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Abstract

In this supplementary material, we provide more information about the proposed1

RenderMe-360 dataset and additional experimental discussions for comprehensive2

benchmarking. Specifically, (1) we unfold the related works that are not mentioned3

in the main paper (Section 1). (2) we introduce the dataset construction process4

in detail (Section 2 and 3). Section 2 includes hardware construction and data5

collection. Section 3 covers data annotation, and data statistics of the proposed6

RenderMe-360 dataset. (3) We provide additional experiments/detailed setting7

descriptions for the novel view synthesis benchmark. We also present more com-8

prehensive benchmarks with respect to the rest four tasks that are not unfolded in9

the main paper(i.e., novel expression synthesis, hair rendering, hair editing, and10

talking head generation) (Section 4). We analyze the phenomena both qualitatively11

and quantitatively. (4) We discuss some potential applications that can be benefited12

from our dataset, and list a toy example in the text-to-3D generation scenario, to13

show how to utilize our dataset in a flexible way (Section 5). (5) Checklist is14

attached at the end of this document.15

1 Related Works16

In the main paper, we discuss related work on multi-view head datasets and head rendering aspects.17

In this supplementary material, we further unfold the progress on algorithms with respect to the18

domains of head avatar representation, hair reconstruction, hair editing, and talking head generation.19

1.1 Neural Rendering for Head Avatar20

Representations. How to effectively represent and ren- der 3D scenes has been a long-term explo-21

ration of com- puter vision. The research efforts can be roughly classified into four categories at22

high-level: surface rendering, image-based rendering, volume rendering, and neural rendering. For23

surface rendering, the general idea is to first explicitly model the geometry, and then apply shading.24

For the geometry representation, polygonal meshes [3] are the most popular geometry representations25

for their compact and efficient nature with modern graphic engines. Other alternatives like point26

clouds [54], parametric surfaces [51], volumetric occupancy [32, 66], and constructive solid geome-27

try [16] are less convenient. Implicit functions (e.g., signed distance field (SDF)) have better flexibility28

in complex geometry modeling. Upon these representations, researchers have proposed various shad-29

ing models to render images [83, 50, 103, 41, 66]. Whereas, all of these representations are better30

suited to surface reconstruction, rather than photo-realistic rendering, due to their inherent shortages31

in expressiveness. Traditional image-based rendering (IBR) methods [28, 63, 44] are texture-driven32

Submitted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets
and Benchmarks. Do not distribute.



counterparts. They focus on rendering images by using representations like multi-plane images33

(MPI) [47, 78, 105] or sweep plane [86, 13]. The core idea behind these representations is to leverage34

depth images and layers to obtain the discrete representations of light fields. Whereas, the view35

ranges are typically subjected to narrow view interpolations. Volume rendering [49, 40, 41] has great36

ability in modeling inhomogeneous media such as clouds, and allows rendering in full viewpoints37

when images are dense. The core idea behind volume rendering is accumulating the information38

along the ray with numerically approximated of integral. With the emergence of coordinate-based39

neural networks, neural rendering pops up and becomes a powerful complementarity of classic40

representations. Such a methodology combines the advantages of differential rendering and neural41

networks. For instance, neural surface rendering [97, 29, 83], and neural volume rendering [49, 40]42

ensure novel views of the target scene can be rendered by arbitrary camera pose trained by dense43

multi-view images. These methods achieve photo-realistic rendering and smooth view transition44

results in creating free-viewpoint videos compared to traditional ones. The follow-up researches45

lie on the directions of model efficiency [50, 67, 99], dynamic scene [55, 76, 18], large-scene46

compatibility [79, 91], class-specific robustness [22, 82], multi-modal extensiveness [19, 81], or47

generalizablitiy [100, 84, 5, 46, 7, 36].48

Hair Reconstruction. High-fidelity hair reconstruction has been a long-standing challenging task49

due to the tremendous volume of strands, great diversity among different identities, and micro-scale50

structure. Dynamic hair rendering and animation are even more difficult since complex motion51

patterns and self-occlusions need to be additionally considered. Except for classical methods like hair52

modeling paradigms [27, 43, 93], multi-stereo methods [62] or physics-based simulations [31, 26, 10],53

some later research efforts utilize deep neural networks to extract temporal features of hair motion [95],54

infer 3D geometry [30], or localize valid mask region [68]. With the blooming of neural rendering,55

recent works make notable progress in both static and dynamic hair reconstruction. For example,56

to render high-fidelity hair strands, NeuralStrand [60] introduces a neural rendering framework for57

jointly modeling hair geometry and appearance. For dynamic hair modeling, general dynamic scene58

rendering methods such as [35, 77, 40, 41, 87] could be directly applied to the task. These methods59

have been proven as powerful tools to model the motion and interaction of hair strands.Upon the [41],60

HVH [87] designs a special volumetric representation for hair, and models the dynamic hair strands61

as the motion of the volumetric primitives.62

1.2 Generative Models for Head Manipulation63

Hair Editing. Finding a neat solution to support hairstyle or hair color editing is an exciting research64

problem. Related methods could be categorized into image-based editing and text-based ones. The65

general ideas behind the two trends follow a similar pipeline – (1) first, encode hair appearance,66

shape, and structure information from prompts. For image-based methods [33, 92, 70], the prompts67

could be masks, well-drawn sketches, or reference images. For text-driven ones, the core prompt68

is text descriptions. (2) The second step is style mapping, where input conditions are mapped into69

corresponding latent code changes. Image-based methods utilize sophisticated conditional generative70

module [71, 92] or modulate conditions into the prior space of a pre-trained generative model [58]71

via inversion strategies (e.g., e2e[75], PTI [59], ReStyle [1], and HyperStyle [2]). As a flexible72

complementarity, text-driven methods graft the power of CLIP [56] to guide/regularize target attribute73

manipulation. StyleCLIP [52] is a general text-driven image manipulation framework and can be74

directly applied to hair editing. It provides a basic solution to tailor text information into latent75

optimization and mapper. Upon this, HairCLIP [74] designed specific latent mappers for hairstyle76

and color editing based on both reference images and text prompts.77

Talking Head Generation. This task also known as face reenactment, aims to synthesize realistic78

human face videos according to the given source facial clips and the driving materials. It can be79

roughly divided into two categories by the driving modality: image-driven methods [73, 89, 65, 101,80

4, 85, 21] and audio-driven methods [69, 72, 24, 80, 6, 104, 106, 25, 19, 38]. The major challenge81

for this task is to control the expressions and head pose of the synthesized video according to the82

driving materials, while reserving the identity information of the source images. several methods83
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used facial landmarks [65, 101], latent feature space [24, 104] or the parameters of parametric head84

model [73, 72] to model the facial expressions, and then use these intermediate representations to85

guide the animated video generation. More recently, AD-NeRF [19] and SSP-NeRF [38] condition86

the radiance field with audio fragments for the customized talking head generation. AD-NeRF trains87

two neural radiance fields for inconsistent movements between the head and torso without an explicit88

3D face model. SSP-NeRF [38] uses one unified neural radiance field for portrait generation with the89

introduced torso deformation module and semantic-aware ray sampling strategy.90

2 Data Collection Details91

In this section, we first introduce our physical capturing environment, POrtrait Large-scale hIgh-92

quality Capturing sYstem, namely POLICY (Section 2.1). Then, we provide an elaborate data93

collection pipeline introduction(Section 2.2).94

2.1 Capture System: POLICY95

Figure S1: The structures of the POLICY. 60 industrial high-definition cameras and a high-quality recording
device are connected through synchronous generators, frame grabbers, five high-performance computers, and a
network switch.

Hardware Setup. We build a multi-video camera capture cylinder called POLICY to capture96

synchronized multi-view videos of the human head performance. The capture studio contains 6097

synchronous cameras with a resolution of 2448× 2048 (a multi-view data sample is visualized in98

Figure S2). The sensor model is LBAS-U350-35C, and the shutter speed is at 30 FPS for video99

capture. The cameras are arrayed in a cylindrical confined space, and they all point inward to the100

middle of the cylinder. We separate the camera array into four hierarchical layers. The first and the101

fourth layers use a large field of view to capture the overall head motion at a long distance, while the102

second and the third layers adopt a small field of view to capture more details of the head. 39 LED103

displays are used in the cylinder, where 6 are used to balance the lighting distribution in front of the104

human face.105

In addition, POLICY also contains five computers with high-performance CPUs and RAIDs, a106

network switch, eight frame grabbers, an extra camera, a time-code viewer, a condenser microphone,107

and fiber optic USB capture cables. The fiber optic USB capture cables are used to link the other108

devices.109

Hardware Synchronization. It is a great challenge to achieve high-bandwidth capturing and110

synchronization in both visual portrait data collection from 60 color cameras with different views, and111

audio-vision data collection from recording devices. We illustrate the structure design of POLICY112

in Figure S1, and show the reason why our POLICY can overcome the challenge in following113

paragraphs.114
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Figure S2: Multi-view head data sample. The captured human head visual data encompass 60 camera views
with 360◦ left-to-right, and 160◦ up-to-down.

For visual data, POLICY connects every eight cameras to a frame grabber and a synchronization115

generator. Two frame grabbers are connected to a computer on the other end to achieve high-116

bandwidth transmission of the capturing data. A synchronization generator is connected in series to the117

next synchronization generator on the other end, and the first synchronization generator is linked to the118

first computer. During capturing visual data, the first computer controls all synchronization generators119

by launching a high-level trigger to achieve a microsecond error in the cameras’ synchronization.120

For audio data, POLICY uses the extra camera to connect to a synchronization generator and the121

time-code viewer. A high-quality microphone is placed in front of the human head. The time-code122

viewer is linked to the microphone for the collection of the time stamp of the audio voice. The123

microphone and the extra camera are connected to a computer. During capturing audio data, the time124

code of the microphone and the synchronized signal from the extra camera enable the high-precise125

synchronization of audio-vision data.126

All computers are connected to the network switch to synchronize the capturing operations and127

store the capturing data at high bandwidth. With the connection of these devices, POLICY achieves128

high-bandwidth capturing with the speed of 90 GB/s, multi-view synchronization, and audio-vision129

synchronization at the speed of 30 Hz.130

2.2 Data Collection Details131

2.2.1 Criterion for Captured Attribute Design132

We invite 500 people to be our capture subjects. We require each subject to perform three different133

parts during the data capture, namely expression, hair, and speech. We will detail the collection134

process in Section 2.2.2. In the current sub-section, we will describe the content design.135

Expression. The design of expression collection is based on the standard proposed in i3DMM [98],136

in which 10 facial expressions are recorded as the train set and the other 5 are used as the test set.137

We capture 1 neutral expression and 11 facial expression (9 for the train set and 2 for the test set,138

if not specifically explained). It needs to be stressed that two of our design expressions (smile and139

mouth-open) are treated as the test expression, with the motivation that the smile and mouth-open are140

used to test extrapolation and interpolation of the benchmarks respectively. The expression capture141

example is visualized in Figure S3.142

Hair. The design of the hair collection consists of three aspects – original outfit capture, 3D face143

capture (with hair cap to hide hair), and wig capture. Specifically, for the original outfit capture144

setting, each subject is captured with his/her original hairstyle. For performers dressed in different145

eras, the collection of 3D face capture and wig are skipped due to the inconvenience of wearing a wig146

or hair cap on the head with already wearing many different accessories. For the normal performers,147

one video of wearing the hair cap is captured and then the wig part follows. We prepare wigs with 7148

daily styles ( ‘Men’s straight short hair’, ‘Men’s curly short hair’, ‘Women’s bobo hair’, ‘Women’s149

pear curls’, ‘Women’s long curls’, ‘Women’s long straight hair’, and ‘Women’s small curls’), and150
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Figure S3: Expression capture. We capture 12 expressions, containing 1 expressionless and 11 exaggerated
expressions.

