,
Andrei Cristian, Bosc, Tom, Bengio, Yoshua, and Malkin, Nikolay. Learning GFlowNets from
partial episodes for improved convergence and stabilitiernational Conference on Machine
Learning (ICML) 2023.

Malkin, Nikolay, Jain, Moksh, Bengio, Emmanuel, Sun, Chen, and Bengio, Yoshua. Trajectory
balance: Improved credit assignment in GFlowNedteural Information Processing Systems
(NeurlPS) 2022.

Malkin, Nikolay, Lahlou, Salem, Deleu, Tristan, Ji, Xu, Hu, Edward J., Everett, Katie Elizabeth,
Zhang, Dinghuai, and Bengio, Yoshua. GFlowNets and variational infereimternational
Conference on Learning Representations (ICLRP3.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Veness, Joel, Bellemare,
Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski, Georg, et al. Human-
level control through deep reinforcement learningture 518(7540):529-533, 2015.

Nair, Vinod, Bartunov, Sergey, Gimeno, Felix, von Glehn, Ingrid, Lichocki, Pawel, Lobov, Ivan,
O'Donoghue, Brendan, Sonnerat, Nicolas, Tjandraatmadja, Christian, Wang, Pengming, Addanki,
Ravichandra, Hapuarachchi, Tharindi, Keck, Thomas, Keeling, James, Kohli, Pushmeet, Ktena, Ira,
Li, Yujia, Vinyals, Oriol, and Zwols, Yori. Solving mixed integer programs using neural networks.
arXiv preprint 2012.133422020.

Nishikawa-Toomey, Mizu, Deleu, Tristan, Subramanian, Jithendaraa, Bengio, Yoshua, and Charlin,
Laurent. Bayesian learning of causal structure and mechanisms with g ownets and variational
bayes.ArXiv, abs/2211.02763, 2022. URittps://api.semanticscholar.org/CorpusID:

253384724

12

Pan, Ling, Zhang, Dinghuai, Courville, Aaron C., Huang, Longbo, and Bengio, Yoshua. Generative
augmented ow networkslnternational Conference on Learning Representations (ICRR22.

Pan, Ling, Malkin, Nikolay, Zhang, Dinghuai, and Bengio, Yoshua. Better training of GFlowNets
with local credit and incomplete trajectoriemternational Conference on Machine Learning
(ICML), 2023a.

Pan, Ling, Zhang, Dinghuai, Jain, Moksh, Huang, Longbo, and Bengio, Yoshua. Stochastic generative
ow networks. arXiv preprint 2302.094652023b.

Paschos, Vangelis Th. Applications of combinatorial optimization. 2010.

Qiu, Ruizhong, Sun, Zhiging, and Yang, Yiming. Dimes: A differentiable meta solver for combinato-
rial optimization problemsArXiv, abs/2210.04123, 2022.

Selsam, Daniel, Lamm, Matthew, Biinz, Benedikt, Liang, Percy, de Moura, Leonardo Mendonca, and
Dill, David L. Learning a SAT solver from single-bit supervisidnternational Conference on
Learning Representations (ICLR018.

Shen, Max W., Bengio, Emmanuel, Hajiramezanali, Ehsan, Loukas, Andreas, Cho, Kyunghyun, and
Biancalani, Tommaso. Towards understanding and improving GFlowNet traimtggnational
Conference on Machine Learning (ICM12023.

Sun, Haoran, Guha, Etash K., and Dai, Hanjun. Annealed training for combinatorial optimization on
graphs.arXiv preprint 2207.115422022.

Sun, Zhiging and Yang, Yiming. DIFUSCO: Graph-based diffusion solvers for combinatorial
optimization.arXiv preprint 2302.082242023.

Toenshoff, Jan, Ritzert, Martin, Wolf, Hinrikus, and Grohe, Martin. Graph neural networks for
maximum constraint satisfactiofrontiers in Arti cial Intelligence 3, 2019.

van Krieken, Emile, Thanapalasingam, Thiviyan, Tomczak, Jakub M, van Harmelen, Frank, and ten
Teije, Annette. A-NeSlI: A scalable approximate method for probabilistic neurosymbolic inference.
arXiv preprint 2212.123932022.

