
Appendix

We provide an overview of the Appendix below.

Transfer to downstream (Sec. A). We elaborate on the additional details to transfer our MQ-Det
to downstream tasks, including finetuning-free, few-shot, and full-shot settings. The introduction is
organized as followed.

• Different ways to acquire the vision queries in Sec. A.1. This is an elaborative description of
Sec. 3.1.2 in the main text.

• A customized tuning approach of MQ-Det in Sec. A.3, which achieves similar performance
as full-model tuning while only fine-tuning very few parameters.

Experiments (Sec. B). We provide additional training and evaluation details, including:

• Detailed results on 35 downstream tasks in ODinW are provided in Tab. III and Tab. VII,
described in Sec. B.1.

• An explicit evaluation on an open-vocabulary detection setting is conducted to further
investigate the generalization of our multi-modal queries, as presented in Sec. B.2.

• Some visualization results of MQ-Det in Sec. B.1 and Fig. I.
• The training hyper-parameters are illustrated in Sec B.3 and Tab. VI.

Further discussion (Sec. C). We provide a comprehensive discussion on our work, including limita-
tions and broader impacts in Sec C.

A Transfer to downstream

A.1 Different ways to acquire vision queries

During finetuning-free evaluation, we extract 5 instances as vision queries for each category from
the downstream training set without any finetuning. We also provide two alternative strategies and
observe similar performance, i.e., retrieval and test-time online update, where the former obtains
vision queries from heterogeneous external data like ImageNet [1], and the latter dynamically stores
high-confidence instances as vision queries during evaluation. These two additional approaches are
proposed to simulate realistic scenarios:

• Retrieval (user-provided exemplars): a small number of exemplars are provided by the
users without any fine-tuning. We retrieve 5 exemplars as vision queries for each category
from ImageNet-21K [1] to simulate the user-provided exemplars. These samples are
heterogeneous from the downstream test data, e.g., domains. The results are provided in
MQ-GLIP-T-Retrival of Tab. I.

• Online updating: the model dynamically stores high-confidence instances as vision queries
during evaluation. No vision queries are provided at the initial stage of evaluation. The
results are illustrated in MQ-GLIP-T-Online of Tab. I. We provide detailed description in
Sec. A.2.

The results are illustrated in Tab. I. We select 3 downstream datasets from ODinW [2] to verify the
effectiveness of each approach. Generally, all three approaches to acquire vision queries demonstrate
similar performance. We observe that vision queries from online updating hold relatively lower quality,
thus leading to slight performance drop, since no manual annotations are provided. Meanwhile,
exemplars retrieved from ImageNet are object-centric and contain little noise (e.g., other irrelevant
objects), thus improving the performance.

A.2 Test-time online update

Our test-time online update strategy is conducted via the following steps: 1) only utilize language
queries to conduct detection at the initial stage of evaluation. 2) Store detected instances with high
confidence as the vision queries of corresponding categories. 3) Use both language queries and stored
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vision queries for evaluation and seek for more vision queries. Tab. I verifies the effectiveness of our
approach.

A.3 Partial tuning rivals full-model tuning

Since the GCP modules are interleaved into the frozen detector, we provide a customized fine-tuning
strategy, partial tuning, namely, only tuning the newly added GCP modules and freezing all other
parameters. The results in Tab. II indicate that our partial tuning strategy achieves comparable
performance with traditional full-model tuning (i.e., only -0.4 % AP on ODinW-13). Partial tuning
accounts for much fewer learnable parameters, thus friendly to training time and memory costs. The
experimental results in the main text are all based on the partial tuning.

Table I: Different ways to acquire vision query. We
report the finetuning-free performance. All models
should be compared with the MQ-GLIP-T model
at the top of the table.

Model AerialDrone Aquarium Rabbits

GLIP-T 12.5 18.4 70.2
MQ-GLIP-T 15.8 23.5 75.4
MQ-GLIP-T-Online 15.5 23.2 74.8
MQ-GLIP-T-Retrieval 16.0 23.6 75.1

Table II: Different fine-tuning strate-
gies of MQ-Det under the 5-shot set-
ting. The implementation used in our
evaluation is highlighted in color.