6 color tones (black, blue, brown, green, gold and yellow). During the collection, the subject is151

asked to turn around his head in a whole circle. Such a design can benefit the emphasizing of the152

dynamic motion that relates to the wig. Different wig styles, colors, and head motions are visualized153

in Figure S4.154

Speech. Since the subjects come from different countries all over the world, we provide the speech155

corpus in two languages – Mandarin for Chinese and English for the others. We also provide two156

versions of the corpus.157

Concretely, in the first version, each subject speaks 42 sentences, which consist of sentences and short158

paragraphs. For Mandarin sentence design, we select 30 phonetically balanced sentences from [64]159

as our main part, and 10 sentences combined with single words from [14] in order to cover all the160

consonants, vowels, and tones. The composition of English sentences is similar to VOCASET [9], in161

which the main part covers 40 phonetically balanced sentences. Two short paragraphs are both added162

to the Mandarin and English collections as a supplement for continuous long-time talking recordings.163

Each subject has the same corpus in the first version. In the second version, we shorten the total164

number of sentences from 42 to 26 in order to speed up the collection. Moreover, we randomly sample165

the sentences from the corpus for each subject so as to improve differentiation. For Mandarin, we first166

reduce the single words-combined sentences from 10 to 5 but still keep their coverage of consonants,167

vowels, and tones. Then, for the main part, phonetically balanced sentences are shortened to 20,168

which consists of 10 fixed and 10 flexible sentences. Finally, we randomly sample one paragraph169

from the original two. As a result, we get 26 sentences in total for each subject. For the English170

collection, the main part, with respect to the original 40 phonetically balanced sentences, is shortened171

to covering 25 sentences (15 fixed and 10 flexible sentences). The paragraph part is processed the172

same as in Chinese. Since we have 500 identities in total, about 150 Chinese and 150 non-native173

Mandarin speaking subjects are captured with the first version and the rest with the second version.174

2.2.2 Collection Protocol175

As the dataset collection spans over months, to guarantee the accuracy of data collection, we design176

a collection protocol and execute it before every capture. The protocol consists of three steps, i.e.,177

pre-collection check, collection, and post-collection check.178
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Figure S4: Daset sample of hair capture. We capture 12 hairstyles for each subject (on average). The data
includes one video of the original hairstyle, one video of wearing headgear, and ten video sequences of wearing
wigs. The ten wigs are randomly picked from our wig set. We ask the participant to turn the head clockwise with
different hairstyles.

Pre-Collection Check. To ensure proper operability of equipment and accurate camera position, two179

steps of inspection are applied:180

1) Hardware Check. We manually check the status of all computers and cameras and make sure that181

all 60 video stream is ready-to-work and synchronized by testing collection. We prepare backup182

cameras for the broken ones.183

2) Fake Head Capture. We put a fake head in the middle of the view and keep it static, and then184

capture one frame of all 60 cameras. Then we check all the frames, when the head offsets the imaging185

center, the pose of the correspondent camera needs to be fixed. The sharpness of the images is also186

checked in case one or part of the cameras are not focusing on the head.187

Collection. The main collection consists of four parts:188

1) Camera Calibration. A chessboard is held and turned around for 3 circles, then every camera189

can capture data with the chessboard in various poses. The data is used for calculating the camera190

parameters (intrinsic and extrinsic).191

2) Expression Capture. Each subject’s expression metadata is collected with 12 facial expressions.192

Each expression collection lasts about 3 to 5 seconds and the performer starts with the neutral expres-193

sion, changes continuously to designated expressions, and then keeps the performance unchanged194

until this collection finish. Substandard or incorrect expressions will be discarded and re-recorded.195

3) Hair Capture. The hair collection is separated into three parts: origin hair, hair cap, and wig196

capture. One video for the origin hair and one for the hair cap are captured for each subject. In these197

two parts, the subject always keeps still with eyes straight ahead. Then the wig part collection begins198

and we collect 10 videos for wigs with random hairstyles and colors. Generally each subject cover199

about 4 wig styles and 3 wig colors. In the wig collection, the performer starts with his head in the200

middle of the view and eyes straight ahead, then cranes his neck 360 degrees, relaxing it as usual201

but with as much amplitude as possible. When finishing the whole process, the subject returns to the202

original status and waits for the end of this part. We’ll record it again when insufficient head rotation203

appears.204

4) Speech Capture. We prepare a large corpus in two languages (Mandarin and English) for each205

subject. The whole speech collection is split into 4 or 6 parts according to the number of sentences.206
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Figure S5: Camera calibration and keypoint detection. The camera calibration process contains chessboard
data collection, calibration with bundle adjustment, and visual check. After the detection and filtering of
the multi-view 2D landmarks, the 2D landmarks result, together with the camera parameters, are utilized to
triangulate for robust 3D landmarks.

In each collection, the performer is asked to read the sentences which are shown on a screen and the207

collection lasts about 30 to 40 seconds. We do not require a standard mouthpiece but mispronunciation208

is not allowed.209

Post-Collection Check. A script is applied to concatenate and visualize the multiview video210

synchronously. All the collected data is processed and checked manually to filter out source data211

issues. Due to the hardware limitation, the recording data of a few subjects miss one or two camera212

views. We demonstrate the necessity and importance of the data post-collection check with extensive213

trial and error experiences.214

After the above processes finish, we obtain a large-scale dataset of 500 identities. Each identity215

is guided to perform 12 expressions, talking with 26 or 42 sentences, and more than 10 hairstyle216

collections.217

3 Data Annotation Details218

We obtain the raw data of RenderMe-360 from the collection pipeline. Then, we annotate the data219

to get rich annotations. In this section, we present the detailed annotation processes regarding each220

annotated dimension (Section 3.1- 3.5). We also analyze the data statistics of the proposed dataset in221

detail (Section 3.6).222

3.1 Camera Parameter Annotation223

Camera calibration is the basic step for fine-grained annotation in a multi-view capture system. The224

process in our pipeline is visualized in Figure S5. To make sure the availability and accuracy of the225

parameters, two checking procedures are performed besides basic camera pose estimation. First, we226

apply fast NeRF model training of Instant-NGP [50] via feeding all the camera views. We render227

images with the same views and manually check for potentially unreasonable rendering results caused228

by wrong extrinsic parameters. Secondly, we perform the keypoint annotation process with the same229

frames and re-project the 3D facial landmarks to manually check for the out-of-face result. The230

unqualified results will loop in re-calibration process.231

3.2 Facial Keypoint Anotation232

To filter out abnormal 2D landmarks and precisely triangulate to get robust landmark 3D, we apply the233

following rule-based and heuristic rules. 1) We use a enhanced version of facial landmark detection234

model [88], and discard the result with a low confidence score. 2) Since some unqualified landmark235

results have an abnormal scale or location, we heuristically set thresholds for the largest distance236

between landmarks and the mean location. 3) As there is no large head motion in the expression237

capture stage, we consider the temporal consistency of the detected landmarks and filter out the case238

with an overall offset of the keypoints. 4) We manually check the data to select inaccurate landmark239

results. We make sure that data of at least 3 views are applied to do the triangulation, and check240
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Figure S6: FLAME fitting. The fitting pipeline is focused on the subject’s face region, and face masks for each
view are preprocessed. Rigid fitting aims to solve translation and rotation roughly with 2D and 3D landmarks,
values are improved in the non-rigid fitting. Non-rigid fitting optimizes FLAME’s other parameters as well, but
mainly on shape, expression, jaw pose and texture parameters to ensure better identity likeness of final geometry.
The last fine-tuned step is not necessary for all frames, frames without scan mesh are optimized based on frames
with it.

the reprojection error in all 60 views. When a significant location error or an abnormal reprojected241

location is detected, we manually label all 2D landmarks and re-run the triangulation process for an242

accurate result.243

3.3 FLAME Fitting244

The overall pipeline for FLAME fitting is illustrated in Figure S6. Raw captured images are first245

processed via masking out the background and non-facial head regions, in order to avoid fitting246

distractions. Then, a rigid fitting is applied to get rough values of translation and global rotation.247

Concretely, the 2D and 3D facial landmarks are both involved in this process. We use 51 facial248

landmarks due to the non-differentiable attribute of contour landmarks trajectory. 2D landmarks from249

the frontal views are used for rough estimation, and 3D landmarks are used for anchor 3D position.250

For the rigid fitting, the optimizing target can be viewed as251

Lrigid = ∥lmk2d − Proj(R · lmkflame + t)∥ (S1)

where lmk2d is the detected 2D landmarks, lmkflame is the marked corresponding landmarks on the252

FLAME model, and R,t are the variables to be optimized, the loss is calculated through all frontal253

views and all 51 facial landmarks.254

Non-rigid fitting is further applied to improve translation/global rotation, FLAME shape, expres-255

sion, jaw pose, and texture parameters. We utilize landmarks in both 2D and 3D to constrain the256

optimization. Since 3D landmarks provide one more dimension value (i.e., z value), while having a257

shortage of good face contour information. Thus, 2D landmarks around face contours are needed to258

improve shape. Moreover, with calibrated cameras, we are able to render geometry and texture in259
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Figure S7: Initialization modes for FLAME fitting. There are three initialization modes according to different
fitting purposes. Initialization from the basis is designed for getting a personal template. Initialization with the
template is to fix shape parameters and do expression fitting, (a) is for frames with scan mesh, (b) is for frames
without.

image space by using differentiable rendering and comparing pixel differences with input images.260

However, texture parameters only map to albedo map based on texture basis, and skin tone from input261

images is affected by environment lighting conditions. Thus, optimized spherical harmonics (SH)262

coefficients are needed to adjust rendered faces. To ensure the reasonability of optimized geometry,263

we provide shape, expression, and pose regularizations to avoid broken geometry. Scan meshes show264

accurate facial shapes in world space, so a FLAME fitting process with scan can preserve better facial265

edges and corners, but not all frames are grouped with it. As shown in Figure S6, the fine-tuned step266

is surrounded with dotted lines, indicating that it is not necessary for all frames and is only applied267

on frames with scan meshes to do further improvement. This strategy is useful for personalization268

and getting expression prior knowledge for non-neutral frames without scan. In a nutshell, the full269

loss function can be formulated as270

L = Llmk + Lscan + Lpix + Lreg (S2)
271

Llmk = ∥lmk2d − Proj(R · lmkFLAME(s,e,p) + t)∥
+ ∥lmk3d −R · lmkFLAME(s,e,p) − t∥ (S3)

Lscan = min
i∈scan

∥vi −R · vFLAME(s,e,p) − t∥ (S4)

Lpix = ∥rgbProj(R·vFLAME(s,e,p))

− tex ∗ (γ · SH(nFLAME(s,e,p)))∥ (S5)

Lreg =

∥∥∥∥ s

σs

∥∥∥∥+

∥∥∥∥ e

σe

∥∥∥∥+

∥∥∥∥ p

σp

∥∥∥∥ (S6)

where landmark loss includes 2D detected ones and 3D triangulated ones. Scan loss includes the272

nearest point on scan with each FLAME vertex, which is only calculated at the last frame of each273

sequence. For rendering, we calculate the RGB value at each float position with bilinear interpolation274

within the face mask with rendered vertices using face normals nFLAME and spherical harmonic275

lighting SH . Regularization terms include shape parameter s, expression parameter e, and poses p276

for jaw, neck and eyes.277

We assume frames of neutral sequences are always neutral (expression parameter s and pose parameter278

p are zero), sequences with non-neutral expressions start with neutral and end with exaggerated279

expressions. Dense mesh reconstruction is at least applied on the last frame to generate scan mesh280

for each expression sequence. The personalization step is inspired by [34]. It starts with FLAME281

basis as an initial value, as shown in the left image of Figure S7, optimizes FLAME parameters, and282

is fine-tuned with the help of scan mesh to get an accurate face shape template. With a personal283

template provided, as shown in the middle image of Figure S7, non-neutral frames’ fitting won’t284

optimize shape parameters anymore, and we solve the last frame paired with scan mesh firstly and285

puts more effort into other parameters to ensure face expression as vivid as the input image. Due to286

the assumption mentioned above, frames in between the first frame and the last frame are performed287

with linear interpolation to get a rough initial value, as shown in the right image of Figure S7. For the288
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purpose of ensuring the annotation to the full extent of accuracy, the human annotators are asked to289

identify and rectify inaccurate annotation results of FLAME. The annotators must identify and select290

the incorrect results, and then we provide the necessary refinement to generate the accurate 3D head291

model.292

Figure S8: Final UV texture map. View-
dependent texture maps are selected and compos-
ited together with Poisson blending to create the
final full texture map as the UV map annotation.