Wang, Haoyu Peter, Wu, Nan, Yang, Hang, Hao, Cong, and Li, Pan. Unsupervised learning for
combinatorial optimization with principled objective relaxatidteural Information Processing
Systems (NeurlPS2022.

Wu, Yaoxin, Song, Wen, Cao, Zhiguang, Zhang, Jie, and Lim, Andrew. Learning improvement
heuristics for solving routing problem$EEE Transactions on Neural Networks and Learning
Systems33:5057-5069, 2019.

Xu, K. and Li, W. Exact phase transitions in random constraint satisfaction probEumal of
Arti cial Intelligence Research12:93-103, Mar 2000. ISSN 1076-9757. doi: 10.1613/jair.696.
URL http://dx.doi.org/10.1613/jair.696

Xu, Keyulu, Hu, Weihua, Leskovec, Jure, and Jegelka, Stefanie. How powerful are graph neural
networks?International Conference on Learning Representations (ICRR)9.

Yolcu, Emre and P6czos, Barnabas. Learning local search heuristics for boolean satis Hiilitgl
Information Processing Systems (NeurlPZ)19.

Zhang, David, Rainone, Corrado, Peschl, Markus, and Bondesan, Roberto. Robust scheduling with
GFlowNets.International Conference on Learning Representations (ICRB23a.

Zhang, Dinghuai, Chen, Ricky T. Q., Malkin, Nikolay, and Bengio, Yoshua. Unifying generative
models with GFlowNets and beyondrXiv preprint 2209.026062022a.

Zhang, Dinghuai, Malkin, Nikolay, Liu, Zhen, Volokhova, Alexandra, Courville, Aaron C., and
Bengio, Yoshua. Generative ow networks for discrete probabilistic modelintgrnational
Conference on Machine Learning (ICML2022b.

13

Zhang, Dinghuai, Courville, Aaron C., Bengio, Yoshua, Zheng, Qinging, Zhang, Amy, and Chen,
Ricky T. Q. Latent state marginalization as a low-cost approach for improving exploration.
International Conference on Learning Representations (ICRB23b.

Zhang, Dinghuai, Pan, L., Chen, Ricky T. Q., Courville, Aaron C., and Bengio, Yoshua. Distributional
GFlowNets with quantile ows.arXiv preprint 2302.057932023c.

Zimmermann, Heiko, Lindsten, Fredrik, van de Meent, J.-W., and Naesseth, Christian A. A variational
perspective on generative ow networksransactions of Machine Learning Research (TMLR)
2022.

14

A Notations

Symbol Description

S state space

X object (terminal state) space, subset of S
A action / transition space (edgess ¥ s')
S state in S

So initial state, element of S

X terminal state in X

complete trajectory
learnable parameter of GFlowNets

F:SIR state flow

Pe forward policy (distribution over children)

Pe backward policy (distribution over parents)
R:X ¥ Rso reward functiongginnormalized target density)
Z scalar, equal to , R(X)

E:X TR energy function, equalto T log R(X)
E:S TR energy in state space, to provide intermediate learning signals
T scalar, temperature

g graph configuration

\ vertex set of graph g

S subset of V , solution to some CO problem

E edge set of graph g

B MDP designs

In all MDPs, the agent maintain a set of vertices as the state. This is achieved by assign a value among
f0;1; g for each of the vertex, which corresponds to “not in the set" / “in the set" / “unspecified".
At each step, the agent performs an action, which is essentially changing the entry value of one vertex
from to a specified binary value. After that, the designed transition may modify the value of other
unspecified vertices to ensure the state will represent a feasible solution. The agent will receive a
terminal reward when no action can be taken (i.e., termination). An illustration of the following
descriptions can be found in Figure 2.

B.1 Maximum clique MDP

Here we think of the all-void initial state means that we have an empty set of vertex at the beginning.

Action The action is to choose an unspecified vertex and include it in the current set. This is
changing the entry value of that vertex in the state vector representation from to 1.

Transition We need to ensure that the current set always represents a clique, thus it is crucial to
enforce the connectivity between vertices in the set. If a vertex could potentially join the clique in the
future, then it must connect to all the vertices in the current set. Hence, after performing an action,
we identify the vertices that fail to meet this requirement and mark them as 0. This ensures that the
clique constraint is preserved throughout the generation process.

