
Empowering Convolutional Neural Networks with
MetaSin Activation

Farnood Salehi1 Tunç Ozan Aydın1,3 André Gaillard3

Guglielmo Camporese1,2∗ Yuxuan Wang3

1Disney Research | Studios 2University of Padova 3ETH Zürich

Abstract

RELU networks have remained the default choice for models in the area of image
prediction despite their well-established spectral bias towards learning low fre-
quencies faster, and consequently their difficulty of reproducing high frequency
visual details. As an alternative, sin networks showed promising results in learning
implicit representations of visual data. However training these networks in practi-
cally relevant settings proved to be difficult, requiring careful initialization, dealing
with issues due to inconsistent gradients, and a degeneracy in local minima. In
this work, we instead propose replacing a baseline network’s existing activations
with a novel ensemble function with trainable parameters. The proposed METASIN
activation can be trained reliably without requiring intricate initialization schemes,
and results in consistently lower test loss compared to alternatives. We demonstrate
our method in the areas of Monte-Carlo denoising and image resampling where we
set new state-of-the-art through a knowledge distillation based training procedure.
We present ablations on hyper-parameter settings, comparisons with alternative ac-
tivation function formulations, and discuss the use of our method in other domains,
such as image classification.

1 Introduction

Deep convolutional neural networks are highly proficient in a wide array of tasks including image
prediction applications. While there is no scarcity of inventive methods when it comes to designing
convolutional blocks (e.g. [25]), another crucial design element, namely the activation function,
has seen little change over the years. The RELU activation, despite (and arguably because of) its
simplicity has remained the default choice for majority of the models in the area of image prediction.

It is often desirable for models that produce visual results to produce sharp imagery with abundant
high frequency details. The widespread use of RELU networks for image prediction applications
is somewhat surprising given their spectral bias towards learning low frequencies first [33], and
consequently their difficulty in reproducing high frequency visual details. While sin activations have
been shown to be superior in simple overfitting experiments on image reconstruction [39], empirical
evidence showed that training sin networks in practically relevant settings is challenging even when
employing meticulous initialization schemes. While some exploration on using sin activations with
convolutional networks exists [8], their use has been mostly limited to fully connected architectures.

In this work we make the following contributions:

∗This work was done while the author was an intern at Disney Research | Studios

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

• We shed light on challenges associated with training networks withsin-based activations
through an extensive set of experiments, and address those by formulating theMETASIN
activation coupled with a stable training procedure.

• We show thatMETASIN networks consistently enable improvements over alternatives when
tested on comparable architectures in a variety of image prediction applications, including
Monte-Carlo denoising and image resampling where we set new state-of-the-art.

• We present a wide range of ablations on hyperparamter settings, comparisons with various
alternative activations, and discuss the use ofMETASIN networks in other domains such as
classi�cation and neural signal representations.

2 Related Work

Activation Functions In addition to standard non-polynomial functions such as Sigmoid,tanh,
sin, RELU, andexp, numerous alternative activation functions have been explored in the literature.
Previous work exploredRELU variants such as LeakyRELU [26], Parametric recti�ed linear unit
(PReLU) [14], and Gaussian error linear unit (GELU) [17]. Other authors presented activations with
exponential components, such as the Exponential linear unit (ELU) [11], Scaled exponential linear
unit (SELU) [22], as well as Sigmoid variants such as Softplus [12], andSWISH [34]. A comparative
study of these activations re-af�rmedRELU as a strong baseline, while suggestingSWISH might be
a better alternative for image classi�cation [34]. Another study [25] reported no accuracy change
when switching fromRELU to GELU in image classi�cation. The aforementioned body of work has
mostly focused on classi�cation experiments, whereas their use in image prediction models was left
mostly unexplored.

