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Abstract

Source-free domain adaptive semantic segmentation aims to adapt a pre-trained
source model to the unlabeled target domain without accessing the private source
data. Previous methods usually fine-tune the entire network, which suffers from
expensive parameter tuning. To avoid this problem, we propose to utilize visual
prompt tuning for parameter-efficient adaptation. However, the existing visual
prompt tuning methods are unsuitable for source-free domain adaptive semantic
segmentation due to the following two reasons: (1) Commonly used visual prompts
like input tokens or pixel-level perturbations cannot reliably learn informative
knowledge beneficial for semantic segmentation. (2) Visual prompts require suffi-
cient labeled data to fill the gap between the pre-trained model and downstream
tasks. To alleviate these problems, we propose a universal unsupervised visual
prompt tuning (Uni-UVPT) framework, which is applicable to various transformer-
based backbones. Specifically, we first divide the source pre-trained backbone
with frozen parameters into multiple stages, and propose a lightweight prompt
adapter for progressively encoding informative knowledge into prompts and en-
hancing the generalization of target features between adjacent backbone stages.
Cooperatively, a novel adaptive pseudo-label correction strategy with a multiscale
consistency loss is designed to alleviate the negative effect of target samples with
noisy pseudo labels and raise the capacity of visual prompts to spatial perturbations.
Extensive experiments demonstrate that Uni-UVPT achieves state-of-the-art perfor-
mance on GTA5! Cityscapes and SYNTHIA! Cityscapes tasks and can serve
as a universal and parameter-efficient framework for large-model unsupervised
knowledge transfer. Code will be available at https://gitee.com/mindspore/
models/tree/master/research/cv/uni-uvpt and https://github.com/
huawei-noah/noah-research/tree/master/uni-uvpt.

1 Introduction

Semantic segmentation is a critical computer vision task, which aims to segment and parse a scene
image into different image regions associated with semantic categories. The success of these
semantic segmentation techniques relies on large-scale densely-labeled datasets. However, it is
prohibitively expensive to collect high-quality annotations. Besides, most semantic segmentation
methods ignore the distribution shift between training and testing data, making them fail to generalize
when deployed in conditions different from training such as cross-city [8] or cross-weather [39]
scenarios. Unsupervised Domain Adaptation (UDA) [11] is an intuitive direction to address the
above two issues by transferring knowledge from existing models trained on source datasets to the
unlabeled target domain. Typical UDA approaches require joint access to both labeled source and
unlabeled target data during training, making them unsuitable for Source-Free Unsupervised Domain
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Adaptation (SFUDA) where source and target data are not concurrently accessible. This SFUDA
setting with restricted data-sharing is privacy-oriented and thus holds immense practical value in
autonomous driving and other commercial visual applications.

With the above considerations, this paper proposes to solve source-free domain adaptive semantic
segmentation task, where only source pre-trained models and unlabeled target data are available
for model adaptation. Recently, a few source-free UDA methods have been developed to tackle
semantic segmentation [30, 19, 20, 46] and image classification [21, 23, 26]. Most of them either
perform self-training [30, 1, 27, 44] or synthesize target-style training data [35] to fine-tune all model
parameters. However, fine-tuning requires many computation resources, which is an expensive and
often infeasible proposition for previous SFUDA methods, especially for modern transformer-based
architectures. Recently, prompt tuning has been proposed to explore the knowledge of frozen language
models [22, 25, 28, 29], which could be an alternative strategy to efficiently adapt the pre-trained
source model to the target domain.

Prompt Tuning aims to design a trainable lightweight block as a supplementary input (prompt) for a
frozen model, which could guide or direct the generalization of powerful representations to achieve
desirable performances. Inspired by its great success in natural language processing (NLP) [28], a
few methods in computer vision propose to add small amounts of learnable parameters as tokens
[18] or pixel-level perturbations [4] to adapt large pre-trained models to downstream tasks. However,
the existing visual prompt tuning methods have two limitations when applied to source-free domain
adaptive semantic segmentation: (1) The learned visual prompts are unreasonable. Specifically,
prompts like input tokens or pixel-level perturbations are black boxes, which cannot reliably explore
convincing knowledge beneficial for pixel-wise predictions. Besides, most methods utilize task-
oriented loss for optimization, e.g., cross-entropy loss, which limits the learning capacities of visual
prompts. (2) Previous methods cannot be directly applied to the unlabeled target domain because
most of them rely on sufficient labeled data to deal with the gap between pre-trained models and
downstream tasks. There is a lack of methods addressing unsupervised visual prompt tuning where
only massive unlabeled data is available for training.