Reward We set the log reward to be the resulting clique size, i.e., E(X) =]Xji. For intermediate
state S, we define its intermediate signal by setting E(S) to be the number of 1 in s.

B.2 Minimum dominating set MDP

In MDS, we start with an all-void initial state, where all vertices (which are in unspecified state) are
considered to in the target dominating set. This is different from other MDP designs, where we think
of unspecified void state as not in the vertex set. In this representation, the entire vertex set V forms a
trivial dominating set. Starting from this, we perform actions to remove vertices from the current set
but keep it to be a dominating set all the time.

15

—1

20
N — 1x10 U
- 1x10?
— 5x10?
— 1x10°
— 5x10°
Method /\//\
—— wianneal
—— wio anneal
10

M\S;swze
MI; size
MIS size
MIS size

20
' I I I I '.
"
10
5 20 5 10 15 20 B ORB RMB TRB NuMB 1 2 3 4 5 6 7 8

10 15
Epoch Epoch Exploration noise level Number of layers

16

Figure 5: Ablation study on GFlowNet training. These experiments are conduct on the small scale
MIS task. From left to right: ablation on whether to use temperature annealing, inverse temperature,
how much percentage of uniform noise used in off-policy exploration, and number of message passing
layers in the graph neural network. These results demonstrate the robustness of GFlowNets against
different hyperparameter setups.

Action Each action corresponds to selecting a vertex and removing it from the current dominating
set. This is done by changing the entry value of the chosen vertex from to 0.

Transition For a vertex in the graph, if it is adjacent to the current set and all of its neighbors
are also connected to the set, removing this vertex from the set will not violate the dominating set
requirement. For other isolated vertices, we change their values to 1 to ensure they stay in the set,
thus the state S consistently representing a dominating set. By making these adjustments, we maintain
the integrity of the dominating set representation throughout the process.

Reward The log reward is set to be the negative dominating set size, i.e., E(X) = jXj;. For
intermediate state S, we define its intermediate signal by setting E(S) to be the number of 1 in s.

B.3 Maximum cut MDP

We start with an empty solution vertex set, i.e., all the vertices are in value.

Action Same as MIS and MC, the action is to add one vertex to the current solution set of vertices,
by changing its entry value from to 1.

Transition After each action is carried out, we perform the following check: if involving one void
vertex to the solution vertex set would decrease the cut value, then we exclude this vertex by labeling
it to 0 from void . This guarantees that when the trajectory terminates (i.e., no void unspecified
vertex), the cut is locally maximal.

Reward We set the negative energy to be the size of the current cut set, i.e., the number of edges
between all 1 vertices and all O vertices. For intermediate state S, we define its intermediate signal by
setting E(S) to be the number of edges between all 1 vertices and other vertices (note that we think
of void vertices as not in the solution set).

C GFlowNet details

We start with the proof of Proposition [T]and then describe other algorithmic details.

Proof. According to the theory of GFlowNets (Bengio et al.}[2023), if GFlowNet’s training loss is
zero on full support, then the GFlowNet is able to sample correctly from the target distribution p3 (X).
When we gradually move temperature T from finite to 1, the distribution p3 (X) will gradually
become the uniform distribution over X, thus the distribution sampled by GFlowNet will converge to
this uniform distribution; when the temperature gradually approaching zero, the distribution p} (X)
will gradually become the uniform distribution over all argmax solution of arg maxx E (X), thus the
distribution sampled by GFlowNet will converge to this uniform distribution. O

For the GFlowNet architecture, we use graph isomorphism network (Xu et al.l 2019, GIN) with 5
hidden layers and 256 dimensional hidden size, for both the forward policy and the state flow function.
We double the number of hidden layers for SATLIB experiment. The input of the GIN is a integer

16

	Introduction
	Preliminaries
	GFlowNets
	Graph combinatorial optimization problems

	Methodology
	Optimization as probabilistic inference
	Designing Markov decision processes for GFlowNets
	Factors affecting training efficiency

	Related work
	Experiments
	Conclusion
	Notations
	MDP designs
	Maximum clique MDP
	Minimum dominating set MDP
	Maximum cut MDP

	GFlowNet details
	More about experiments