In addition to FLAME fitting annotation, we also293

provide the UV texture map as an extra annotation294

upon the fitting. Specifically, since it is low quality295

and has few details, instead of using an albedo map296

optimized from our fitting pipeline, we take view-297

dependent texture maps unwrapped from captured298

images of selected views and composited them to-299

gether with Poisson blending [53] to create the final300

high-quality texture map in Figure S8.301

3.4 Scan and Matting Refinement302

The processing pipeline is illustrated in Figure S9.303

Scan. Specifically, we apply NeuS [83] to multi-304

viewed images with known camera intrinsics and305

extrinsics. In practice, a rigid transformation is esti-306

mated from landmarks of a standard FLAME model to target detected 3D landmarks from triangula-307

tion. Then the bounding box of the head region is assumed to be 2 times the bounding box of the308

FLAME model. We follow the setting assuming that a background NeRF [48] modeling the rendered309

results outside the bounding box and a NeuS [83] modeling radiance field inside the bounding box.310

Both are modeled as an 8-layer multi-perceptual network (MLP) with skip connections in the 5-th311

layer, and the inputs are coded with positional encoding. For each video sequence, we apply this312

algorithm to the first frame and train from scratch to get the neutral scan mesh. For the following313

frames, we pick the keyframe where the expression seems to be the most exaggerated, add fine-tune314

to the static model to get a similar scanned result, where the bounding box is fixed as the first frame.315

Matting. As for the matting annotation, a static background is captured before the formal recording316

of each round. Then, we use a video-based matting method [37] to estimate the foreground map of317

each image. To further improve matting accuracy, we additionally tailor the depth information into318

the pipeline. Concretely, we rasterize the scanned mesh to each camera view, and use this geometry319

prior to refine the video-based matting estimation, with graphical-based segmentation. Grabcut [61]320

is used with the intersection of both masks as the absolute foreground and areas outside the union321

with a fixed size of padding as the absolute background. We calculate Bayesian posterior for each322

pixel as the alpha value. We further employ human annotators to identify and rectify inaccurate323

annotation results of scan and matting. Then we provide the necessary parameters to generate the324

accurate dense mesh or manually label the foreground to yield precise matting maps.325

Table S1: Quantative results of matting annotation. We calculate
the difference between the synthesized matting maps and the manual
matting maps on a subset of our data.

MSE IoU AUC

Synthesized Matting Annotation 0.009 0.971 0.990

Matting Annotation Discussion. We326

verified the accuracy of the annota-327

tion of matting by comparing our328

synthesized results with the manual-329

annotated matting results. In partic-330

ular, the annotators are required to331

manually segment the foreground and332

the background among 800 images333

that are randomly selected from our334

dataset. We adopt several well-known metrics, including Area Under the Curve (AUC), Mean Square335

Error (MSE) and Intersection over Union (IoU), to measure the distances between our matting336

annotation and the hand-made matting annotation. As shown in Table. S1, the difference between the337

synthesized matting maps and the manually annotated matting maps is slight. It demonstrates that the338
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Figure S9: Dense mesh reconstruction and matting. Dense mesh reconstruction is supported by NeuS, it
builds models for the subject(foreground) and background separately, bounding box is estimated by robust 3D
landmarks for better separation. The final matting result is refined with a Z-buffer value. This is applied for
refining the situation when the mask predicted from the video matting network cannot well handle detailed head
accessories.

Figure S10: Qualitative comparison of matting annotation. We illustrate the qualitative comparison between
the synthesized matting maps and the hand-made matting maps. From the top to the bottom rows are: the
original images, our synthesized matting maps and the hand-made matting maps.

annotations synthesized by our algorithm are comparable to human annotations, with high reliability339

and usability.340

We illustrate some examples for qualitative comparison in Figure S10. As shown, our synthesized341

matting maps are similar to the hand-made ones and can precisely segment the human head and the342

background of the original image.343
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Figure S11: Statistical chart of static facial features. The properties that lie in the same attribute group of facial
features are highlighted in the same color. An exemplar image of each attribute is shown in the corresponding
histogram column. We use “>” to distinguish the group and attribute. Better zoom in for details.

3.5 Text Annotation344

Both static and dynamic text-based descriptions are involved in our text annotation to further fa-345

cilitate multi-modality research on human head avatar creation. The text combines four types of346

annotations: static facial features, static information of non-facial regions, dynamic facial actions,347

and dynamic video activity descriptions. With these four aspects of text annotation, we could provide348

a comprehensive description of each human head to boost various downstream tasks.349

Static Facial Features. This aspect of text annotation seeks to comprehensively detail attributes of350

the subject’s facial features in facial regions. Based on the text annotation proposed in CelebA [39],351

we further annotate new facial features, with extending the original 40 annotations to 95 common352

fixed types of facial attributes and 2 non-fixed text-based salient attributes. The fixed facial attributes353

refer to the universal and frequent properties, which are annotated through pre-defined attribute item354

selection. The non-fixed attribute provides flexible supplemental additions to the 95 fixed attributes,355

which aim at encompassing a broader range of facial depictions and is annotated through natural356

language. The combination of fixed attribute and non-fixed attribute annotations could outline human357

faces with more complete and precise text descriptions than the original category definition in CelebA.358

Specifically, the fixed facial attributes and the corresponding example images are illustrated in359

Figure S11. For every attribute, we employ five annotators to vote on whether the collected subjects360

contain the particular attribute, and the final annotation is determined by the majority decision. In361

particular, we carefully analyze common facial traits, and divide these 95 facial attributes into 28362

major groups, including facial properties like face shape, skin condition, eye shape, eyebrow shape,363

lip shape, nose shape, hair shape, etc. Each major group of facial features contains several detailed364

shape attributes. Compare with the original facial attributes of CelebA [39], we introduce more facial365

feature attributes to describe facial features in detail. For instance, CelebA only defines one single366

label for eyes, namely “narrow eyes”, we provide more variant shapes for comprehensive depictions,367

including “almond eyes”, “big eyes”, “upturned eyes”, “round eyes”, “monolid eyes”, “downturned368

eyes” and “triangle eye”. More examples like the skin condition, a newly introduced property group,369

is a significantly conspicuous facial attribute and has been ignored by CelebA. For this group, we370

describe it with several detailed attributes, containing “tear troughs”, “nasolabial folds”, “neck lines”,371

“mental creases”, “marionette lines”, “forehead lines”, “frown lines”, “bunny lines”, “crows feet” and372

“smooth skin”. Through such a fine-grained category enrichment, a fixed common types annotation373

with 95 attributes of facial attributes is constructed.374

In addition, we provide two non-fixed attributes: the salient facial feature, which describes significant375

attributes of the facial features, and the salient features of the makeup, which depicts the significant376

features of the makeup styles. The two attributes do not overlap with any of the fixed attributes. We377

require annotators to observe the overall features of the subject and describe salient features of the378

subject’s face and makeup style in natural language. The annotated descriptions from 5 annotators379

are collected and manually removed redundant or nonexistent attributes to yield the final annotation.380

For example, the salient facial attribute of Figure S3 is that she possesses visible collarbones with a381

mole above the left eyebrow, round pupil, multiple eyelids, slightly flattened eyebrows, pale forehead,382

and applies light foundation, draws long and thin eyebrows, wears petal-like lipstick with pink383

eyeshadow and black mascara. This flexible attribute further complements salient facial features384

based on subjective observations, including some color, position and shape of facial features, and385

some attributes not covered by fixed attributes.386
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Figure S12: Statistical chart of static information of
non-facial regions. The properties that lie in the same
attribute group of non-facial features are highlighted in
the same color. An exemplar image of each attribute is
shown in the corresponding histogram column. We use
“>” to split the group and attribute.

Static Information of Non-Facial Regions.387

This aspect of text annotation aims to depict388

the attributes of the subjects’ non-facial regions,389

such as the tops of outfits and accessories. In ad-390

dition to the attributes of inherent facial features,391

we also consider static information of non-facial392

regions. Since these properties are distinctive to393

describe different human heads. We focus on the394

material, shape, color, and lighting conditions395

of the subjects’ wearing accessories. For holis-396

tic head rendering, information on non-facial397

regions is also critical. However, few studies398

have involved annotation of these parts, with399

most research focusing solely on the labels of400

static facial features. While static facial features401

have been a primary focus for modeling human402

appearance, additional qualities corresponding403

to the wearing elements promote photorealism.404

Unprecedentedly, we introduced annotations re-405

lated to these aspects. By including non-facial at-406

tributes in our annotation, we provided a broader,407

and more integrated knowledge to model human408

heads in their full individual characteristics.409

Similar to static facial features, we provide two410

types of annotation, including fixed attributes411

and non-fixed attributes. As shown in Fig-412

ure S12, the fixed attributes contain 36 attributes413

derived from 7 major groups, such as accessories414

shape, clothing transparency, headwear shape,415

etc. For every attribute annotation, we require416

five annotators to label whether the subject has417

the attribute. The final annotation of this at-418

tribute is voted by the majority choice. Addi-419

tionally, the annotators are required to describe420

the non-fixed attributes in natural language. The421

non-fixed attributes contain 1) the color of the422

tops of the outfits, in which the annotators de-423

scribe the colors and in the order from large424

areas to small areas; 2) the color of the head425

accessories, in which the annotators mark the426

colors included in the order from large areas to427

small areas; and 3) the salient features of the428

accessories, in which the annotators describe429

the significant features of the accessories. For430

instance, the non-fixed attributes in Figure S3431

are that 1) her tops of the outfits are yellow and black, 2) her accessories are multiple colors of432

golden, white, blue and red, and 3) she wears an ancient jade pendant and a golden hairpiece with433

red stones and a blue circlet in the crown. There are no overlapped descriptions between non-fixed434

attributes and fixed attributes. The proposed text annotation on static information of non-facial435

regions involves diverse and rich descriptions for the non-inherent attributes, which could promote436

text-aware generation with detailed and high-fidelity textures.437

Dynamic Facial Actions The text annotation of dynamic facial actions refers to explicitly describing438

the dynamic changes in the local facial features of the collected subjects at each timestamp. Here,439
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Table S2: Action Units of expression. Each of the collected expressions (Exp) is defined as a set of AUs. Please
note that *Exp-4 is a left-toward expression while *Exp-5 is a right-toward expression, and they contain the
same set of AUs.

Expression No. Action Units

Exp-1 AU-18, AU-22, AU-25, AU-27, AU-43
Exp-2 AU-6, AU-12, AU-13, AU-14, AU-25, AU-26, AU-27
Exp-3 AU-1, AU-5, AU-25, AU-26, AU-27

Exp-4* AU-4, AU-6, AU-9, AU-11, AU-13, AU-14, AU-17, AU-44
Exp-5* AU-4, AU-6, AU-9, AU-11, AU-13, AU-14, AU-17, AU-44
Exp-6 AU-4, AU-7, AU-9, AU-10, AU-15, AU-25, AU-41
Exp-7 AU-16, AU-25, AU-26, AU-28
Exp-8 AU-13, AU-25, AU-26, AU-27
Exp-9 AU-13, AU-17, AU-18, AU-23

Exp-10 AU-6, AU-12, AU-13
Exp-11 AU-25, AU-26, AU-27

we only focus on the collected expression-related videos and ignore speech-related and wig-related440

videos because expression-related videos already contain a large number of dynamic changes in local441

facial features.442

Figure S13: Statistical chart of dynamic facial actions.
We illustrate the proportion of every AU in our text
annotation data of dynamic facial actions.

Based on Facial Action Coding System,443

FACs [12], facial expression can be described444

into specific action units (AUs), which are the445

fundamental facial actions of individual muscles446

or groups of muscles. The detailed descriptions447

of each AU can be found in https://www.448

cs.cmu.edu/~face/facs.htm. Each of449

the 11 collected expression categories can be450

further divided into a set of multiple action units451

(AUs), as shown in Table S2. We provide AU452

annotations for each frame of changes in ex-453

pression videos. As shown in Figure S13, we454

statistically analyzed the proportion of each AU455

category in the annotations. AU-25, represent-456

ing that the lips part, appears most frequently,457

accounting for 12.28%, while AU-1, represent-458

ing that the inner brow raise, appears least fre-459

quently, only 1.74%. The top 3 most prevalent460

AUs are AU-25 (lips parting), AU-13 (cheek puffing) and AU-27 (mouth stretching), while the least461

prevalent top 3 AUs are AU-1 (inner brow raising), AU-5 (upper lid raising) and AU-7 (lid tightening).462

It indicates that our dataset encompasses more extensive mouth movement variations, which are463

significant facial motions while paying comparatively little attention to subtle brow and lid regions464

motions.465

Dynamic Video Activity Descriptions. The text annotation of dynamic video activity descriptions is466

video-linguistic annotation and aims to globally describe the overall activity of the subjects in the467

collected videos in complete sentences.468

To globally describe facial activity with diversity, four annotators were employed to introduce each469

video action from four different perspectives: dynamic changes in facial actions, dynamic changes470

in facial state, dynamic changes in facial features, and dynamic changes in facial muscles. We471

collected videos in three scenarios: expressions (Exp), hairstyles (HS) and speeches (Sp). Thus, each472

video has a corresponding template, and the annotators describe each video type from the collection473

templates, allowing us to obtain text descriptions for each video type. The descriptions of the actions474

performed by the subject can be found in Figure S14. Each type of action has four corresponding475

descriptions. In particular, for hairstyle videos, we describe wig color, shape, texture, etc., which476
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does not overlap with our previous annotations, since the previous annotations did not involve wigs.477

For every individual video, providing merely a subject (i.e., “a man" or “a female") and integrating478

this with the relevant template of dynamic action descriptions yields a complete descriptive sentence.479

As shown in Figure S14, we provide comprehensive and diverse video activity descriptions composed480

of user-friendly natural language sentences, which can facilitate video generation or video editing.481

Video Type Text-1: Facial Actions Text-2: Facial State Text-3: Facial Features Text-4: Facial Muscles
Exp-0 One has no expression. One's face is expressionless. One's face is motionless. One's face muscles do not move.