Previous investigations [34] pointed out periodic activations as a promising direction, which was later
explored in the form ofsin activations for implicit neural representations of continuous signals [39].
More recent work proposed modulating the amplitudes ofsin functions using a secondary fully
connected network [27]. Anothersin variant is Snake [49], which takes the formx + sin 2(x) and
focuses on improving extrapolation of periodic functions. Finally, several papers explored combining
multiple primitive functions, such as Mish (x tanh (softplus(x)) [30], SinLU (sin and Sigmoid) [32],
and activation ensembles [13]. Preliminary experiments [39] suggest that activations alternative to
RELU, with the exception ofsin, tend to perform sub-par on image reconstruction. The popularity of
RELU networks in image prediction tasks contradicts the theoretical analysis presented in previous
work [33] that established the spectral bias ofRELU networks towards learning low frequencies faster.
Later work [7] re-af�rmed this �nding through a neural tangent kernel [20] analysis.

Image ResamplingTasks such as correcting lens distortion, retargeting, and upsampling are some
image resampling examples that are considered as key operations in real-world computer vision
and image processing pipelines. Recent neural methods [5, 40, 9] have been shown to outperform
traditional techniques, such as upsampling with a �xed kernel. These neural networks often comprise
convolutional blocks [16, 19] with RELU activations. Typically utilizing deep networks, current
resampling methods can learn complex representations of input images and produce high-quality
resampled outputs. In this work, we employMETASIN to improve upon a recent state-of-the-art
resampler [5].

Monte-Carlo DenoisingGenerating high quality rendered images may require prohibitive amount
of compute resources. This can be alleviated by stopping the rendering process prematurely and
employing a specialized denoiser to remove the residual noise. Neural denoisers have demonstrated
superior performance compared to classical denoising techniques [4, 44, 48]. These denoisers
often leverage U-Net withRELU activation [37], which allows them to process noisy images across
multiple scales. We likewise demonstrate the use ofMETASIN in such U-Nets and achieve signi�cant
improvements in denoising quality.

3 META SIN Activation

Let us de�ne a generic neural networkg(x) of depthL that predicts a target imagey 2 Rd given
input x 2 Rd0

as:

y � g(x) =
�

� [L] � T [L] � � [L � 1] � T [L � 1] � : : : � � [1] � T [1]
�

(x); (1)

2

whereT [l] denotes a linear transformation that results from either a convolutional or fully connected
layer. We would like to �nd a set of activations� [1] : : : � [L] such that they minimize the average
reconstruction error

P n
i L

�
g

�
x (i)

�
� y (i)

�
over a datasetf x (i) ; y (i) 2 [1; n]g.

In hypothetical limit cases where the networkg has in�nite width or depth, few constraints on
activation functions are necessary for the resulting architecture to have the universal approximation
capability [18]. However, in practice the selection of the activation functions can play a signi�cant
role in the training of neural networks, speci�cally in the resulting model's prediction accuracy and, in
case of image prediction models, the visual characteristics of the predictions. While it is unclear how a
principled method can be developed for rank ordering all possible selections of activations, empirical
evidence suggests that multi-layer perceptron (MLP) networks withsin activations exhibit desirable
characteristics both in expressiveness and their ability to reproduce rich high frequency details [39],
especially in comparison toRELU networks that suffer from spectral bias towards reproducing low
frequencies [33].

S
ha

llo
w

C
N

N

Input Target RELU SIREN METASIN

29.81 dB 32.55 dB 35.04 dB

D
ee

p
C

N
N

Diverged

30.36 dB 12.65 dB 40.01 dB

Figure 1: Peak Signal-to-Noise Ratio (PSNR) comparison of different activations employed on CNNs
to over�t an image from its downsampled version (with downsampling factor16�). Notably, while
the shallowsin network performs better than itsRELU counterpart, the deepsin network fails to
converge, demonstrating the fragility of training deep convolutional networks withsin activations.
See Appendix B for details.

However, practical experience also revealed the dif�culty of training deep convolutionalsin networks
in real-world scenarios. Figure 1 shows an illustrative example that on one hand demonstrates the
clear advantage ofsin activations overRELU when training shallow networks, but on the other hand
illustrates the fragility of training deepersin networks that are closer representatives of real-world
models. To examine further we express an intermediate segment from asin activated network as:

a[l] = sin
�

T [l]
�

a[l � 1]
��

; (2)

wherea[l] is the output of layerl after applying the corresponding linear transformation and acti-
vation function. We can also express the usual parameterization of sine waves asf (z; c; f; p) =
csin (f z + p), wherec, f , andp are the amplitude, frequency, and phase of the sine wave that we
collectively refer as theshape parameters.