To address the above problems, we propose a Universal Unsupervised Visual Prompt Tuning (Uni-
UVPT) framework for source-free domain adaptive semantic segmentation. Specifically, given a
source pre-trained model, we partition its backbone with frozen parameters into multiple stages and
design a lightweight prompt adapter for stage-wise prompt tuning. The prompt adapter contains a
prompt generator and several prompt interactors. The former aims to generate reasonable prompts
that capture multiscale spatial information and task-shared knowledge. The latter progressively
refines prompts between adjacent stages and transforms target features to match the source pre-trained
knowledge in the backbone. To learn prompts with massive unlabeled target samples, we utilize
target instances with pseudo labels for self-training, and propose an adaptive pseudo-label correction
strategy to alleviate pseudo-label noises. The proposed adaptive pseudo-label correction strategy
could determine suitable moments to rectify pseudo labels and guide the model to train on instances
with corrected pseudo labels, not noisy ones. Meanwhile, a multiscale consistency loss is proposed
to impose multiscale consistency of the features and predictions so that the learned visual prompts
are robust to arbitrary semantic-preserving spatial perturbations. It is noticed that our method is
applicable to various transformer architectures without modifying their basic units.

The contributions of this work are summarized as follows: (1) We first highlight the low-efficiency
problem of fine-tuning large-scale backbones in source-free domain adaptive semantic segmentation,
and propose a universal unsupervised visual prompt tuning framework for parameter-efficient model
adaptation. (2) A lightweight prompt adapter is introduced to learn reasonable visual prompts and
enhance feature generalization in a progressive manner. Cooperatively, a novel adaptive pseudo-label
correction strategy is proposed to rectify target pseudo labels at suitable moments and improve the
learning capacity of visual prompts. Extensive experimental results demonstrate that our method with
a few trainable parameters could achieve state-of-the-art performances on GTA5! Cityscapes and
SYNTHIA! Cityscapes tasks.

2 Universal Unsupervised Visual Prompt Tuning

In unsupervised domain adaptation, a labeled source dataset Ds = f(xs; ys) : xs 2 Xs; ys 2 Cg and
an unlabeled target dataset Dt = fxt : xt 2 Xg are available for training, where X is the input space
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and C denotes the label set. xs is drawn from the marginal distribution ps while xt is drawn from
another marginal distribution pt. The goal is to learn a mapping f : X ! C that can generalize well
for xt. We focus on the source-free constraint [30], where we do not have access to the original
source domain data Ds. Instead, merely a source pre-trained model fs and unlabeled target data Dt

are provided for adaptation. The source pre-trained semantic segmentation model usually contains
a backbone fb (containing some embedding layers, e.g., the patch embedding layer in Swin [31])
and a customized head fh. To efficiently adapt the source pre-trained model fs to the unlabeled
target domain Dt, we propose to perform unsupervised visual prompt tuning. When designing our
algorithm, we consider the following two questions: (1) how to design informative visual prompts
for source-free domain adaptive semantic segmentation and (2) how to learn visual prompts with
unlabeled samples for model adaptation. To this end, we propose a universal unsupervised visual
prompt tuning (Uni-UVPT) framework as shown in Figure 1. Specifically, we design a novel prompt
adapter for generating informative visual prompts and improving the generalization of target features.
Besides, an effective adaptive pseudo-label correction strategy with a multiscale consistency loss
is proposed for learning visual prompts with massive unlabeled target data and enhancing visual
prompts’ capacity for spatial perturbations. As the backbone fb is frozen and only the parameters
of the proposed prompt adapter and segmentation head are optimized during training, Uni-UVPT is
parameter-efficient for model adaptation. Besides, Uni-UVPT could be directly deployed to various
transformer-based architectures without modifying the basic units.

