
Model-Based Control with Sparse Neural Dynamics

Ziang Liu1,2 Genggeng Zhou2∗ Jeff He2∗ Tobia Marcucci3
Li Fei-Fei2 Jiajun Wu2 Yunzhu Li2,4
1Cornell University 2Stanford University

3Massachusetts Institute of Technology
4University of Illinois Urbana-Champaign

ziangliu@cs.cornell.edu
{g9zhou,jeff2024}@stanford.edu

tobiam@mit.edu
{feifeili,jiajunwu}@cs.stanford.edu

yunzhuli@illinois.edu

Abstract

Learning predictive models from observations using deep neural net-
works (DNNs) is a promising new approach to many real-world planning and
control problems. However, common DNNs are too unstructured for effective
planning, and current control methods typically rely on extensive sampling or
local gradient descent. In this paper, we propose a new framework for integrated
model learning and predictive control that is amenable to efficient optimization al-
gorithms. Specifically, we start with a ReLU neural model of the system dynam-
ics and, with minimal losses in prediction accuracy, we gradually sparsify it by
removing redundant neurons. This discrete sparsification process is approximated
as a continuous problem, enabling an end-to-end optimization of both the model
architecture and the weight parameters. The sparsified model is subsequently
used by a mixed-integer predictive controller, which represents the neuron acti-
vations as binary variables and employs efficient branch-and-bound algorithms.
Our framework is applicable to a wide variety of DNNs, from simple multilayer
perceptrons to complex graph neural dynamics. It can efficiently handle tasks
involving complicated contact dynamics, such as object pushing, compositional
object sorting, and manipulation of deformable objects. Numerical and hardware
experiments show that, despite the aggressive sparsification, our framework can
deliver better closed-loop performance than existing state-of-the-art methods. †

1 Introduction

Our mental model of the physical environment enables us to easily carry out a broad spectrum of
complex control tasks, many of which lie far beyond the capabilities of present-day robots [32].
It is, therefore, desirable to build predictive models of the environment from observations and de-
velop optimization algorithms to help the robots understand the impact of their actions and make
effective plans to achieve a given goal. Physics-based models [26, 73] have excellent generalization
ability but typically require full-state information of the environment, which is hard and sometimes
impossible to obtain in complicated robotic (manipulation) tasks. Learning-based dynamics mod-
eling circumvents the problem by learning a predictive model directly from raw sensory observa-
tions, and recent successes are rooted in the use of deep neural networks (DNNs) as the functional
class [14, 21, 56, 47]. Despite their improved prediction accuracy, DNNs are highly nonlinear,

∗denotes equal contribution
†Please see our website at robopil.github.io/Sparse-Dynamics/ for additional visualizations.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://robopil.github.io/Sparse-Dynamics/

Piecewise Affine Systems Object Pushing

Object Sorting Rope Manipulation
(b) Planning with sparsified neural dynamics (c) Benchmark tasks

ReLU ReLU ReLU ReLU

ReLU ReLU ReLU

ReLU ReLU ReLU

Observation Action

New Observation

Sparsify
ID ReLU

ReLU ID ID

ID ReLU ID

Observation Action

New Observation

World MIP Planner Neural Dynamics

Observation Observation, Action

New ObservationAction

(a) Sparsify the learned neural dynamics

Figure 1: Model-based control with sparse neural dynamics. (a) Our framework sparsifies the neural dy-
namics models by either removing neurons or replacing ReLU activation functions with identity mappings (ID).
(b) The sparsified models enable the use of efficient MIP methods for planning, which can achieve better closed-
loop performance than sampling-based alternatives commonly used in model-based RL. (c) We evaluate our
framework on various dynamical systems that involve complex contact dynamics, including tasks like object
pushing and sorting, and manipulating a deformable rope.

making model-based planning with neural dynamics models very challenging. Existing methods
often rely on extensive sampling or local gradient descent to compute control signals, and can be
ineffective for complicated and long-horizon planning tasks.