Strategy ODinW-13 (%)
APavg APmid

Partial tuning 59.1 62.4
Full-model tuning 59.5 64.5

B Experiments

B.1 All results

We report the per-dataset performance under various settings in ODinW-13 and ODinW-35, shown in
Tab. III and Tab. VII, respectively. We also provide some visualized results in Fig. I.

Table III: Per-dataset AP performance (%) on ODinW-13. We report results on 0, 1, 3, 5, 10-shot
detection. MQ-GD-T denotes MQ-GroundingDINO-T. Specifically, the “zero-shot” here actuall
stands for the finetuning-free setting with 5 vision queries.

Dataset MQ-GLIP-T MQ-GLIP-L MQ-GD-T
0 1 3 5 10 0 1 3 5 10 0

PascalVOC 59.8 52.9 58.9 59.3 59.6 64.7 64.7 67.4 68.1 68.8 57.5
AerialDrone 15.8 22.1 29.8 31.0 31.6 17.4 30.7 36.1 37.0 36.1 13.6
Aquarium 23.5 31.7 36.1 40.1 42.4 30.3 39.2 45.8 47.0 49.7 18.5
Rabbits 75.4 76.2 77.4 75.6 75.5 71.8 76.0 75.0 74.3 75.3 79.9
EgoHands 41.2 64.3 66.0 66.7 68.2 57.2 68.8 68.1 71.6 72.6 65.4
Mushrooms 61.0 89.7 89.0 91.8 89.0 63.9 87.4 91.6 90.7 92.2 68.2
Packages 68.5 71.9 72.8 73.7 74.4 53.0 70.6 71.2 72.0 73.5 64.1
Raccoon 41.6 61.2 64.8 65.5 61.9 58.1 70.9 73.3 72.0 76.7 49.2
Shellfish 26.6 27.9 34.2 41.9 40.0 63.0 61.1 60.1 62.8 60.7 29.2
Vehicles 57.2 60.6 59.5 65.7 65.6 63.2 68.3 70.2 71.2 72.4 56.7
Pistols 59.6 56.5 60.3 61.4 61.7 74.4 73.6 72.7 74.3 74.8 69.2
Pothole 14.7 26.7 28.0 33.7 36.4 27.0 30.9 30.8 36.9 38.7 25.2
Thermal 48.0 59.4 64.2 62.4 72.7 58.7 68.5 72.2 72.5 74.5 64.9

Average 45.6 53.9 57.0 59.1 59.9 54.1 62.4 64.2 65.4 66.6 50.9

B.2 Explicit evaluation on an open-vocabulary detection setting

To further investigate the transferability of MQ-Det, we evaluation our models on a clear separation
of base and novel classes, which is similar to previous open-vocabulary object detection [6, 4]. We
first construct a novel category set from 1,203 LVIS categories. Specifically, we remove the LVIS
categories that exist in the 365 classes of Objects365 and finally obtain 986 novel categories that
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did not appear during our modulated pre-training. The remaining 217 categories are represented as
base categories. Then, we conduct finetuning-free inference with 5 vision queries on the separated
categories to verify the generalization of multi-modal query learning. Tab. IV shows the results.
The results indicate that multi-modal queries generalize well to novel classes that do not exist
in the modulated pre-training. Specifically, +4.1%, +5.7%, and +6.3% AP on novel classes of
MQ-GroundingDINO-T, MQ-GLIP-T, and MQ-GLIP-L over their baselines, respectively.

Table IV: Finetuning-free detection with explicit open-vocabulary category separation on LVIS.

Model APnovel APbase APall

GroundingDINO-T 22.1 36.7 25.6
GLIP-T 20.8 42.0 26.0
GLIP-L 35.4 45.5 37.9

MQ-GroundingDINO-T 26.2 43.0 30.2
MQ-GLIP-T 26.5 42.8 30.4
MQ-GLIP-L 41.7 51.3 44.0

It is worth noting that the separation of base and novel classes differs from previous works on
open-vocabulary detection (OVD) [5]. The reason is that the testing categories of previous separation
are partially included in our pre-training dataset Objects365 [3]. Therefore, we represent the classes
in LVIS that do not exist in our modulated pre-training dataset Objects365 as novel classes. The
frequency distribution of the separated LVIS dataset is shown in Tab. V:

Table V: Frequency distribution of the separated LVIS for open-vocabulary evaluation.