Exp-1
One closes her eyes, her mouth protrudes
O-shaped.

One's closing eyes. She is opening wide and
protruding the mouth.

One's jaw drops, lips part up and down and
mouth stectch in O-shape.

One's cheeks' muscle is being pulled down and her
lips are pushing outside.

Exp-2 One smiles with her teeth and cheeks up. One is grinning and showing her teeth.
One raises her cheeks, shrinks her eyes and
opens wide her mouth with her teeth
shown.

One's cheeks' muscle is raising and her chins are
pulling down. Her muscle around eyes is shrinking
while the muscle around mouth is extending.

Exp-3
One surprises, chins pulled down, eyebrows
raised

One is surprised with her chins pulled down and
eyebrows raised.

One's upper lip, cheeks, eyebrows raise. her
jaw drops and her mouth stretched as O-
shape.

One lifts the muscles of her cheeks and forehead,
and she stretches the muscles of her jaw downward.
She stretches the muscles around her eyes to open
them wide.

Exp-4 One purses mouth moving to the left. One is making her mouth to the left side. One's lips are wiping to the left side.
One's left cheek is shrinking and her right cheek is
strectching.

Exp-5 One purses mouth moving to the right. One is making her mouth to the right side. One's lips are wiping to the right side.
One's right cheek is shrinking and her left cheek is
strectching.

Exp-6
One is angry, her brow is tightened, her
nose is raised, and her upper teeth are
exposed.

One looks angry with her eyebrows shrinked, nose
upward and  the upper row of teeth exposed.

One's upper lip and nose raise and her
eyebrows clamps.

One' muscle around eyes is shrinking and her nose
and upper lip is  extenting upward.

Exp-7 One wraps inner lips.
One's mouth is opening and her upper lip is warping
inside the mouth.

One's upper lip is sucking and lips are
parting.

One'upper lip is tightening inward and her chin is
stretching downward.

Exp-8
One opens her mouth wide and sticks out
her tongue down

One's mouth is opening wide and her tongue is being
shown outside.

One's mouth is stretching and her tongue
show.

One's mouth and tongue are stretching.

Exp-9 One puffs cheeks One's cheeks are puffed. One's cheeks are puffing. One is strectching cheeks.
Exp-10 One smiles without her teeth. One is smiling without teeth. One's mouth is stretching wide. One is strectching mouth.

Exp-11
One does not show her teeth and open her
mouth wide.

One's mouth is opening in O-shape.
One' upper lip is streching upward and the
bottom lip is stretching downward.

One is contracting her upper lip and chin and
stretching bottom lip.

HS-0 One remains still. One stay still. One do not move. One's face is relaxted.

HS-1
One wearing a mid-length and black wig
turns around her head.

One wearing a mid-length and black wig is turning
around the head.

One' head is turning right, up, left and down
with a mid-length and black wig.

One's neck is stretching the head toward right, up,
left and down with a mid-length and black wig.

HS-2
One wearing a mid-length and brown wig
turns around her head.

One wearing a mid-length and brown wig is turning
around the head.

One' head is turning right, up, left and down
with a mid-length and brown wig.

One's neck is stretching the head toward right, up,
left and down with a mid-length and brown wig.

HS-3
One wearing a long and black wig turns
around her head.

One wearing a long and black wig is turning around
the head.

One' head is turning right, up, left and down
with a long and black wig.

One's neck is stretching the head toward right, up,
left and down with a long and black wig.

HS-··· ··· ··· ··· ···

Sp-1
One reads a Chinese/ English text word by
word.

One is speaking Chinese/ Englishwords. One is talking with lips apart and strentched.
One is saying with the mouth streching and
contracting.

Sp-2
One reads a Chinese/ English text sentence
by sentence.

One is speaking Chinese/ Englishsentences. One is talking with lips apart and strentched.
One is saying with the mouth streching and
contracting.

Sp-6
One reads a Chinese/ English paragraph of
a story.

One is speaking a Chinese/ English paragraph. One is talking with lips apart and strentched.
One is saying with the mouth streching and
contracting.

Sp-… ··· ··· ··· ···

Figure S14: Example of dynamic video activity descriptions. We provide four perspectives of text descriptions
about each video type’s activity. Exp refers to expression-based video, HS refers to hairstyle-based video, and
SP refers to speech-based video. “One” can be replaced by a subject.

3.6 Dataset Statistics Details482

Since RenderMe-360 is a large-scale head dataset with multiple data, identity, and annotation, we483

unfold the statistic analysis into six aspects as below.484

Identity. As shown in Figure S15 (a), we summarize data of captured identities in four dimensions,485

including age, height-weight, gender, and ethnicity. The subjects’ ages range from 8 and 80 with486

approximate normal distribution, where teenagers and adults form the major part. A relatively487

large number of children and the elderly increase diversity of our assets. We show a height-weight488

distribution map, which indicates a large part of the models is located in height between 155cm and489

185cm, and weight between 50kg and 90kg. Notably, the recorded height and weight data can support490

the physical nature perception of humans, which is an important question in commonsense reasoning.491

Our dataset is gender-balanced and divided into 4 ethnicities (217 Asian, 140 White, 88 Black, and492

55 Brown). Ethnic diversity poses significant challenges and helps explore the margin and limitations493

of head avatar research.494

Annotation. As mentioned before, we obtain a dataset with more than 243M frames which are495

fine-grained annotated. As Figure S15 (b) shows, there are three data collection parts of RenderMe-496

360, including Expression-Part, Wig-Part, and Speech-Part. Since frames in all the collection parts497
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are annotated, there have over 243M frames with matting, 71M frames with 2D landmarks, and498

4.8M frames with 3D landmarks. Since only frames in the expression collection are annotated with499

FLAME, we have 0.6M FLAME result in total. Besides, we also provide UV maps, AUs, appearance500

annotation, and text annotation. Rich and multimodal annotation provides more possibilities for501

downstream research and application.502

Camera View. Since the POLICY contains 60 cameras which form four layers, we demonstrate the503

camera view distribution in Figure S15 (c). Camera views are divided into four groups based on504

rotation angle with the y-axis. Front and mild side views are convenient for face fitting algorithms,505
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extreme left and extreme right views are challenged for landmark detection, while back views are506

helpful with hair reconstruction.507

Accessory. Parts of Asians (about 40%) are captured with special clothing and head accessories,508

while others are not, therefore, distributions of head accessories are only calculated among Asians,509

which is summarized in Figure S16 (a). The high diversity of accessories types, materials and textures510

presents huge challenges for head rendering and reconstruction.511

Hair Style. As shown in Figure S16 (b), we have 7 styles for wigs, 2 with men’s styles, and 5512

with women’s styles. We randomly sampled about 10 wigs for captured subjects, wig styles are not513

specified for gender. 6 colors are not evenly distributed among each wig. Therefore, subjects captured514

with black and brown are the majority in our dataset, while yellow color has the least portion. Due515

to the hair-related benchmark, the complexity of hair structure and the dynamic deformation during516

large head motion challenge the SOTA methods, and the large hair assets provide a great database for517

the application of hair rendering and reconstruction as well as the potential research opportunity for518

cross-identity hairstyle transfer and animation.519

Corpus. We calculated the word frequency for Chinese and English separately. From the cloud520

visualization, word frequency is indicated by the size of each character. The most frequent word “Hai521

Pa” in Chinese appears nearly 450 times among all sentences, while the least frequent one “Ji Jiu” is522

less than 50. We only summarize the phrased in Chinese, but not single characters like “de”, “shi”,523

“wo” and etc., since there have no specific implications. Among English, the most frequent word,524

“Drawing”, occurs more than 600 times, while the least frequent one “Ambitious” is close to 0. The525

corpus statistic and “word cloud” are demonstrated in Figure S16 (c). Since our collection contains526

cross-identity repeated corpus and also different corpus, it is beneficial for the construction of the527

generalizable talking model.528

4 Benchmarks Details529

Based on the RenderMe-360 dataset, we construct comprehensive benchmarks on five critical tasks530

to showcase the potential usage of our data, and reflect the status quo of relative methods. Due to531

the space limitation, some experiments and settings are not described in the main paper in detail. In532

this section, we first introduce the criterion to divide our dataset splits. Then, we provide a detailed533

discussion on benchmarks – 1) We analyze the novel view synthesis benchmark with more qualitative534

results, and additional quantitative ablations. 2) For the intra-dataset evaluation, we provide additional535

experiments with different training settings from the main paper. 3) We provide more experiments and536

qualitative visualizations for the Cross-Dataset Evaluation to serve as complementary demonstrations537

to the ones in the main paper. 4) We provide novel expression synthesis, hair rendering, hair editing,538

and talking head generation benchmarks with different training and testing settings.539

4.1 Benchmark Splits540

When it comes to rendering the human head, different attributes of head performance have impacts541

on rendering tasks with different magnitudes. For example, the high-frequency texture, detailed542

geometry, the reflection effects under different materials, and the accessories which have different543

deformation caused by human head, all these factors are challenging and crucial for rendering tasks.544

To conduct a thorough evaluation of state-of-the-art methods, we split benchmark data for head-545

centric rendering tasks, with spanning difficulties in the hierarchy. Figure S17 shows a preview of546

split data samples. Concretely, we follow the defined rules to split data: (1) Normal Case. Normal547

cases are identities without any accessories; (2) With Deformable Accessories. Identities who wear548

deformable accessories, , hair band, normal hat, .(3) With Complex Accessories. Identities have549

accessories with sophisticated structures or textures, , gauze kerchiefs, complex earrings, or hats with550

pendants. For each task, we sample data from these three groups with different sampling principles,551

according to the characteristics of specific tasks. Please refer to the corresponding subsections for552

more details.553
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Figure S17: Samples in benchmark splits. We create three splits for benchmark evaluation, depending on the
accessory difficulty, namely, ‘Normal Case’, ‘With Deformable Accessories’, and ‘With Complex Accessories’.

4.2 Novel View Synthesis554

Detailed Settings. As mentioned in the main experiment part, for #Protocol-1 we evaluate the555

performance of novel view synthesis among four state-of-the-art methods. Specifically, we select two556

expressions from each subject, which means we train 40 models for Instant-NGP [50] and NeuS [83]557

respectively, and 20 models for MVP [42] and NV [40] respectively. Note that two expression558

sequences of one identity are trained with same configuration. For each model of Instant-NGP and559

NeuS, we have 38 camera view images for training and 22 camera view images for testing, while560

the whole sequences of the selected expressions, which has in total about 8000 frames of 38 training561

views, are fed into the training of MVP and NV. For preprocessing, images are resized and matted to562

512× 512 with white background. Note that to get more stable rendering results, we do not resize563

the image and use a black background for Instant-NGP. We train 30k iterations for Intant-NGP to564

get sufficient convergence of the model, 200k iterations for MVP, and 50k iterations with batch565

size 16 for NV. The other settings of these four methods are as same as the default implementations566

in [50, 83, 41, 40]. If not specified, we use the V100 GPUs to train the models.567

Additional Qualitative Results. The qualitative result is shown in Figure S18, all four methods568

function normally in reconstructing the selected subjects, but with different performances. For the569

normal case, we mainly focus on high-frequency parts like hair and beard. As shown in the zoom-in570

regions of the first and three rows, NeuS and Neural Volume can reconstruct the head shape and most571

of the facial features, but fail to render hair and beard in detail. Instant-NGP and MVP perform well572

in hair/fur, whereas there is still a gap between rendered image and ground truth. For the subjects with573

deformable accessories, we pay attention to the accessories with different textures. As demonstrated574

in the middle left case, NeuS fails to reconstruct the bead-like shape of the fabric hat, and tends575

to smooth and form long stripes. This indicates Neus’ disability to recover objects with complex576

textures. From the subject in the middle right, we can observe that Neural Volume produces many577

artifacts in the neck, eyes, and flower-like semi-transparent accessory. Finally, for the identities with578

complex accessories, we observe that Instant-NGP and MVP can render rigid or non-rigid accessories,579

like pendants, gemstones, feathers, and fabric slings, with high-frequency texture results. Scattered580

hair on the skin is failed to synthesize properly in all methods.581
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Figure S18: Illustration of qualitative novel view synthesis (#Protocol-1). We sample two subjects in each
data split and show the novel view synthesis results in three different test views (frontal, side, back) among
four methods. NeuS performs well with almost no surrounding noise but has a much smoothing surface, while
Instant-NGP produces a lot of surrounding noise and can recover some high-frequency parts. MVP renders
lighter and more refined results, and Neural Volume renders skins mostly with many artifacts.
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Table S3: Ablation study of camera split (#Protocol-2). We set up the experiments with three camera splits
and four methods.