Compared to DNNs, simpler models like linear models are amenable to optimization tools with bet-
ter guarantees, but often struggle to accurately fit observation data. An important question arises:
how precise do these models need to be when employed within a feedback control loop? The cogni-
tive science community offers substantial evidence suggesting that humans do not maintain highly
accurate mental models; nevertheless, these less precise models can be effectively used with environ-
mental feedback [30, 10]. This notion is also key in control-oriented system identification [25, 44]
and model order reduction [55, 61]. The framework from Li et al. [38] trades model expressive-
ness and precision for more efficient and effective optimization-based planning through the learning
of compositional Koopman operators. However, their approach is limited by the linearity of the
representation in the Koopman embedding space and struggles with more complex dynamics.

In this paper, we propose a framework for integrated model learning and control that trades off
prediction accuracy for the use of principled optimization tools. Drawing inspiration from the neural
network pruning and neural architecture search communities [22, 54, 16, 5, 41], we start from a
neural network with ReLU activation functions and gradually reduce the nonlinearity of the model
by removing ReLU units or replacing them with identity mappings (Figure 1a). This yields a highly
sparsified neural dynamics model, that is amenable to model-based control using state-of-the-art
solvers for mixed-integer programming (MIP) (Figure 1b).

We present examples where the proposed sparsification pipeline can determine region partition and
uncover the underlying system for simple piecewise affine systems. Moreover, it can maintain high
prediction accuracy for more complex manipulation tasks, using a considerably smaller portion of
the original nonlinearities. Importantly, our approach allows the joint optimization of the network
architecture and weight parameters. This yields a spectrum of models with varying degrees of
sparsification. Within this spectrum, we can identify the simplest model that is adequate to meet the
requirements of the downstream closed-loop control task.

Our contributions can be summarized as follows: (i) We propose a novel formulation for identifying
the dynamics model from observation data. For this step, we introduce a continuous approximation
of the sparsification problem, enabling end-to-end gradient-based optimization for both the model
class and the model parameters (Figure 1a). (ii) By having significantly fewer ReLU units than

2

the full model, the sparsi�ed dynamics model allows us to solve the predictive-control problems
using ef�cient MIP solvers (Figure 1b). This can lead to better closed-loop performance compared
to both model-free and model-based reinforcement learning (RL) baselines. (iii) Our framework
can be applied to many types of neural dynamics, from vanilla multilayer perceptrons (MLPs) to
complex graph neural networks (GNNs). We show its effectiveness in a variety of simulated and
real-world manipulation tasks with complex contact dynamics, such as object pushing and sorting,
and manipulation of deformable objects (Figure 1c).

2 Related Work

Model learning for planning and control. Model-based RL agents learn predictive models of
their environment from observations, which are subsequently used to plan their actions [9, 53]. Re-
cent successes in this domain often heavily rely on DNNs, exhibiting remarkable planning and
control results in challenging simulated tasks [58], as well as complex real-world locomotion
and manipulation tasks [34, 56]. Many of these studies draw inspiration from advancements in
computer vision, learning dynamics models directly in pixel-space [15, 11, 12, 71, 62], keypoint
representation [31, 47, 39], particle/mesh representation [36, 60, 27], or low-dimensional latent
space [65, 1, 21, 20, 58, 69]. While previous works typically assume that the model class is given
and �xed during the optimization process, our work puts emphasis on �nding the desired model
class via an aggressive network sparsi�cation, to support optimization tools with better guarantees.
We are willing to sacri�ce the prediction accuracy for better closed-loop performance using more
principled optimization techniques.

Network sparsi�cation. The concept of neural network sparsi�cation is not new and traces back
to the 1990s [33]. Since then, extensive research has been conducted, falling broadly into two
categories: network pruning [23, 22, 66, 54, 35, 24, 3, 43, 16, 42, 5, 72] and neural architecture
search [74, 8, 40, 13, 64]. Many of these studies have demonstrated that �tting an overparameterized
model before pruning yields better results than directly �tting a smaller model. Our formulation is
closely related to DARTS [41] and FBNet [68], which both seek a continuous approximation of the
discrete search process. However, unlike typical structured network compression methods, which try
to remove as many units as possible, our goal here is to minimize the model nonlinearity. To this end,
our method also permits the substitution of ReLU activations with identity mappings. This leaves
the number of units unchanged but makes the downstream optimization problem much simpler.