In overparameterized networks the initial parameter values tend to change very slowly [10] (also
known as lazy training). Therefore ensuring the selection of plausible initial values for the shape
parameters insin networks is crucial for training. Some exploration has been done in this direction:
For instance,SIREN [39] introduces a scaling constantw0 that is applied to the weight matrixW of
the �rst layer of the underlying fully connected network, i.e.sin (w0W x + b), whereas recent work
explored introducing an explicit amplitude parameter whose value is predicted through a secondary
neural network [27]. Yet initialization remains a challenge as in practice only a very narrow range of
values leads to plausible average loss (Refer to Figure 10 in Appendix C).

3

In this work, we instead introduce explicit shape parameters for directly controlling amplitude,
frequency, and phase. These parameters are completely disentangled from other network parameters,
and can be initialized intuitively by reasoning about the shape of resulting sine wave. Moreover, in
order to provide better initial coverage of plausible ranges of the shape parameters, we construct a
composite periodic function by linearly combiningK sine waves with individual shape parameters:

KX

j =1

c[l]
j sin

�
z[l]f [l] + p[l]

�
; wherez[l] = T [l]

�
a[l]

�
: (3)

The shape parameters are shared among individual channels of layers in convolutional neural networks,
and are optimized through backpropagation along with other network parameters2. In our experiments
we observed that initializing the frequency parametersf [l]

j of theK constituent sine waves of the
composite function to cover a large range of frequencies consistently yields improved results, without
necessitating lengthy trial and error procedures that are often not feasible when training large models
in practice (Refer to Appendix C for an illustrative example).

Beyond the initialization of shape parameters, the remaining known causes of the dif�culty when
trainingsin networks are inconsistent gradients due to the complex shapes that activations can take,
and the large degeneracy in local minima caused by symmetries [49]. We empirically found that
including an additionalRELU component to the composite sine wave function discussed before
stabilizes training. With this modi�cation our proposed activation, which we call METASIN, can be
expressed as follows:

� (z[l]) = c[l]
0 RELU

�
z[l]

�
+

KX

j =1

c[l]
j sin

�
f [l]

j z[l] + p[l]
j

�
: (4)

Equation 4 can ef�ciently be implemented as a module in common deep learning frameworks, which
then can be used to replace activation functions of an existing state-of-the-art network architecture.
The trainable parameters� = f c[l]

0 ; c[l]
j ; f [l]

j ; p[l]
j ; j 2 [1; K]; l 2 [1; L]g are optimized through

backpropagation without requiring an additional network for predicting these particular parameters,
or any other changes to the underlying architecture. This non-intrusive property enables a simple
three-step procedure, where (i) we identify a state-of-the-art image prediction model, (ii) replace its
existing activation functions withMETASIN, and (iii) re-train the resultingMETASIN network using
a knowledge distillation scheme we discuss in the following section.

3.1 Training

In order to train convolutionalMETASIN networks, we initialize the shape parameters asc0 = 1 ,
c[l]

j = 0 , f [l]
j = j , andp[l]

j = U(0; �), for j 2 [1; K], andl 2 [1; L] by default. This initialization
on one hand forcesMETASIN to initially assume the shape ofRELU, and gradually introducesin
components during the course of the training, while on the other hand covering a broad range of
initial frequency and phase values (See Appendix G). Using the default initialization we were able to
reliably avoid typical issues encountered while trainingsin networks.