Split Metrics NGP [50] NeuS [83] NV [40] MVP [42]

Cam Split 0
[train 56, test 4]

PSNR↑ 26.27 23.34 18.29 23.87
SSIM↑ 0.879 0.892 0.717 0.887
LPIPS↓ 0.11 0.14 0.33 0.13

Cam Split 1
[train 38, test 22]

PSNR↑ 22.46 23.39 18.56 23.1
SSIM↑ 0.808 0.888 0.723 0.876
LPIPS↓ 0.15 0.14 0.33 0.15

Cam Split 2
[train 26, test 34]

PSNR↑ 22.07 22.48 18.12 23.02
SSIM↑ 0.789 0.846 0.72 0.868
LPIPS↓ 0.17 0.22 0.33 0.14

Cam0 [#Train: 56, #Test: 4] Cam1 [#Train: 38, #Test: 22] Cam2 [#Train: 26, #Test: 34]

GT

NGP

NV

MVP

NeuS

Figure S19: Illustration of camera split ablation (#Protocol-2). We select and visualize three different camera
settings, which are visualized on the top side of the figure. Green circles stand for training views, red triangles
stand for testing views. We demonstrate three subjects in different data groups rendered with same expression.
The visualized novel camera views are marked as in the camera split visualization.

4.2.1 Camera Split Ablation for Single ID NVS582

Settings. For #Protocol-2, in order to ablate methods with various training and testing camera splits583

on rendering results, we design three kinds of camera distribution and retrain the above methods,584

comparing the metrics. Three kinds of camera splits contain ‘train 56, test 4’, which means most585

of the camera views are used in training, ‘train 38, test 22’, which is the original distribution, ‘train586

26, test 34’, which means more testing views than training views, and all testing views in 3 splits587

are uniformly distributed. We select 3 representative subjects from the above-mentioned subset, and588

1 from each predefined split. The training settings are the same as in Section 4.2, except for the589

distribution of the training views.590
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Results. The quantitative result is shown in Table S3. As the number of training views decreases,591

a decline in the metrics appears in Instant-NGP [50]. Interestingly, when adding up the number of592

training views from 38 to 56, the performance of the other three methods remains roughly consistent,593

which indicates the number of training cameras above a certain threshold may not play a key role in594

performance. When we decrease the number of training views to 26, all methods have a decline of595

metrics, and NeuS [83] performs relatively better.596

As the demonstration of qualitative result in Figure S19, there is no large gap in the visual result597

between Cam0 and Cam1 in all three subjects. For Instant-NGP [50], more details on accessories598

are reconstructed as more training views provided, while with fewer training views, more noise and599

artifacts occur on the face and the surrounding area. For NV [40], artifacts also gets more when fewer600

views are involved into training , and it smooths the high-frequency details in all three settings. There601

is not much difference among three camera settings for MVP [42] and NeuS [83], but they fail to602

render high-frequency details with fewer training cameras and generate artifacts as well.603

4.2.2 Generalizable NVS604

Detailed Settings. As mentioned in the main paper, we train all models in both protocols with 10605

expressions performed by 187 identities. For #Protocol-1 we evaluate novel view synthesis on two606

unseen expressions on a subset of the training identities. Specifically, we select 20 identities in total –607

10 normal cases, 5 with deformable accessories, and 5 with complex accessories. For #Protocol-2,608

20 unseen identities are tested with the same splitting strategy. Noted that during training and testing,609

three source views are used in all experiments, and we crop and resize the source and target views to610

the 512× 512 resolution, and render the images with white background.611

Additional Results. Recall that, in the main paper, we find that KeypointNeRF [46] achieves good612

visual quality while getting the worst quantitative results among all generalizable methods. We discuss613

the possible reasons behind the phenomenon in the main paper, where the major miss-alignment614

comes from the non-facial parts, like body parts of the rendered images(such as missing shoulders).615

Since KeypointNeRF [46] tends to anchor the geometry using the relative encoding of facial key616

points, the body part with no keypoint encoding tends to reconstruct the intersection region from617

source views. Here, we further provided a quantitative demonstration from another perspective.618

Concretely, we re-compute the benchmark results in Tab.4 of the main paper under a different masked619

region. In the main paper, we calculate metrics of rendered raw full images compared with ground620

truth. Here, in Tab. S4, we only calculate the regions that KeypointNeRF could render. As shown in621

the Table, The PSNR results of all methods get higher under this new setting, and KeypointNeRF [46]622

outperforms IBRNet [84] and VisionNeRF [36] in SSIM and LPIPS, which accords with our visual623

observation.624

Table S4: Masked results on generalizable NVS. We re-calucuated the overall metrics on masked images in
Table 4 Unseen ID NVS.

Train Setting Test Setting Methods PSNR↑ SSIM↑ LPIPS↓*

Fixed Views

Fixed Views
IBRNet [84] 23.70 0.889 135.16

VisionNeRF [36] 24.32 0.893 139.27
KeypointNeRF [46] 24.75 0.901 103.78

Random Views
IBRNet [84] 22.25 0.895 157.96

VisionNeRF [36] 22.58 0.874 157.54
KeypointNeRF [46] 22.40 0.861 143.265

Random Views

Fixed Views
IBRNet [84] 24.84 0.903 102.57

VisionNeRF [36] 25.80 0.902 118.72
KeypointNeRF [46] 25.12 0.910 85.39

Random Views
IBRNet [84] 24.24 0.895 102.50

VisionNeRF [36] 23.11 0.879 149.62
KeypointNeRF [46] 24.715 0.890 85.94
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Figure S20: Qualitative results of generalizable novel view synthesis (#Protocol-1&2). We illustrate some
qualitative results of the generalizable methods, including IBRNet, KeypointNeRF, and VisionNeRF in two
different settings, namely synthesizing the novel identifies and synthesizing the novel expressions. Two samples
for a case are shown, and the regions in red boxes are zoomed in for better comparison.
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Table S5: Explanation for training-testing settings in generalizable NVS. All settings are evaluated on the
same camera split of target views, and source views are selected apart from the target views. Tested random
views are constrained under a certain angle range. At inference, three source views are provided.

Training Setting Testing Setting Explanation

Fixed Source Views
Fixed Source Views The model is trained given fixed source camera

views and tested with the same source view indexes.

Random Source Views The model is trained given fixed source camera
views and tested with random source view indexes.

Random Source Views

Fixed Source Views The model is trained given random source camera
views and tested with the fixed source view indexes.

Random Source Views
The model is trained given random source camera
views and tested with re-random selected source
view indexes.

4.3 Additional Results of Intra-Dataset Evaluation625

In order to evaluate the relationship between the performance of the model and the size of input data,626

we additionally split the training set into 3 parts with different settings similar to the split of the test627

set depending on the similarity of decorations between different identities. Besides, random samples628

with different amounts of data (30%, 50%) are also evaluated in training. The results can be seen629

in Tab S6. Consistent with common experience, we find that the metrics declined when decreasing630

the number of identities in training. For all methods, there’s an abrupt increase when more data is631

included in training, whatever the difficulty of the training identities, which shows that a complete632

set of whole data is necessary for training a satisfying model that can generate on the novel identity633

of person. As for the different settings in the training split, we find that whatever the setting in the634

test set, with more data in subset 1, the trained model shows more advanced results in evaluation,635

with only a few exceptions that may due to random perturbations. Moreover, we also visualize the636

overall metrics with masked regions computed in Fig. S21, we can find the same phenomenon with637

non-masked metrics yet with better absolute values. Also in Fig. S21, we can find models train only638

on split achieve the best quality on the same test split while generalizing poorly on other splits, when639

the data coverage has no bias, eg. random 30%, random 50%, and full set, the performance variance640

between splits get relative smaller. Moreover, when the data scale gets larger, the more robust the641

metrics are across different splits. Interestingly, we observe that the VisionNeRF [36] model trained642

on subset 3 which contains the smallest scale of data in all experiments gets the worst result. The643

main reason might be the codebook training in VisionNeRF [36] typically highly rely on the amount644

of data.645

4.4 Cross-Dataset Evaluation646

We further compare the results of training in our dataset with other multi-view face datasets.647

FaceScape [94] is a dataset with multiview captured faces in ideal experimental conditions. All648

the people captured covered their hair with a cloth so as to show only the quality of the face region.649

Most of the people are Asians, and overall 359 identities and 20 different expressions are captured.650

Note that we do not follow the same setting in MofaNeRF [107], where only synthetic renderings651

of reconstructed mesh are treated as training sets. For MultiFace [90], a multiview capture system652

photoing 13 different identities of human heads with different expressions. Most of the people are653

Europeans, and the light condition is darker. Since we want to find the performance in real-world654

circumstances, we pre-process the photos initially captured to align with our dataset, and evaluate on655

those images. We further train different methods on both datasets and evaluate the results on ours,656

facescape, multiface with 3 different models trained on each one. Models tested on cross dataset is657

performed directly without any further finetuning.658

Detailed Settings. For Multiface dataset, we train on the 10 identities of v1 version and the rest 3659

identities of v2 version is left for testing. For Facescape dataset, the first 300 subjects are selected660

as the training set and the rest 59 as testset. Since a registered head is provided as the standard face661

coordinate, we map the mean face with our FLAME model, and re-calculate the world matrix of662
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Table S6: Intra-Dataset evaluation. We qualitatively evaluate the impact of data distribution and data scale of
the proposed dataset. The reported numbers are from models.