Mixed-integer modeling of neural networks. The input-output map of a neural network with
ReLU activations is a piecewise af�ne function that can be modeled exactly through a set of mixed-
integer linear inequalities. This allows us to use highly-effective MIP solvers for the solution of
the model-based control problem. The same observation has been leveraged before for robustness
analysis of DNNs in [63, 70], while the ef�ciency of these mixed-integer models has been thoroughly
studied in [2].

3 Method

In this section, we describe our methods for learning a dynamics model using environmental ob-
servations and for sparsifying DNNs through a continuous approximation of the discrete pruning
process. Then we discuss how the sparsi�ed model can be used by an MIP solver for trajectory
optimization and closed-loop control.

3.1 Learning a dynamics model over the observation space

Assume we have a datasetD = f (ym
t ; um

t) j t = 1 ; : : : ; T; m = 1 ; : : : ; M g collected via interac-
tions with the environment, whereym

t andum
t denote the observation and action obtained at timet

in trajectorym. Our goal is to learn an autoregressive modelf̂ � , parameterized by� , as a proxy of
the real dynamics that takes a small sequence of observations and actions from timet0 to the current
time t, and predicts the next observation at timet + 1 :

ŷm
t +1 = f̂ � (ym

t 0:t ; um
t 0:t): (1)

3

We optimize the parameter� to minimize the simulation error that describes the long-term discrep-
ancy between the prediction and the actual observation:

L (�) =
MX

m =1

X

t

kym
t +1 � f̂ � (ŷm

t 0:t ; um
t 0:t)k

2
2: (2)

3.2 Neural network sparsi�cation by removing or replacing ReLU activations

We instantiate the transition function̂f � as a ReLU neural network withN hidden layers. Let us
denote the number of neurons in thei th layer asN i . When given an inputx = (ym

t 0:t ; um
t 0:t), we

denote the value of thej th neuron in layeri before the ReLU activation asx ij . Regular ReLU
neural networks apply the recti�er function to everyx ij and obtain the activation value usingx+

ij =
hij (x ij) � ReLU(x ij) , max(0; x ij). The nonlinearity introduced by the ReLU function allows
the neural networks to �t the dataset but makes the downstream planning and control tasks more
challenging. As suggested by many prior works in the �eld of neural network compression [22, 16],
a lot of these ReLUs are redundant and can be removed with minimal effects on the prediction
accuracy. In this work, we reduce the number of ReLU functions by replacing the functionhij with
either an identity mapping ID(x ij) , x ij or a zero function Zero(x ij) , 0, where the latter is
equivalent to removing the neuron (Figure 1a).

We divide the parameters in̂f � into two vectors,� = (!; �). The vector! collects the weight
matrices and the bias terms. The vector� consists of a set of integer variables that parameterize the
architecture of the neural network:� = f � ij 2 f 1; 2; 3g j i = 1 ; : : : ; N; j = 1 ; : : : ; N i g, such that

hij (x ij) =

8
<

:

ReLU(x ij) if � ij = 1
ID(x ij) if � ij = 2
Zero(x ij) if � ij = 3

: (3)

The sparsi�cation problem can then be formulated as the following MIP:

min
� =(!;�)

L (�) s.t.
NX

i =1

N iX

j =1

1(� ij = 1) � "; (4)

where1 is the indicator function, and the value of" decides the number of regular ReLU functions
that are allowed to remain in the neural network.

3.3 Reparameterizing the categorical distribution using Gumbel-Softmax

Solving the optimization problem in Equation 4 is hard, as the number of integer variables in�
equals the number of ReLU neurons in the neural network, which is typically very large. Therefore,
we relax the problem by introducing a random variable� ij indicating the categorical distribution of
� ij assigning to one of the three categories, where� k

ij , p(� ij = k) for k = 1 ; 2; 3. We can then
reformulate the problem as:

min
!;�

E[L (�)] s.t.
NX

i =1

N iX

j =1

� 1
ij � "; � ij � � ij ; (5)

where� , f � ij j i = 1 ; : : : ; N; j = 1 ; : : : ; N i g.