It is often easier to train a shallower network compared to a deeper one as supported by previous
studies [16]. This observation also applies tosin activations, as demonstrated in Figure 1, where a
shallowSIREN network can be effectively trained while a deepSIREN network encounters dif�culties.
To address this, we employ feature knowledge distillation (KD) from a teacher network [35] to
provide auxiliary signals during the training of the studentMETASIN network. We �rst train aRELU
model as the teacher (or, as it often happens in practice, use an already existing baselineRELU
model) and use its intermediate feature maps as supervisory signals. This approach allows us to
train the shallower blocks of the studentMETASIN network individually, instead of propagating
gradients throughout the entire network. We refer to this phase of training asKD-Bootstrapping,
which comprises approximately5 � 10%of the total training iterations for theMETASIN network.
Following the initial KD-Bootstrapping phase, the studentMETASIN network is trained using the
same con�guration as the baseline network. This approach enhances the learning process and helps
improve the performance of the student network.

2With a certain selection of parameters the resulting composite function can be shown to be equivalent to a
Fourier Series, and hence the hyperparameterK can be thought as controlling the expressiveness (Appendix D).

4

3.2 Ef�cient Implementation

While equation 4 is straightforward to implement in both PyTorch and Tensor�ow using the corre-
sponding Python APIs, such native implementations end up being inef�cient compared to executing a
RELU function. For performance critical applications, ef�ciency issues can be alleviated through
writing a customized operation in CUDA (Appendix F). In Table 1 we compare the latency induced
by the native PyTorch implementation against our customizedMETASIN operator with fused CUDA
kernel functions. Our optimized implementation signi�cantly reduces the overhead of the native
implementation. During forward pass, executing aMETASIN with K = 10 components requires less
than three times the time it takes to execute aRELU function, whereas the backward computation is
only slightly more expensive than aRELU activation. Our ef�cient implementation also uses roughly
the same amount of memory during execution as aRELU activation, makingMETASIN networks
feasible to use in practice on the same hardware that a comparable RELU network is designed for.

Module Impl. Forward (rel) Backward (rel)

METASIN
PyTorch Native 26.1x 1.58x
PyTorch CUDA 2.9x 1.12x

Table 1: Latency of executing aMETASIN activation withK = 10 using native vs. ef�cient
implementations, relative to the latency of executing a singleRELU activation on Nvidia RTX 3090.

4 Experiments

We present experiments where we apply the three step procedure discussed at the end of Section 3.
Speci�cally, we switch an existing architecture's activations toMETASIN, and re-train the resulting
new model from scratch using KD-Bootstrapping.

Activation

Factor RELU RELUE SNAKE M ISH SIREN
SIREN
KD-B MRELU

MRELU
KD-B METASIN

METASIN
KD-B

P� 2 33:03 33:04 32:95 32:96 31:75 32.76 32:78 33:02 33:02 33:26
P� 3 29:36 29:36 29:16 29:06 28:18 28.98 29:16 29:36 29:35 29:58
P� 4 27:09 27:10 26:97 26:89 26:20 26.83 26:97 27:10 27:11 27:29

Table 2: Comparison of PSNRs obtained from various image resampling models. See text for details.

4.1 Image Resampling

In image resampling our approach builds upon the state-of-the-art network proposed by Bernasconi
et al.[5], which incorporates ProSR [45] feature extractor with3 residual blocks, a resampling layer,
and a prediction layer. The network takes an input image and a warp grid and performs image
resampling. We trained baseline networks following the exact same training procedures and dataset
as described in [5]. TheMETASIN network is obtained by replacingRELU activations of the feature
extractor withMETASIN with K = 10 andf [l]

j = j at initialization. All other parameters are
initialized as described in Section 3.1. The transition toMETASIN activations increases the amount
of compute by 3% (and similarly the wall-clock inference time by 3%) compared to the baseline
RELU network. To rule out any improvement due to this increase in computation, we accordingly
increase the number of channels of baseline RELU network, which we label as RELUE .

We evaluate the models on three predetermined sets of projective transforms with average local
scaling factors of 2 (P� 2), 3 (P� 3) and 4 (P� 4). We report the PSNR scores of the resampled images
in Table 2, as well as visual examples in Figure 2 We use KD-Bootsrapping during the �rst 10%
of the training procedure. On average theMETASIN network with KD-Bootstrapping improves
over theRELUE baseline by0:2dB, setting a new state-of-the-art in image resampling. We also
conducted KD-Bootstrapping onRELU, M ISH andSNAKE networks, but observed no improvement.