IBRNet[84]

Training Set Normal Case With Deformable Accessories With Complex Accessories Overall
PSNR↑ SSIM↑ LPIPS↓* PSNR↑ SSIM↑ LPIPS↓* PSNR↑ SSIM↑ LPIPS↓* PSNR↑ SSIM↑ LPIPS↓*

Subset 1 21.87 0.893 162.60 17.06 0.798 245.81 15.83 0.722 327.81 19.16 0.827 224.71
Subset 2 20.43 0.871 183.88 17.71 0.809 220.61 16.80 0.732 293.37 18.84 0.821 220.44
Subset 3 18.76 0.844 214.59 17.06 0.795 236.54 16.40 0.718 306.26 17.75 0.800 243.00

Random 30% 21.06 0.883 167.73 17.09 0.797 237.74 16.63 0.730 293.96 18.96 0.823 216.79
Random 50% 21.69 0.892 158.18 17.98 0.815 212.82 17.35 0.748 276.99 19.68 0.837 201.54

Full set 22.53 0.897 154.05 18.75 0.830 195.12 18.10 0.749 250.72 20.48 0.843 188.49

KeypointNeRF[46]

Training Set Normal Case With Deformable Accessories With Complex Accessories Overall
PSNR↑ SSIM↑ LPIPS↓* PSNR↑ SSIM↑ LPIPS↓* PSNR↑ SSIM↑ LPIPS↓* PSNR↑ SSIM↑ LPIPS↓*

Subset 1 18.79 0.883 139.09 14.49 0.753 243.03 16.25 0.767 234.20 17.08 0.822 188.85
Subset 2 17.89 0.868 172.29 14.54 0.744 260.71 16.61 0.768 228.94 16.73 0.812 208.56
Subset 3 17.68 0.863 179.45 14.37 0.746 259.20 16.88 0.774 219.60 16.65 0.812 209.43

Random 30% 18.47 0.876 148.56 14.39 0.747 239.90 16.51 0.765 213.30 16.96 0.816 187.58
Random 50% 18.26 0.871 167.86 14.84 0.743 253.25 16.69 0.766 226.85 17.01 0.813 203.96

Full set 18.02 0.865 145.30 15.75 0.794 194.16 16.15 0.747 227.49 16.99 0.818 178.06

VisionNeRF [36]

Training Set Normal Case With Deformable Accessories With Complex Accessories Overall
PSNR↑ SSIM↑ LPIPS↓* PSNR↑ SSIM↑ LPIPS↓* PSNR↑ SSIM↑ LPIPS↓* PSNR↑ SSIM↑ LPIPS↓*

Subset 1 21.34 0.878 147.30 18.41 0.791 208.70 16.75 0.721 207.10 19.33 0.812 179.00
Subset 2 20.32 0.891 159.21 19.16 0.806 201.76 16.60 0.737 218.60 18.98 0.826 186.30
Subset 3 18.74 0.791 190.45 17.59 0.756 218.60 16.62 0.745 280.50 17.86 0.769 222.88

Random 30% 20.29 0.883 129.20 17.05 0.812 203.10 16.91 0.714 213.86 18.55 0.817 170.98
Random 50% 20.65 0.886 153.20 17.01 0.817 203.90 16.86 0.724 214.78 18.70 0.823 182.86

Full set 24.77 0.918 110.40 20.22 0.858 149.30 19.35 0.797 196.90 22.28 0.873 141.75

those images to match all the images with our input. To make all the input images with the same size663

as we trained in RenderMe-360, we find the nearest z-axis of the rotation matrix in our captured data664

as the marker, and place the head with an additional affine matrix between the two camera-to-world665

extrinsics. Then all the inputs and source views become similar for different datasets, and we start666

training in these images. For each experimental setting, we train on one dataset’s train split, and667

test on another’s test split (train and test may belong to the same kind of dataset), to testify the668

generalization ability of the trained model for different datasets. We follow the training setting with669

random source view and random test view from Section 4.1.2 in the main paper.670

Result. The qualitative results with different settings can be seen in S22. Since our dataset has more671

data than Multiface and large variance (hair and clothes variance v.s. only face region), the testing672

metrics show superior results over models trained in our dataset. From the results, we can also see,673

that with only a few identities training, most methods cannot show a meaningful generation result on674

unseen identity, although KeypointNeRF [46], with 3D facial landmarks as anchors for face position675

can roughly sketch the head contour, they do not perform well with training on Multiface. However,676

with plenty of training data in RenderMe-360, we can detect a convincing result even without any677

finetune on unseen data in Multiface. That proves the generalization ability of training with a large678

number of person identities.679

Another visualization in Figure S23 shows the comparison of the Facescape rendering result between680

the two methods. The model trained on our dataset has the ability to generate competitive results681

compared to the inference result trained from Facescape dataset. IBRNet can produce more reasonable682

results of the face part although parts of the face are missing. This also proves the robustness of the683

generalization ability when training a generalizable methods with our dataset.684

4.5 Novel Expression Synthesis685

This task refers to the setting of reconstructing a 4D facial avatar based on monocular video se-686

quences1. We study three representative methods with different expression settings – 1) #Protocol-1687

for investigating the interpolation/extrapolation abilities of training on intentional expression struc-688

tures and testing on novel ones. 2) #Protocol-2 for exploring the robustness of training on normal689

1Note that, differing from unseen expression NVS protocol, the novel expression should be synthesized under
the guidance of non-target person’s image prompts, such as facial expression parameters. The main focus of
this setting is to evaluate methods’ effectiveness in dynamic changes of the surface of a face.
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Figure S21: Intra-dataset metrics with masked region calculation. We also visualize the intra-dataset metrics
of the masked region on each split. With only the masked region evaluated the absolute value is typically higher
than Tab S6, while the trend fits. Also, models training on only one subset easily overfit on specific split of data,
while generalizing poorly on other subsets.

conversation sequences, then testing on both new conversations and intentional expression structures.690

The normal conversation scenarios include subtle expression changes. They can help to verify a691

method’s reconstruction on local motion transformation. The intentional expression structures provide692

challenges of reconstructing 4D information in high-frequence texture/geometry, and multi-scale693

motion changes.694

#Protocol-1 Settings. We study three case-specific, deformable head avatar methods: NeRFace [17],695

IM Avatar [102], and Point Avatar [103]. These methods showcase different paradigms of leveraging696

neural implicit representations for dynamic head avatars. The official implementation of IM Avatar697

suffers from unstable training when not using specific GPU 2 We find one of the sensitive factors698

might relate to the FLAME parameters. We follow the official released data preprocessing pipeline of699

IM Avatar, where the FLAME parameters are initialized from DECA [15] and refined with single-700

view facial keypoints3. To obtain relatively stable results (shown in Table S7), we also compare701

2This problem is frequently raised in GitHub Issues, e.g., https://github.com/zhengyuf/IMavatar/
issues/3, of the official release version.

3We abbreviate the preprocessing pipeline as DECA in the follow-up sections with less rigorous.

25

https://github.com/zhengyuf/IMavatar/issues/3
https://github.com/zhengyuf/IMavatar/issues/3


GT          RenderMe-360     Multiface                  GT          RenderMe-360     Multiface       
Training Source

(a) IBRNet

(b) KeypointNeRF

(c) VisionNeRF

Te
st

in
g 

D
at

a
RenderMe-360

Multiface

RenderMe-360

Multiface

RenderMe-360

Multiface

Figure S22: Illustration of cross-dataset evaluation. We visualize the result from three methods, IBRNet,
KeypointNeRF, and VisionNeRF, between two datasets, RenderMe-360 and Multiface.
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Figure S23: Illustration of cross dataset experiment on Facescape [94]. We visualize the model rendering
results from Facescape, which take RenderMe-360 and Facescape as training source respectively.
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GT           NerFACE          IM Avatar      Point Avatar      

Figure S24: Illustration of novel expression synthesis (#Protocol-1). We showcase four samples from both
normal expression and hard expression splits.

the results from DECA and our optimized FLAME parameters, which are shown in Supplementary702

Materials. All methods are evaluated in terms of PSNR, SSIM, LPIPS, and L1 Distance, similar to703

[103]. For #Protocol-1, we select 20 identities from the three categories to form the benchmark data.704

We use 6 expression sequences for per-identity training and the other 6 expressions for testing.705

#Protocol-1 Results. The quantitative result is presented in Table S7. We split the novel expressions706

into normal and hard subsets according to their similarity to the training expression structures. We707

find PointAvatar outperforms the two implicit-based methods on both splits under most of the metric708

measurements. The comparison suggests that combing explicit point-based representation with709

implicit one helps increase the robustness of new expression synthesis. This is reasonable since point710

cloud provides more flexibility and specificity in geometry deformation than pure implicit ones. But711

such a merit does not always exist. The granularity of points limits PointAvatar’s performance on712

subtle motions (e.g., ‘pout’ in the last row of Figure S24). In addition, we observe that all methods713

suffer from out-of-distribution cases like the ‘tongue out’ in the third row of the Figure. Moreover,714

from the whole-head rendering aspect, we find that IM Avatar struggles with thin structures like715

twisted hair band and hair strands. This is because IM Avatar constrains reconstruction on the surface.716

NerFace has fine rendering results in a global manner, while facing problems in robustly modeling717

dynamic motion.718

#Protocol-2 Settings. As mentioned in the main experiment part, we evaluate the performance719

of novel expression synthesis among three state-of-the-art methods, namely NeRFace [17], IM720

Avatar [102] and Point Avatar [103]. Here we elaborately discuss the experiments for #Protocol-2,721

in which we select the same 20 identities to form the benchmark data. We use 2 sequences of722

verbal (about 1700 to 2000 frames) for training, another 1 unseen verbal sequence and 11 expression723

sequences (exclude the natural expression) for testing. All data samples used in #Protocol-1&2 are724

resized and matted to 512× 512 with white background. We train 1000k iterations for NeRFace, 100725

epochs for IM Avatar, 65 epochs for Point Avatar. We keep other training configurations the same as726
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Table S7: Novel expression synthesis (#Protocol-1). We benchmark three methods on different splits of
RenderMe-360. N: Normal Expression, H: Hard Expression.

Method Split L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓
IM Avatar [102] N 0.047 22.61 0.903 0.134

H 0.047 21.91 0.895 0.149

NerFace [17] N 0.034 20.46 0.876 0.114
H 0.037 18.89 0.865 0.121

PointAvatar [103] N 0.0057 24.57 0.878 0.089
H 0.0055 25.05 0.883 0.086

the default one, whose details are referred to [17, 102, 103]. All methods are evaluated in PSNR,727

SSIM, LPIPS, and L1 Distance, similar to [103].728

#Protocol-2 Results. The quantitative result is shown in Table S8. We find that Point Avatar [103]729

achieves the best performance on the ‘Speech’ set in terms of the average for ‘PSNR’, ‘SSIM’,730

‘LPIPS’, while NeRFace [17] performs relatively better on the expression test data in total. Since731

the official implementation of IM Avatar is unstable in training, we can only show the results with732

the intermediate saved checkpoint. This contributes to IM Avatar’s underperforming over other733

methods by a large margin. There exists a clear gap in the quantitative result between the speech and734

expression data in IM Avatar [102] and Point Avatar [103]. We attribute this difference to a different735

distribution of data. Since the speech data is mostly interpolation data, and the expression data tends736

to be extrapolation data. In addition, the qualitative result provides pieces of evidence from another737

perspective, which are shown in Figure S26. IM Avatar collapses in the mouth parts and fails in detail738

synthesis (such as hair, and accessories). PointAvatar shows a high-quality performance in generating739

a 3D avatar, which reconstructs tiny strands of hair, while suffering from dynamic unseen expressions.740

NerFace also shows a strong ability to generate a 3D avatar that can extrapolate to simple unseen741

expressions. These methods all perform fine when interpolating into another verbal video, whereas742

struggle with extrapolation like Speech-to-Expression.743

Example Data RenderMe-360 Example Data IM Avatar
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Figure S25: Comparison of training data between RenderMe-360 and IMavatar. We summarize the frames,
AUs, head poses, and expressions between the example data from RenderMe-360 and data from IMavatar.

We also perform the ablation experiments that trained with different FLAME fitting parameters, as744

shown in the last two rows of Table S8. Specifically, DECA applies a model-based single-view fitting745

process, while our annotation pipeline designs a multi-view fitting process with the supervision of746

corresponding scan and images. We quantitatively compare the fitting quality, by calculating the facial747

landmark distance metric, which stands for the fitting error and reflects the quality of the expression748

parameters. For 99.3% of the data, the fitting result from our pipeline has better fitting quality. We749

further calculate the L2 difference of the shape parameter from the mean face to aligned identities,750

and obtain the result (14.115 in our pipeline, compared to 2.77 from DECA). This phenomenon751

reflects that DECA tends to produce results converging to the mean face.752

We further sample and visualize the FLAME result between two methods in Figure S27. Our753

produced results mimic the motion of the mouth and eyes better, and cover richer details in geometry.754
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Figure S26: Illustration of novel expression synthesis (#Protocol-2). We select three different identities from
different levels of difficulty. The first line is the simple expression, the middle line is the hard expression and the
last line is the interpolation result of another verbal video.

Table S8: Novel expression synthesis (#Protocol-2). We evaluate three methods on the novel expression
synthesis task on different splits of RenderMe-360. EN: Normal Expression, EH: Hard Expression, S: Speech.