In Equation 5, the sampling procedure� ij � � ij is not differentiable. In order to make end-to-end
gradient-based optimization possible, we employ the Gumbel-Softmax [28, 46] technique to obtain
a continuous approximation of the discrete distribution.

Speci�cally, for a 3-class categorical distribution� ij , where the class probabilities are denoted as
� 1

ij ; � 2
ij ; � 3

ij , Gumbel-Max [17] allows us to draw 3-dimensional one-hot categorical samplesẑij
from the distribution via:

ẑij = OneHot(arg max
k

(log � k
ij + gk)) ; (6)

4

where gk are i.i.d. samples drawn from Gumbel(0; 1), which is obtained by samplinguk �
Uniform(0; 1) and computinggk = � log(� log(uk)) . We can then use the softmax function as
a continuous, differentiable approximation of thearg max function:

zk
ij =

exp ((log � k
ij + gk)=�)

P
k 0 exp ((log � k 0

ij + gk 0)=�)
: (7)

We denote this operation aszij � Concrete(� ij ; �) [46], where� is a temperature parameter con-
trolling how close the softmax approximation is to the discrete distribution. As the temperature�
approaches zero, samples from the Gumbel-Softmax distribution become one-hot and identical to
the original categorical distribution.

After obtainingzij , we can calculate the activation valuex+
ij as a weighted sum of different func-

tional choices:

x+
ij = ĥij (x ij) , z1

ij � ReLU(x ij) + z2
ij � ID(x ij) + z3

ij � Zero(x ij); (8)

and then use gradient descent to optimize both the weight parameters! and the architecture distri-
bution parameters� .

During training, we can also constrainzij to be one-hot vectors by usingarg max, but use the
continuous approximation in the backward pass by approximatingr � ẑij � r � zij . This is denoted
as “Straight-Through” Gumbel Estimator in [28].

3.4 Optimization algorithm

Instead of limiting the number of regular ReLUs from the very beginning of the training process,
we start with a randomly initialized neural network and use gradient descent to optimize! and� by
minimizing the following objective function until convergence:

E[L (�)] + �R (�); (9)

where the regularization termR(�) ,
P N

i =1

P N i
j =1 � 1

ij aims to explicitly reduce the use of the

regular ReLU function. One could also consider adjusting it toR(�) ,
P N

i =1

P N i
j =1 (� 1

ij + � ID � 2
ij)

with a small� ID to discourage the use of identity mappings at the same time.

We then take an iterative approach by starting with a relatively large"1 and gradually decrease its
value forK iterations with"1 > " 2 > � � � > " K = ". Within each optimization iteration using" k ,
we �rst rank the neurons according tomax(� 2

ij ; � 3
ij) in descending order, and assign the activation

function for the top-ranked neurons as ID if� 2
ij � � 3

ij , or Zero otherwise, while keeping the bottom
" k neurons intact using Gumbel-Softmax as described in Section 3.3. Subsequently, we continue
optimizing ! and � using gradient descent to minimize Equation 9. The sparsi�cation process
generates a range of models at various sparsi�cation levels for subsequent investigations.

3.5 Closed-loop feedback control using the sparsi�ed models

After we have obtained the sparsi�ed dynamics models, we �x the model architecture and formulate
the model-based planning task as the following trajectory optimization problem:

min
u

X

t

c(yt ; ut) s.t. yt +1 = f̂ � (yt 0:t ; ut 0:t); (10)

wherec is the cost function. When the transition functionf̂ � is a highly nonlinear neural network,
solving the optimization problem is not easy. Previous methods [71, 11, 56, 14, 47] typically regard
the transition function as a black box and rely on sampling-based algorithms like the cross-entropy
method (CEM) [57] and model-predictive path integral (MPPI) [67] for online planning. Others
have also tried applying gradient descent to derive the action signals [36, 37]. However, the number
of required samples grows exponentially with the number of inputs and trajectory length. Gradient
descent can also be stuck in local optima, and it is also hard to assess the optimality or robustness of
the derived action sequence using these methods.

