
SOAR: Improved Indexing for Approximate Nearest
Neighbor Search

Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, and Sanjiv Kumar
Google Research

{sunphil,dsimcha,ddopson,guorq,sanjivk}@google.com

Abstract

This paper introduces SOAR: Spilling with Orthogonality-Amplified Residuals,
a novel data indexing technique for approximate nearest neighbor (ANN) search.
SOAR extends upon previous approaches to ANN search, such as spill trees, that
utilize multiple redundant representations while partitioning the data to reduce the
probability of missing a nearest neighbor during search. Rather than training and
computing these redundant representations independently, however, SOAR uses
an orthogonality-amplified residual loss, which optimizes each representation to
compensate for cases where other representations perform poorly. This drastically
improves the overall index quality, resulting in state-of-the-art ANN benchmark
performance while maintaining fast indexing times and low memory consumption.

1 Introduction

The k-nearest neighbor search problem is defined as follows: we are given an n-item dataset
X ∈ Rn×d composed of d-dimensional vectors, and for a query q ∈ Rd, we would like to return the
k vectors in X closest to q. This problem naturally arises from a number of scenarios that require fast,
online retrieval from vector databases; such applications include recommender systems [7], image
search [14], and question answering [10], among many others.

While nearest neighbor search may be easily implemented with a linear scan over the elements of X ,
many applications of nearest neighbor search utilize large datasets for which a brute-force approach is
computationally intractable. The rapid development of deep learning and embedding techniques has
been an especially strong driver for larger k-nearest neighbor datasets. For instance, multiple recent
large language model (LLM) works incorporate external information by using k-nearest neighbors to
retrieve from longer contexts [17] or large text corpora [5]. While datasets from typical applications
a decade ago (e.g. Netflix) had sizes of around 1 million [15], the standard evaluation datasets from
big-ann-benchmarks [16] all have 1 billion vectors with hundreds of dimensions.

These large datasets, in conjunction with the curse of dimensionality, a phenomenon which often
makes it impossible to find the exact nearest neighbors without resorting to a linear scan, has led to a
focus on approximate nearest neighbor (ANN) search, which can trade off a small search accuracy
loss for a significant increase in search throughput.

A number of indexing schemes proposed for ANN search, including spill trees [12], assign datapoints
to multiple portions of the index, such that the overall index provides a replicated, non-disjoint
(“spilled") view of the dataset. These algorithms have used partitioning schemes amenable to random
analysis, so that the replication factor can be provably shown to exponentially reduce the probability of
missing a nearest neighbor. However, partitioning high-dimensional data is difficult, even without the
constraint of doing so with a method amenable to randomized analysis; such constrained partitioning
techniques have led to inferior quality indices that have not yielded good compute-accuracy tradeoffs.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://big-ann-benchmarks.com/

On the other hand, another family of approaches, those leveraging vector quantization (VQ), have
demonstrated excellent empirical ANN performance, but little research has been done exploring the
use of multiple randomized initializations of VQ indices to further increase ANN search efficiency.
This is partly due to the fact that multiple VQ indices initialized through different random seeds do
not have strong statistical guarantees and cannot be proven independent in their failure probabilities.
This paper bridges the gap between these two approaches to ANN:

• We demonstrate the weaknesses of current VQ-based ANN indices and illustrate how
multiple VQ indices may be used in conjunction to improve ANN search efficiency.

• We show that the naive training of multiple VQ indices for a single dataset leads to correlation
in failure probabilities among the indices, limiting ANN search efficiency uplift, and present
spilling with orthogonality-amplified residuals (SOAR) to ameliorate this correlation.

• We benchmark SOAR and achieve state-of-the-art performance, outperforming standard VQ
indices, spilled VQ indices trained without SOAR, and all other approaches to ANN search
that were submitted to the benchmark.

2 Preliminaries and Notation

2.1 Maximum inner product search (MIPS)

SOAR applies to the subclass of nearest neighbor search known as maximum inner product search,
defined as follows for a query q and a dataset X :

MIPSk(q,X) = k -arg max
x∈X

〈q, x〉 .

Many nearest neighbor problems arise in the MIPS space naturally [6], and a number of conversions
exist [4] from other commonly used ANN search metrics, such as Euclidean and cosine distance, to
MIPS, and vice versa. We measure MIPS search accuracy using recall@k, defined as follows: if our
algorithm returns the set S of k candidate nearest neighbors, its recall@k equals |MIPSk(q,X)∩S|/k.
Additionally, we introduce the following notation to assist with MIPS analysis:

RANK(q, v,X) =
X
x∈X

1〈q,v〉≤〈q,x〉.

The max inner product’s RANK is 1; assuming no ties, RANK(q, v,X) ∈ [1, k] for v ∈ MIPSk(q,X).