Method Split L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NerFace [17]
EN 0.0338 22.23 0.826 0.1264
EH 0.0369 21.4 0.815 0.1351
S 0.03 20.51 0.848 0.1499

IM Avatar [102]
EN 0.148 14.45 0.723 0.2751
EH 0.1522 14.5 0.718 0.2812
S 0.071 20.61 0.828 0.1754

PointAvatar [103]
EN 0.01 21.99 0.854 0.1097
EH 0.0103 21.83 0.852 0.1112
S 0.0032 26.95 0.917 0.0598

PointAvatar [103]
(with DECA [15])

EN 0.0093 22.68 0.861 0.103
EH 0.0099 22.3 0.856 0.107
S 0.0034 26.83 0.914 0.0607

Interestingly, a better FLAME fitting result does not contribute too much performance boost on755

Point-Avatar. As shown in the table, Point-Avatar trained with better FLAME parameters performs756

slightly better on the conversation sequences, but lags behind on intentional expression sequences.757

We guess the possible reason lies in the characteristics of the training and testing data. Compared758

with the training data used in the original paper (two of the subjects used in Point-Avatar are from759

IMavatar’s dataset), our conversation sequences are more challenging for Speech-to-Expression760

settings (i.e.,, EN, EH in the Table S8). As shown in Figure S25, the facial attributes of our data are761

more challenging, as the main changes are around the mouth and fewer expressions pop up during762

the speech sequence. This leads to a larger distribution gap between training and testing scenarios.763

Moreover, since our FLAME pipeline produces better-aligned results in expression parts that are far764

away from the mean face (Figure S27), the trained model struggles with these out-of-distribution765

cases, and has relatively lower metric performances than the ones trained on the FLAME version that766

is inaccurate but smooth across the sequence.767
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Case                            Ours                         DECA     

Figure S27: Examples for comparison of different FLAME fitting quality. We compare and visualize FLAME
fitting results from RenderMe-360 and DECA. DECA is the processing pipeline of the official implementation
of IM Avatar and Point Avatar.

4.6 Hair Rendering768

This task refers to the setting of modeling accurate hair appearance across changes of viewpoints769

or dynamic motions. We focus on three sub-problems of hair rendering: 1)#Protocol-1 for probing770

current methods’ effectiveness on static hair reconstruction, in which methods are trained on multi-771

view images and tested on novel views; 2) #Protocol-2 for evaluating the algorithms’ capability on772

dynamic hair performance capture, in which methods are trained on multi-view video sequences and773

tested on the motion sequences under novel views; 3) #Protocol-3 for investigating the methods’774

interpolation ability on dynamic hair motion, in which the methods are trained on frames sampled775

from a monocular video, and tested on the rest frames of the video.776

Settings. We select a subset from RenderMe-360 to form the benchmark for this task, with 20777

representative wig collections from 8 randomly picked human subjects. This subset is further split778

into three groups, i.e., short hair, long hair, and curls, according to the complexity of hair strand779

intersections. In total, we study six representative methods under the three mentioned protocol780

settings (Instant-NGP [50] and NeuS [83] for #Protocol-1, MVP [42] and NV [40] for #Protocol-2,781

NSFF [35] and NR-NeRF [77] for #Protocol-3). The evaluation metrics are PSNR, SSIM, and782

LPIPS. Concretely, we discuss Instant-NGP [50] as well as NeuS [83] for #Protocol-1. We train783

the models with 38 camera views of a specific frame (the one with the largest motion magnitude in784

the video) and evaluate their performances with the rest 22 views. The distribution of camera split785

is the same as the one in the main paper. For #Protocol-2, we study two dynamic neural rendering786

methods – MVP [42] and NV [40]. The methods are evaluated under 4 held-out views of motion787

sequences. The four views are distributed around the front, double side, and back of the human788

head. For training, the other 56 views of the motions are fed into the models. For #Protocol-3, we789

reveal the effectiveness of NSFF [35] and NR-NeRF [77]. We take a camera from a frontal view790

as the monocular camera, and sample the input sequence in 10 FPS. The rest frames are used as791

evaluation data. This strategy results in about 30 frames for training per motion sequence and 60792

frames for testing. The training data volume is similar to the original papers, while the testing data793

volume is larger for a more comprehensive evaluation. Note that, hair rendering is a long-standing794

task, and there are many instructive methods. For example, state-of-the-art multi-view hair rendering795

methods like HVH [87], and Neural Strand [60] are also valuable. However, most of the methods796

are not open-sourced, and difficult to be re-implemented with aligned performances claimed in the797

original papers. Also, there are various quantitative evaluation settings among the hair rendering798

research efforts, and these settings emphasize many different aspects. We discuss six neural rendering799
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methods that are not customized for hair but representative in rendering, to explore their adaption800

ability and provide open-source baselines for this task. We leave the exploration of more interesting801

and challenging scenarios upon RenderMe-360 dataset to the community for future work.802

Result. The quantitative results are shown in Table S9. We observe several interesting phenomena.803

1) For methods under the NVS tracks of static hair rendering and dynamic hair rendering, their804

performances all show a declining trend with the increasing complexity of hair geometry. Specifically,805

the ‘curls’ scenario leads the methods to sharp performance drops under all metrics. This is806

reasonable, as curls data provides more challenges than the other two categories in terms of the807

difficulties in modeling more diverse intersections, complex motion situations, and high-frequency808

details. 2) NSFF and NR-NeRF remain roughly flat performances under the time-interpolation809

synthesis protocol. NSFF models the dynamic scene as a continuous function with the utility of810

a time-dependent neural scene flow field, and optimizes the function with spatial and temporal811

constraints. Its design help to achieve robustness in different motion interpolation scenarios. NR-812

NeRF has merits in dynamic reconstruction for disentangling dynamic motion into rigid and non-rigid813

parts. It introduces the ray-bending network to model the non-rigid motion, and a rigidity network814

to constrain the rigid regions. 3) From the hair motion aspect, long hair/curls scenarios contribute815

mostly to non-rigid deformation, whereas NSFF is superior to NR-NeRF in terms of three metrics.816

We infer that the deformation model of NR-NeRF has a flaw in capturing exact correspondences817

between images at different time steps, which leads to blur accumulated results along multiple818

frames. 4) In the static rendering, Instant-NGP has overall better ‘PSNR’ and ‘SSIM’ than NeuS,819

corresponding to the qualitative result in Figure S28 (a) , we can also observe that Instant-NGP820

renders hair in better high-frequency patterns. We infer that the multi-resolution data structure and821

individual local-part reconstruction strategy in Instant-NGP helps in fine-detail pattern reconstruction.822

5) MVP performs better in all three metrics compared to NV. Whereas, these two methods show823

more blur reconstruction than static methods. The phenomenon suggests the efforts of dynamic field824

designs should also be paid to the preservation of per-frame precision, rather than only focusing on825

deformation to new frames.826

Figure S28 (a) shows the visualization among methods under NVS track of static hair rendering and827

dynamic hair rendering. With the increase of the hair geometry complexity, we do not observe an828

obvious quality degradation of the hair rendering, while the corresponding metrics have a declining829

trend. We guess the main difference is on thin hair strand, which is the main challenge during hair830

rendering. As the complexity of the hairstyle increases, more hair strands spread out around the831

head (this can be discovered from the zoom-in area in the Figure), which are partially dismissed or832

smoothed during the rendering, causing degradation of metrics. Comparing the visualization of 4833

methods, we found some method-specific characteristics. Instant-NGP [50] reconstructs the hair834

geometry not perfectly, but relatively well among four methods, since most of the diffusing hair835

strands can be reconstructed. We guess the multi-resolution data structure from NGP helps model the836

fine-grained geometry details. NeuS [83] produces overall correct geometry, but strongly smooths837

the hair. Specifically, in the ’curls’ scenario, all the curly hairs are smoothed to form a general shape,838

which losses edge details. This is reasonable, as the SDF-based representation has advantages in839

modeling single-contour objects, but struggles with multiple contours objects, especially with thin840

structures. Neural Volume [40] produces lots of smoothness and blur, and most of the thin hair841

parts are dismissed, observed from the visualization. Since we feed the whole sequences with large842

motion into the model, it seems that Neural Volume can not handle this scenario. MVP [41] can843

preserve the hair details, but from all observed results, there are always artifacts surrounding the844

whole hair area. One possible reason is the size and quantity limitation of the volumetric primitives845

in the training procedure. As thin geometry, the hair parts need thousands of small primitives for846

high-quality representation, which requires great demands on training and is not training-friendly. A847

special primitive design is needed to be applied for hair rendering to improve performance.848

In Figure S28 (b) we show the time-interpolation results of two methods. NSFF [35] has better849

performance than NR-NeRF [77] in different hairstyles. For the head motion, NSFF preserves most850

of the strand details regardless of the motion blur, while NR-NeRF produces more blur and artifacts in851
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the hair areas and face. The possible reason is that NSFF builds the structure correspondences among852

timestamps, which can be helpful for thin structure modeling. To improve the modeling capability853

of the deformable scenario, NR-NeRF introduces per-frame learned latent code, which may lead to854

smoothness and blurring with the interpolation of the latent code between two timestamps.855

Table S9: Quantitative results of hair rendering. We study six methods for the hair rendering task under three
settings. In static rendering and dynamic rendering, we evaluate the novel view synthesis result, while we render
the image of the same camera view but evaluate an inter-novel time stamp in the time-interpolation part.

Aspects Benchmarks Short Hair Long Hair Curls Over All
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Static Rendering Instant-NGP [50] 25.53 0.848 0.274 24.99 0.834 0.29 21.06 0.789 0.355 23.75 0.822 0.309
NeuS [83] 23.54 0.851 0.108 21.05 0.746 0.239 21.3 0.789 0.261 21.76 0.787 0.214

Dynamic Rendering MVP [41] 24.31 0.821 0.148 22.56 0.868 0.197 20.97 0.795 0.262 22.61 0.856 0.201
NV [40] 21.19 0.816 0.289 20.48 0.829 0.263 19.275 0.764 0.351 20.32 0.806 0.297

Time-Interpolation NSFF [35] 27.98 0.856 0.094 28.27 0.867 0.094 28.231 0.846 0.112 28.19 0.858 0.098
NR-NeRF [77] 27.14 0.851 0.114 27.62 0.865 0.122 27.825 0.84 0.136 27.563 0.854 0.124

4.7 Hair Editing856

Table S10: Different inversions for hair editing. We showcase different inversion configurations for the
hair editing task on the identities from our testset. N is short for normal cases. H is short for hard cases with
deformable accessories.

Configuration Split ID-score ↑ MS-SSIM ↑ LPIPS ↓ L2 ↓ Configuration Split ID-score ↑ MS-SSIM ↑ LPIPS ↓ L2 ↓

e4e [75] N 0.57 0.81 0.16 0.032 PTI [59] N 0.88 0.95 0.06 0.003
H 0.52 0.74 0.23 0.069 H 0.86 0.93 0.11 0.015

Restyle_e4e [1] N 0.58 0.82 0.16 0.027 Hyperstyle [2] N 0.81 0.90 0.07 0.012
H 0.54 0.76 0.22 0.059 H 0.77 0.87 0.10 0.033

Table S11: Quantitative results for hair editing. We showcase eight configurations for the hair editing task on
the normal split from the neutral expression subset of RenderMe-360.

Editing Inversion ID-score ↑ CLIP-score ↑ Editing Inversion ID-score ↑ CLIP-score ↑

HairCLIP [74]

e4e [75] 0.50 0.76

StyleCLIP [52]

e4e [75] 0.55 0.68
Restyle_e4e [1] 0.55 0.69 Restyle_e4e [1] 0.58 0.67

PTI [59] 0.73 0.68 PTI [59] 0.83 0.70
Hyperstyle [2] 0.78 0.69 Hyperstyle [2] 0.80 0.69

Editing hair attributes, e.g., color, hairstyle, and hair position, is an interesting but challenging task.857

The operations could be done in 2D [71, 92, 58] or 3D [87, 60] manner with various conditions.858

Here, we showcase one sub-direction – text-aware 2D hair editing, to give an example of the possible859

usages of our text annotation. This task refers to the setting of editing the hair attributes, given the860

source image and target text prompt.861

Settings. For the evaluated data, we select 45 representative head images from the neutral expression862

subset of RenderMe-360. These images consist of 30 normal hairstyles, and 15 identities with863

deformable head accessories. The data samples vary from each other with distinctive attributes,864

such as hair color, hairdo, skin tone, and makeup. Upon the data, we present two configurations of865

possible ways to utilize our text annotation under the hair editing task. Concretely, we assemble866

two state-of-the-art text-based hair editing methods (i.e., HairCLIP [74] and StyleCLIP [52] ) with867

popular inversion strategies [75, 59, 1, 2] to form the configurations. For the first configuration, we868

apply HairCLIP [74], which designs specific mappers for hair color and hairstyle editing, based on869

text or image references. We follow the official implementation to test the capability of text-based870

editing after face alignment and e4e [75] inversion. For the second, third, and fourth configurations,871

we still focus on HairCLIP, but replace e4e [75] with other inversion methods, i.e., Restyle_e4e [1],872