2.1 Prompt Adapter

As shown in Figure 1, the proposed lightweight prompt adapter contains a prompt generator and
several prompt interactors. The former aims to generate informative prompts that capture multiscale
spatial information and task-shared knowledge. The latter is designed to refine prompts with pre-
trained knowledge and transform target features to match the pre-trained knowledge in the backbone.
To interact with target features via visual prompts, we manually partition the backbone fb into N
(usually N = 4) stages, each of which is composed of multiple basic units. Given a target image xt,
it is first fed into the embedding layer to obtain patch sequences F out

0 . F out
0 is then regarded as an

input of the frozen backbone. Meanwhile, the target image xt is also fed into the prompt generator to
output an initial prompt C0 that contains L dimensional spatial features of multiple resolutions. Then,
the initial prompt is flattened and concatenated as an input of the prompt interactor. For stage i of
the backbone, its input feature and output feature are respectively denoted as F in

i and F out
i . Before

stage i, the prompt interactor incorporates the output feature F out
i�1 and the interim prompt Ci�1 of

previous stage to obtain the refined prompts Ci and a suitable input F in
i for the stage i. Finally, the

output feature F out
N of the last stage is fed into head fh for segmentation prediction. In the following

sections, we introduce the details of the proposed prompt generator and prompt interactor.

Prompt Generator. Previous methods [4, 18] have proved that learning prompts brings flexibility
to the pre-trained model. However, their prompts like input tokens or pixel-level perturbations are
black boxes with limited learning capacity, which cannot reliably explore convincing knowledge
beneficial for semantic segmentation. Therefore, we propose to design informative prompts for
each image to capture multiscale spatial prior and the task-shared knowledge. To achieve this goal,
we utilize a standard convolutional stem fstem borrowed from ResNet [16] to extract multiscale
spatial information, because convolution could help transformers better capture the local spatial
information [41, 42, 13, 34]. fstem consists of three convolutions, a max-pooling layer, and a stack of
stride-2 3� 3 convolutions to double the channels and reduce the size of feature maps. Several 1� 1
convolutions are applied at the end to project the feature maps to L dimensions. Finally, we obtain
a feature pyramid S = fs1; s2; s3g, which contains L-dimensional feature maps with 1/2, 1/4, and
1/8 resolutions of the original image. Besides, following the spirits of previous methods [4, 18], we
leverage a group of trainable vectors Q = fq1; q2; q3g named level embedding, to learn task-shared
knowledge, which contains three L-dimensional vectors initialed by the Gaussian function. In this
way, the prompt pyramid Ĉ0 = fc1; c2; c3g of the input image xt 2 R3�H�W could be obtained by

ci = � (si; qi) ; (1)

where � (�; �) could be any feature fusion operations. Here, we first repeat si several times so that the
vectors can be resized as the same shape of qi, and then perform element-wise addition. Finally, we
flatten and concatenate the prompt pyramid Ĉ0 into prompt tokens C0 2 R( HW

22 + HW
42 + HW

82 )�L as the
input of prompt interactor for prompt refinement and feature adaptation.
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Figure 1: The architecture of Uni-UVPT. (a) The source pre-trained segmentation model, whose
encoder layers are divided into N stages. (b) The proposed prompt adapter, which contains two
designs, including (c) a prompt generator for encoding rich knowledge into prompts, and (d) a prompt
interactor for prompt refinement and feature interaction. (e) The proposed adaptive pseudo-label
correction strategy, which rectifies pseudo-labels at suitable moments.