Class #Rare #Common #Frequent

Novel 326 404 256
Base 11 57 149
All 337 461 405

B.3 Training hyper-parameters

We report the hyper-parameter settings of the modulated pre-training of MQ-Det in Tab. VI. Other
settings are the same with corresponding language-queried detectors.

Table VI: Hyper-parameters of modulated pre-training.

Item Value Item Value

optimizer AdamW max vision query num (K) 5000
lr of GCP 1e-5 vision query num (k) 5
lr of gate 5e-3 mask rate 40%
weight decay 1e-4 layer with GCP 6∼12

C Further discussion

Limitations. First, multi-modal queries make limited contribution with sufficient training data
for each category. This may because the foundation models learn enough accurate classification
boundaries, thus reducing the effectiveness of language and vision queries. Second, the applications
of MQ-Det on other dense prediction tasks such as segmentation remain unexplored.

Broader impacts. MQ-Det shows strong downstream transfer ability with highly flexible category
vocabularies. This allows inexperienced users to easily use MQ-Det models (e.g., MQ-GLIP) for
their own needs by simply providing some visual examples and corresponding text descriptions.
However, this also raises concerns about how our MQ-Det models with a large vocabulary could
be used inappropriately in the community, such as for large-scale illegal video surveillance. The
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open-set detection capabilities could be manipulated through specialized visual or textual cues to
facilitate targeted detections instead of generic ones. This manipulation could introduce biases in the
detector and result in unfair predictions.

Table VII: Per-dataset AP performance (%) on ODinW-35. We report results on 0, 3-shot detection.
MQ-GD-T denotes MQ-GroundingDINO-T. Specifically, the “zero-shot” here actuall stands for the
finetuning-free setting with 5 vision queries.

Dataset MQ-GLIP-T MQ-GLIP-L MQ-GD-T
0 3 0 0

AerialMaritimeDrone_large 15.8 29.8 17.4 13.6
AerialMaritimeDrone_tiled 18.3 27.1 20.8 21.9
AmericanSignLanguageLetters 1.8 19.9 3.0 0.1
Aquarium 23.5 36.1 30.3 18.5
BCCD_BCCD 4.3 57.3 12.4 12.3
ChessPiece 10.7 64.8 2.8 14.9
CottontailRabbits 75.4 77.4 71.8 79.9
DroneControl_Drone_Control 6.4 40.9 9.3 1.2
EgoHands_generic 41.2 66.0 57.2 65.4
EgoHands_specific 3.6 32.1 6.7 0.1
HardHatWorkers 5.4 37.4 5.5 4.8
MaskWearing 0.3 46.3 1.0 0.0
MountainDewCommercial 49.2 46.4 17.7 39.9
NorthAmericaMushrooms 61.0 89.0 63.9 68.2
OxfordPets_by-breed 0.4 31.5 0.5 0.4
OxfordPets_by-species 1.6 68.1 0.4 0.5
PKLot_640 0.9 30.3 2.6 0.0
Packages 68.5 72.8 53.0 64.1
Raccoon_Raccoon 41.6 64.8 58.1 49.2
ShellfishOpenImages 26.6 34.2 63.0 29.2
ThermalCheetah 2.3 41.1 11.1 7.1
UnoCards 0.2 35.4 0.8 0.0
VehiclesOpenImages 57.2 59.5 63.2 56.7
WildFireSmoke 13.2 22.5 20.5 14.6
boggleBoards 0.1 76.5 0.1 0.0
brackishUnderwater 4.5 31.3 5.3 3.3
dice_mediumColor 0.4 14.6 0.6 0.1
openPoetryVision 0.0 3.1 0.0 0.1
pistols 59.6 60.3 74.4 69.2
plantdoc 1.7 12.5 1.5 0.2
pothole 14.7 28.0 27.0 25.2
selfdrivingCar 8.2 17.5 9.0 6.9
thermalDogsAndPeople 48.0 64.2 58.7 64.9
websiteScreenshots 1.0 6.6 1.7 1.0
PascalVOC 59.8 58.9 64.7 57.5

Average 20.8 43.0 23.9 22.5
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Figure I: Visualized results of MQ-GLIP-T on the LVIS benchmark.
Prediction Annotation Predic,on Annotation
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