PTI [59], and Hyperstyle [2]. Since the latter three inversion strategies theoretically have better873

identity preserving ability. For the other four configurations, we combine another famous text-874

based pre-trained model StyleCLIP [52], with utilizing all the four inversion methods (e4e [75],875

Restyle_e4e [1], PTI [59] and HyperStyle [2]). We choose StyleCLIP’s global direction style editing876

for adapting arbitrary text references. For the evaluation metrics, we follow the metrics used in877

HyperStyle [2]: identity similarity score (ID-score [11]), MS-SSIM, LPIPS, and pixel-wise L2878

distance to evaluate the inversion results with the source images. For the edited images, We use879
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ID-score [11] and CLIP-score [20] to correspondingly evaluate the identity preservation ability and880

the similarity to text input. We first crop the original 2448× 2048 images to 2048× 2048 and then881

use the alignment code from PTI [59] to do the crop and align. For the following HairCLIP and882

StyleCLIP editing with different inversion methods, we use open-source pre-trained models and883

inference code without any further training or fine-tuning. The reference text of hairstyle and hair884

color basically follows the definition of HairCLIP [74]. We totally use 50 different hairstyles and 12885

hair colors.886

Results. Table S10 shows the quantitative inversion results. Overall, all configurations function887

normally with our text annotation and data samples, which demonstrates the feasibility of utilizing888

our data in the hair editing domain. Among the four configurations, we could observe that PTI and889

HyperStyle show better quantitative results than the first two. The superiority is most significant in890

terms of identity preservation. From the aspect of methods’ effectiveness on the out-of-distribution891

(OOD) samples, we can observe that PTI inversion is the most robust, while the performances of892

other methods decrease more from normal hairstyles to images with the deformable accessory. This893

is reasonable as high-quality datasets for training inversion methods are typically under the shortage894

of complex hair accessories, e.g., traditional high hats with ethnic characteristics. Additionally,895

the standard pre-processing requires cropped aligned faces, which often ignores partial hair and896

head accessories, as also been mentioned in [96]. This phenomenon reflects that there should be897

more research attention on the OOD problem, and the completeness regions that are associated with898

hair. Figure S29 shows the results of qualitative face inversion and hair manipulation on the normal899

split from the neutral expression subset of RenderMe-360, and Table S11 shows the quantitative900

results for hair manipulation. Based on the inversion results, PTI and HyperStyle can preserve more901

details such as face shape and hair texture compared to e4e and Restyle_e4e, which is consistent902

with the inversion metrics presented in Table S10. In terms of editing results, e4e+HairCLIP,903

which is specifically designed for hairstyle and hair color editing, performs well on both inputs.904

Although e4e inversion does not preserve all facial details, thanks to StyleCLIP’s pre-training that905

follows e4e, e4e+StyleCLIP also performs well in editing most hair colors and hairstyles. When906

using the other three inversion methods besides e4e, HairCLIP and StyleCLIP have their respective907

strengths and weaknesses. For example, StyleCLIP is better at editing brown hair color and receding908

hairline hairstyles, while HairCLIP is better at editing black hair color and cornrow hairstyles.909

Restyle_e4e+HairCLIP, PTI+HairCLIP, Hyperstyle+HairCLIP may produce no change when our910

reference text is gray hair, and Restyle_e4e+StyleCLIP, PTI+StyleCLIP, Hyperstyle+StyleCLIP may911

not generate desired mohawk hairstyles. In summary, the e4e+HairCLIP model has a good effect on912

hair editing, but identity maintenance limited by the inversion methods which needs to be improved,913

which is consistent with the quantitative results shown in Table S11. On the other hand, although the914

inversion results of PTI and HyperStyle are superior compared with e4e and Restyle_e4e, the further915

text-based editing results following StyleCLIP are not equally satisfactory.916

4.8 Talking Head Generation917

With the phoneme-balanced corpus videos, our dataset can also serve as a standard benchmark for918

case-specific audio-driven talking head generation. This task refers to the setting of reenacting a919

specific person, with generating high-fidelity video portraits that are in sync with arbitrary speech920

audio as the driving source. We include two state-of-the-art talking-head methods to showcase921

the potential of our multi-sensory data. Previous approaches in this track mainly evaluate their922

performance on self-selected data. They manually extract several-minute video clips from TV923

programs or celebrity speeches for training and testing [19, 38, 69, 72]. Thus, there is a lack of924

unified selection criteria, and no benchmark agreement is achieved across different institutions yet.925

Additionally, some data sources (e.g., YouTube videos) may suffer from license issues. We hope our926

attempt could provide a standard benchmark for this task.927

Settings. For evaluation data, we choose two subsets that cover two languages (i.e., English and928

Mandarin) from RenderMe-360. Each subset contains five distinctive identities, with six phoneme-929

balanced front-face videos per identity. Under this setting, we study two NeRF-based representative930
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baselines, namely AD-NeRF [19] and SSP-NeRF [38]. Compared with 2D generative model-based931

methods [24, 6, 104] and explicit 3D mesh-aware ones [72], these two methods bridge audio sources932

with implicit scene representation of neural radiance fields. Specifically, the two NeRF-based methods933

leverage pose and shape prior, along with audio information, to directly condition the semantic-aware934

NeRF. Such a methodology could theoretically help represent fine-scale head components (such as935

teeth and hair) with better photo-realistic synthesis quality. Following SSP-NeRF [38], we utilize936

PSNR and SSIM metrics to evaluate image quality, while landmark distance (LMD) and SyncNet937

confidence (Sync) [8] are used to assess the accuracy of the lip movements. Following AD-NeRF [19],938

we first convert videos to 450 × 450 resolution and we trim one second from the beginning and939

the end of each video to eliminate the interference from hitting board at the start and the end of940

recording. Then we use 90% frames for training and the remaining for testing. We process each941

video segment separately, and the video data for each identity has an average length of 6,018 frames942

at 25 fps. To obtain more accurate training data, we utilize the landmark detection model from our943

data processing pipeline and use the same number of corresponding landmarks at the corresponding944

positions. Additionally, we use our own pipeline to obtain more accurate parsing results in the face945

parsing step. We utilize the open-source code of AD-NeRF and the code provided by the author of946

SSP-NeRF for training and testing. The results we present are generated by models trained for 400k947

iterations using the corresponding official default configurations.948

Table S12: Quantitative evaluaction on the talking head generation. We benchmark AD-NeRF [19] and
SSP-NeRF [38] on two subsets of RenderMe-360.

Method Split PSNR ↑ SSIM ↑ LMD ↓ Sync ↑ Method Split PSNR ↑ SSIM ↑ LMD ↓ Sync ↑

AD-NeRF [19] English 18.44 0.83 2.29 2.75 SSP-NeRF [38] English 18.22 0.85 1.20 3.88
Mandarin 18.42 0.80 2.45 2.26 Mandarin 18.31 0.81 0.95 4.20

Results. Table S12 and Figure S30 present the quantitative results and qualitative illustration949

of talking head models. From Table S12, AD-NeRF and SSP-NeRF exhibit similar PSNR and950

SSIM scores, but SSP-NeRF outperforms AD-NeRF in terms of LMD and Sync confidence. This951

phenomenon indicates that SSP-NeRF produces more accurate mouth shapes. The inference could be952

further supported by the qualitative results shown in Figure S30, where SSP-NeRF’s mouth shapes953

are closer to the ground truth. Additionally, the images generated by SSP-NeRF are clearer at the954

head and torso junctions. From the training language aspect, we can observe from Table S12 that,955

there is no significant difference between the two splits in Mandarin and English. Both methods956

have similar support for these languages. This reflects that even though the DeepSpeech model957

is used for extracting speech features that are primarily trained on non-Mandarin data, it still has958

good support for Mandarin due to its underlying word relationship capture ability. Moreover, the959

qualitative results are not ideal, if we compare models’ performance to the test videos used in recent960

work [19, 38]. This demonstrates our dataset’s potential as a new test set, uncovering more challenges961

for the case-specific audio-driven talking head generation.962

5 Applications of RenderMe-360963

There are a large number of down-streaming applications that could be enabled by our RenderMe-964

360 dataset, but have not been included in our current benchmark, such as 1) head generation, 2)965

image/video-based face reenact, and 3) cross-modal new avatar generation. Below, we demonstrate966

a specific task, Text to 3D Head Generation, which preliminarily reveals the broad possibilities of967

RenderMe-360 in abundant down-streaming applications.968

5.1 Text to 3D Head969

We apply our data on three typical Text to 3D Generation pipelines, ie, Dream Fields [23], Latent-970

NeRF [45], and TEXTure [57]. Although these methods are all general-object-centric, they are971

distinctive in different aspects. Specifically, Dream Fields uses NeRF to implicitly represent 3D972

object, and optimize the radiance fields with CLIP guidance. Latent-NeRF brings the NeRF into973
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latent space, and guides the generation with both text and proxy geometry. TEXTure requires a974

precise mesh alongside the text prompt, to serve as input. It leverages a pre-trained depth-to-image975

diffusion to iteratively inpaint the 3D model.976

We select three identities from RenderMe-360 with different head characteristics. The first row in977

Figure S31 is the simplest sample without any makeup or extra accessories. The second row is a978

bit complicated, we select it from the set ’With Deformable Accessories’. The last row shows the979

sample in the most complicated set, in which we can see the subject has unique makeup and wears980

complex accessories. We use the corresponding text annotation of the samples to serve as the prompt981

input, which covers distinguishing descriptions of human heads in fine-grained details. We follow the982

original setting of the three methods, in which the scan annotation for each identity sample is used in983

Latent-NeRF and TexTure.984

As shown in Figure S31, TEXTure can generate more reasonable results than the other two methods.985

The reasons are two folds. First, it only needs to learn a representation that relates to texture, and986

geometrically wrap the texture into a 3D mesh to generate the 3D head. Second, it uses depth-to-987

image diffusion, which can generate high-quality 2D head images. In contrast, Dream Fields can988

not produce a complete 3D head with text prompt only. Latent-NeRF can not produce fine-grained989

texture, although it also uses geometry prior and text prompt as TEXTure. We infer that is because990

it cannot well embed the text prompt into the neural implicit rendering field during training. In a991

nutshell, this toy example showcases several interesting suggestions for future researches on Text-to-992

3D-Head: 1) With the rich annotations of RenderMe-360, it is possible to generate a high-fidelity 3D993

head avatar corresponding to text prompts. 2) There might be a bottleneck in using text to describe994

complex geometry, which might be one of the reasons why current text-to-3D paradigms struggle to995

generate realistic human-centric 3D targets. 3) As our data annotation covers multiple modalities and996

dimensions, it allows the researchers to explore new paradigms with different prompt conditions.997

6 Discussion998

Boarder impact and limitations. The proposed RenderMe-360 dataset, together with the com-999

prehensive benchmark, is expected to effectively facilitate modern head rendering and generation1000

research. RenderMe-360 contains over 243 million high-fidelity video frames and their corresponding1001

meticulous annotations. However, as the field of human head avatar is consistently blooming, we1002

could not include all of the related research topics, and all of the state-of-the-art methods at one time.1003

Thus, we treat the construction of benchmarks based on RenderMe-360 as a long-standing mission of1004

our team. We will construct more and more benchmarks on different topics unflaggingly, to support1005

the sustainable and healthy development of the related research community. Also, we will build1006

an open platform based on RenderMe-360. We sincerely encourage and welcome contributions to1007

RenderMe-360 from the community, to boost the development of human head avatars together.1008
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Figure S28: Illustration of hair rendering. (a) We show subjects in three kinds of hairstyles, and for the
dynamic rendering methods (NV and MVP), we demonstrate the same frame as the static rendering methods. (b)
We select keyframes of the sequence (novel inter-timestamp). Better zoom in for more details.
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Figure S29: Illustration of qualitative face inversion and hair editing. For each identity, we show the aligned
face, the text reference, and the combinations of face inversion and further hair manipulation. Better zoom in for
more details.

En
gl

is
h

M
an

da
rin

(a) Ground Truth (b) AD-NeRF (c) SSP-NeRF (a) Ground Truth (b) AD-NeRF (c) SSP-NeRF

Figure S30: Qualitative illustration of talking head generation. We showcase results from AD-NeRF [19]
and SSP-NeRF [38] on four representative samples of RenderMe360.
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Latent-Nerf TEXTureGT Dream Field

Figure S31: Text-based application. We select three identities and generate the result with the same text prompt,
while Latent-NeRF and TEXTure additionally use the scan as geometry prior. TEXTure performs best among
these three methods, and the remaining two methods are not robust in human head scenarios.
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