5

Reference RELU METASIN

Reference RELU METASIN Reference RELU METASIN

Figure 2: Example upsampling results comparing the state-of-the-art model withRELU activations [5]
and the corresponding METASIN network.

This outcome suggests that the training process for these networks is inherently stable, making
KD-Bootstrapping unnecessary for these activations. Refer to Appendix K for additional results.

4.2 Denoising Monte-Carlo Rendered Images

Next, we present our experiments in denoising Monte-Carlo rendered images. Our base denoiser
network is a U-Net architecture used in [38] and we use the same procedure to generate noisy
and reference renderings. Since we focus on direct image prediction models rather than kernel
denoising as in [38], our U-Net denoiser (DPCN) directly predicts pixel values of the clean image
(For completeness, the results of kernel denoising (KPCN) are presented in Appendix M). During
evaluation, we denoise images rendered with[2; 4; 8; 16]samples per pixel and use SMAPE, FLIP [2],
1� MS_SSIM, and1� SSIM as our metrics. Our bestMETASIN network is con�gured withK = 5
and the frequencies are initialized asf [l]

j = j=2. We use KD-bootsrapping during the �rst 5% of the
training procedure. We present a summary of variousMETASIN network con�gurations in Table 3,
and selected visual examples in Figure 3.

Metric DPCN METASIN-5
(f j = j)

METASIN-10
KD-B (Glorot)

METASIN-5
KD-B (f j = j)

METASIN-5
KD-B (f j = j=2)

SMAPE 3.351 3.16 (-5.7%) 3.118 (-6.95%) 3.088 (-7.85%) 3.081 (-8.06%)
FLIP 1.084 0.991 (-8.58%) 0.972 (-10.33%) 0.976 (-9.96%) 0.965 (-10.98%)
1-MS_SSIM 3.106 2.838 (-8.63%) 2.784 (-10.37%) 2.757 (-11.24%) 2.733 (-12.01%)
1-SSIM 6.895 6.385 (-7.4%) 6.227 (-9.69%) 6.146 (-10.86%) 6.112 (-11.36%)

Table 3: Results of variousMETASIN con�gurations. All relative values are in relation to the DPCN
baseline. The set of test samples contains all samples with spp� 16. The frequency initializations are
given in parenthesis, which shows that a slight improvement can be made by initializing asf j = j=2
rather than the defaultf j = j . Switching to Glorot initialization results in reduced accuracy despite
the doubledK . Introducing KD-Bootstrapping during training signi�cantly improves accuracy.

5 Discussion

In this section we present ablation experiments and an exploratory study on usingMETASIN activa-
tions for image classi�cation and implicit image representation using MLPs. We present preliminary
investigations of further applications of METASIN activation in Appendix A

6

	Introduction
	Related Work
	MetaSin Activation
	Training
	Efficient Implementation

	Experiments
	Image Resampling
	Denoising Monte-Carlo Rendered Images

	Discussion
	Comparison with Alternative Activations
	The Effect of Hyperparameters
	Image Classification using Convolutional MetaSin Networks
	MetaSin with Multi-Layer Perceptrons

	Conclusion and Limitations
	Use of MetaSin Beyond Image Prediction
	Video Overfitting using MetaSin MLP
	Novel View Synthesis using MetaSin MLP
	Density Overfitting using MetaSin MLP

	Details of Overfitting Experiment with Convolutional Network
	Sensitivity to Frequency Initialization
	Connection to Fourier Series
	MetaSin Overhead
	Details on C++/CUDA Implementation
	Evolution of MetaSin Activations during Training
	Comparison with Ensemble Activations
	Effect of Setting K to a high number
	Classification Experiment with MetaSin Model Trained from Scratch
	Resampler Architecture and Additional Results
	DPCN Denoiser Architecture and Additional Results
	KPAL Denoiser Results
	Failure Cases