5

Figure 2:Recover the ground truth piecewise af�ne functions from data. We evaluate our sparsi�cation
pipeline on two hand-designed piecewise af�ne functions composed of four linear pieces. Our pipeline suc-
cessfully generates sparsi�ed models with 2 ReLUs that accurately �t the data, determine the region partition,
and recover the underlying ground truth system.

3.5.1 Mixed-integer formulation of ReLU neural dynamics

The sparsi�ed neural dynamics models open up the possibility of dissecting the model and solving
the problem using more principled optimization tools. Speci�cally, given that a ReLU neural net-
work is a piecewise af�ne function, we can formulate Equation 10 as MIP. We assign to each ReLU
a binary variablea = 1(x � 0) to indicate whether the pre-activation value is larger or smaller than
zero. Given lower and upper bounds on the inputl � x � u (which we calculate by passing the
of�ine dataset through the sparsi�ed neural networks), the equalityx+ = ReLU(x) , max(0; x)
can be modeled through the following set of mixed-integer linear constraints:

x+ � x � l (1 � a); x+ � x; x + � ua; x+ � 0; a 2 f 0; 1g: (11)

If only a few ReLUs are left in the model, Equation 10 can be ef�ciently solved to global optimality.

The formulation in Equation 11 is the simplest mixed-integer encoding of a ReLU network, and a
variety of strategies are available in the literature to accelerate the solution of our MIPs. For large-
scale models, it is possible towarm startthe optimization process using sampling-based methods or
gradient descent, and subsequently re�ne the solution using MIP solvers [49]. There also exist more
advanced techniques to formulate the MIP [2, 48, 50], these can lead to tighter convex relaxations of
our problem and allow us to identify high-quality solutions of Equation 10 earlier in the branch-and-
bound process. The ability to �nd globally-optimal solutions is attractive but requires the model to
exhibit a reasonable global performance. The sparsi�cation step helps us also in this direction, since
we typically expect a smaller simulation error from a sparsi�ed (simpler) model than its unsparsi�ed
(very complicated) counterpart when moving away from the training distribution. In addition, we
could also explicitly counteract this issue with the addition of trust-region constraints that prevent
the optimizer from exploiting model inaccuracies in the areas of the input space that are not well-
supported by the training data [52].

3.5.2 Tradeoff between model accuracy and closed-loop control performance

Models with fewer ReLUs are generally less accurate but permit the use of more advanced opti-
mization tools, like ef�cient branch-and-bound algorithms implemented in state-of-the-art solvers.
Within a model-predictive control (MPC) framework, the controller can leverage the environmental
feedback to counteract prediction errors via online modi�cations of the action sequence. The itera-
tive optimization procedure in Section 3.4 yields a series of models at different sparsi�cation levels.
By comparing their performances and investigating the trade-off between prediction accuracy and
closed-loop control performance, we can select the model with the most desirable capacity.

4 Experiments

In our experiments, we seek to address three central questions: (1) How does the varying number
of ReLUs affect the prediction accuracy? (2) How does the varying number of ReLUs affect open-
loop planning? (3) Can the sparsi�ed model, when combined with more principled optimization
methods, deliver better closed-loop control results?

Environments, tasks, and model classes.We evaluate our framework on four environments spec-
i�ed in different observation spaces, including state, keypoints, and object-centric representations.

6

	Introduction
	Related Work
	Method
	Learning a dynamics model over the observation space
	Neural network sparsification by removing or replacing ReLU activations
	Reparameterizing the categorical distribution using Gumbel-Softmax
	Optimization algorithm
	Closed-loop feedback control using the sparsified models
	Mixed-integer formulation of ReLU neural dynamics
	Tradeoff between model accuracy and closed-loop control performance

	Experiments
	How does the varying number of ReLUs affect the prediction accuracy?
	How does the varying number of ReLUs affect open-loop planning?
	Can the sparsified model deliver better closed-loop control results?

	Discussion
	How does our method compare to prior works in model-based RL?
	Do models trained using our approach generalize to prior model-based RL methods?
	How does our sparsification technique compare to prior neural network pruning methods?
	Evaluation on Piecewise Affine (PWA) Functions
	Evaluation on Dynamics Prediction
	Evaluation on Closed-Loop Control