Prompt Interactor. To progressively refine prompts and improve feature generalization via the
refined prompts, we design a novel prompt interactor based on cross-attention. As shown in Figure 1,
for the i-th stage of the backbone, we use the interim prompt Ci�1 of the previous stage as the query,
and the output feature F out

i�1 as the key and value for cross-attention so that the pre-trained knowledge
contained in F out

i�1 are injected into prompts. This process can be formulated as:

Ci = Ci�1 + Attention(norm(Ci�1);norm(F out
i�1)); (2)

where the norm(�) is LayerNorm [2], and the attention layer Attention(�) suggests using sparse
attention. After that, we utilize the refined prompt Ci to generate adapted input F in

i for the next stage
of the backbone. This process can be formulated as:

F in
i = F out

i�1 + 
i �Attention(norm(F out
i�1);norm(Ci)); (3)

where sparse attention is adopted to reduce computational costs. Besides, we apply a learnable vector

i 2 RL to balance the attention layer’s output and the feature F out

i�1, which is initialized with 0. This
initialization strategy ensures that the feature distribution of F out

i�1 will not be modified drastically due
to the injection of the prompt Ci, thus making better use of the pre-trained knowledge of backbone.

2.2 Adaptive Pseudo-Label Correction

To learn visual prompts with massive unlabeled target data, we propose to utilize high-quality
pseudo labels of target samples for self-training. The pipline of the adaptive pseudo-label cor-
rection is shown in Figure 1 (e). Previous SFUDA methods generate pseudo labels by learning
meaningful cluster structures in the feature space and the quality of the learned cluster structures
hinges on the reliability of pseudo labels generated by the source model. Therefore, the pseudo
labels are noisy due to the domain shift. Recently, Li et al. [47] have formulated SFUDA as
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learning with label noise problem, and observed early-learning phenomenon that deep neural net-
works tend to first fit the training data with correct pseudo labels during an early-learning phase,
before eventually memorizing the instance with incorrect/noisy pseudo labels. Not only in im-
age classification, we also observe a similar phenomenon in semantic segmentation, where the
pseudo-label noise is ubiquitous across samples and distributed in a pixel-wise manner. As shown
in Figure 2, we analyze the learning curves on the pseudo labels predicted by the source model
during the training process. As the model learning is supervised by noisy pseudo labels, the IoUm

curves for all categories increase substantially as training proceeds. The IoUel follows a com-
pletely different trajectory: it first increases during an early-learning stage where the model learns to
correctly segment the incorrectly-labeled pixels, but eventually decreases as memorization occurs.
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Figure 2: Effect of early learning (IoUel, blue curves) and memorization (IoUm, red curves) for
different categories in Cityscapes dataset. The IoUel is the IoU between the model output and
ground-truth labels. The IoUm represents the IoU between the model output and pseudo labels.
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Figure 3: Multiscale consistency loss for rescaled
images. The rescaled features of ~F in

i;k of backbone
are utilized for feature consistency and the rescaled
model predictions ~yk for prediction consistency.

To alleviate the memorization of noisy pseudo la-
bels in SFUDA, Li et al. [47] roughly encourage
model predictions to stick to labels generated
by the frozen source model without any label
correction. Differently, we design an adaptive
pseudo-label correction strategy based on the
early-time training phenomenon, which rectifies
target pseudo labels for each category before
the model memorizes the noisy pseudo labels.
Naturally, it raises a question that how to deter-
mine when to correct the noisy pseudo labels.
Fortunately, as shown in Figure 2, we observe
that the segmentation performance on the train-
ing set (IoUm) improves rapidly during early
learning, and then much more slowly during
memorization. In other words, the performance
deceleration indicates whether the model over-
fits noisy pseudo labels. To estimate the deceleration, we first fit the following exponential parametric
model to the training IoU using the least squares:

g(t) = at3 + bt2 + ct+ d; (4)

where t represents training time, and a, b, c and d are fitting parameters. However, it is time-
consuming to calculate the training IoU on all training samples. We propose to utilize a memory
queue with r samples as an alternative, which is updating with batch data. Then, we compute the
derivative g0(t), and the pseudo labels for each category are corrected when the relative change of
g0(t) is above a certain threshold � :

jg0 (t0)� g0 (t) j
jg0 (t0) j

> �: (5)

where t0 is the start time of the early-learning stage in a correction loop. The image pixels with
predictive confidence over 
% per class on the entire target training set are chosen for pseudo-label
correction. For all experiments, we set � = 0:9 and 
 = 0:65. After the pseudo-label correction, the
model learning steps into a new early-learning stage. It is noticed that the pseudo-label correction
loop will perform several times until achieving the max training iterations.
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To form the final pseudo labels, we average the model outputs corresponding to multiple rescaled
copies of inputs. Specifically, let m be the number of scaling operations. We set m = 3 (downscaling
�0.5, no scaling, and upscaling �2) in our experiments. For an input xt rescaled according to these
scaling operations in Figure 3, yk; 1 � k � m denotes the corresponding model predictions and ~yk is
obtained by rescaling yk as the same size of xt. The corrected pseudo label ŷt can be obtained by
averaging predictions of multiple rescaled xt:

ŷt =
1

m

mX
k=1

~yk; (6)

where only categories satisfying Eq (5) require correction while others remain unchanged.

Once the pseudo labels of all training samples are corrected, the model steps into a new early-learning
stage via minimizing a self-training loss Lst shown in Eq (7) and waits for the next correction process.

Lst = Ext�Dt
[�hŷt; log f (xt)i] + Ext�Dt

[� log f (xt)] ; (7)
where h�; �i is dot product, and f (xt) denotes the model output. The first term is cross-entropy loss
based on image and pseudo-label pair (xt; ŷt). The second term is predictive entropy that could
reduce model uncertainty on target samples during self-training [19].

Besides, we incorporate a multiscale consistency loss Lmc to promote feature consistency and
prediction consistency, as shown in Eq (8),

Lmc = �Ext�Dt

"
NX

i=1

1

m

mX
k=1

k ~F in
i;k � F̂ in

i k2
2

#
| {z }

feature consistency Lfc

+� Ext�Dt

"
� 1

m

mX
k=1

KL (~yk k ŷt)

#
| {z }

prediction consistency Lpc

; (8)

where � and � are balance parameters, and KL denotes the Kullback-Leibler divergence. As shown in
Figure 3, ~F in

i;k; 1 � k � m; 1 � i � N represents the rescaled features of backbone stages and their
average is denoted as F̂ in

i = 1
m

Pm
k=1

~F in
i;k. The first term is the feature consistency regularization

Lfc, which constrains the visual prompts to preserve the semantics of features and meanwhile
eliminate the spatial perturbations so that the prompt adapter could generate scale-robust prompts.
Similarly, the rest prediction consistency term Lpc could encourage the model to produce predictions
that are robust to arbitrary semantic-preserving spatial perturbations. The final objective is defined as
the sum of the self-training loss and multiscale consistency loss:

L = Lst + Lmc: (9)
More details about the training process are introduced in the appendices.

3 Experiment

3.1 Evaluation Setup

Datasets and Metrics. We extensively evaluate the proposed approach on two popular synthetic-to-
real benchmarks, i.e., GTA5! Cityscapes and SYNTHIA! Cityscapes. GTA5 [37] is a large-scale
driving-game dataset containing 24,966 images with 19 classes for pre-training. Synthia dataset [38]
is rendered from a virtual city and contains 9,400 synthetic images with 16 classes for pre-training.
The realistic dataset Cityscapes [10] collects street view scenes from 50 different cities with 19 classes,
including 2,975 training images and 500 validation images. Following previous methods [30, 19], the
semantic segmentation performance is evaluated by calculating the Mean Intersection-over-Union
(mIoU) over 19 categories in GTA5! Cityscapes, as well as 13 and 16 (with 3 small-scale categories)
categories in SYNTHIA! Cityscapes.

Implementation Details. Our approach is implemented based on the MMSegmentation framework
[9] and one training task requires one NVIDIA Tesla V100 GPU. We deploy Swin-B [31] and MiT-B5
[43] as backbones and DAFormer [17] as decode head. During pre-training in the source domain, the
backbone is initialized with weights pre-trained with the ImageNet dataset [12]. We utilize AdamW
for optimization. Specifically, the learning rate of Swin-B encoder is set as 6� 10�6 and 4� 10�6

for the MiT-B5 encoder, while the learning rates of the segmentation head and prompt adapter are
respectively set as ten and five times of backbone. Our Uni-UVPT framework typically needs 40k-80k
iterations with a batch size of 1 until convergence. More details could be found in the appendices.
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