2.2 Vector quantization (VQ)

Vector quantization can be leveraged to construct data structures that effectively prune the ANN
search space; these data structures are commonly known as inverted file indices (IVF) or k-means
trees. Vector-quantizing a dataset X produces two outputs:

• C ∈ Rc×d, the codebook containing the c partition centers.
• π(v) : Rd 7→ {1, . . . , c}, the partition assignments that map each vector in X to one of the

partition centers in C. Oftentimes, π(v) is defined as arg mini∈{1,...,c} ‖v − Ci‖
2, although

other assignment functions may also be used.

We can then construct an inverted index over π; for each partition i, we store the set of datapoint
indices belonging to that partition: {j|π(Xj) = i}. Then, instead of computing MIPSk(q,X) directly,
we may first compute MIPSk0(q, C), which is much faster because |C| � |X |. We can then use our
inverted index data structure to further evaluate the datapoints within the top k′ partitions.

2.2.1 The k-means recall (KMR) curve

The effectiveness of the VQ-based pruning approach depends on the rank of the partitions that
MIPSk(q,X) are in. If these partitions rank very well, we can set k′ very low, and search through
few partitions while still achieving great MIPS recall. If these partitions rank poorly, however, the
algorithm will have to spend lots of compute searching through many partitions in order to find the
nearest neighbors. We may quantify this effectiveness using the k-means recall (KMR) curve (named

2

because VQ indices are commonly trained through k-means, although KMR can be computed for any
VQ index, not just those trained via k-means), defined as follows:

KMRk(t;Q,X , C, π) =
1

k · |Q|
X
q∈Q

X
v∈MIPSk(q,X)

1RANK(q,Cπ(v),C)≤t (1)

The KMR curve for a given query sampleQ, dataset X , and VQ index (C, π) quantifies the proportion
of MIPS nearest neighbors present in the top t VQ partitions, over varying t. The KMR curve is non-
decreasing, with KMRk(0) = 0 and KMRk(|C|) = 1. A KMR curve that more quickly approaches 1
indicates superior index quality.

3 Method

The key insight of our work is the use of a novel loss function to assign a datapoint x to multiple VQ
partitions, such that these additional partitions effectively recover x in the pathological cases when
x is a nearest neighbor for a query that x’s original VQ partition handles poorly. These partitions
that include x work together synergistically to provide greater ANN search efficiency than any single
partition could alone. Below, we describe the motivations behind our new loss and this multiple
assignment. The supplementary materials contains the source code to generate this section’s plots.

3.1 Search difficulty and quantized score error

0 500 1000 1500 2000
Rank(q, C (x), C)

0.0

0.2

0.4

0.6

M
ea

n
q,

r

Figure 1: Greater search diffi-
culty, as quantified by a higher
RANK(q, Cπ(x), C), is associated with
highly positive 〈q, r〉.

For a datapoint x, define r as the partitioning residual,
equal to x− Cπ(x). The partition center Cπ(x) is the quan-
tized form of x, so the difference between the exact and
the quantized inner product scores is

〈q, x〉 −

q, Cπ(x)

�
=

q, x− Cπ(x)

�
= 〈q, r〉 ,

which we denote the quantized score error. Consider
the case when x is a nearest neighbor for the query:
x ∈ MIPSk(q,X). In this scenario, we would like
RANK(q, Cπ(x), C) to be low, so that the algorithm may
search just the top few partitions and find the nearest neigh-
bor x. A high RANK would lead to increased search dif-
ficulty, because the algorithm would have to search more
partitions and therefore do more work to find x.

Given that

q, Cπ(x)

�
= 〈q, x〉 − 〈q, r〉 and that, by defi-

nition, 〈q, x〉 is large when x ∈ MIPSk(q,X), we know
that

q, Cπ(x)

�
will be small (leading to greater search dif-

ficulty) when 〈q, r〉 is highly positive. Indeed, this can be confirmed empirically; in Figure 1 we
plot the mean 〈q, r〉 as a function of RANK(q, Cπ(x), C) for all query-neighbor pairs (q, x) in the
Glove-1M dataset. The more difficult-to-find pairs have, on average, notably higher 〈q, r〉.
SOAR increases search efficiency in these situations when x ∈ MIPSk(q,X) and 〈q, r〉 is high.

3.2 Quantized score error decomposition

By the definition of the inner product,
〈q, r〉 = ‖q‖ · ‖r‖ · cos θ

where θ is the angle formed between the query and the partitioning residual. Without loss of generality,
we may assume that ‖q‖ = 1 without any effect on the ranking of MIPS nearest neighbors. The two
contributors to a highly positive 〈q, r〉 are therefore a large ‖r‖ and cos θ being near unity; reducing
〈q, r〉 requires targeting either, or both, of these contributors.

SOAR targets cos θ, because that term is both easier to reduce and has greater impact on 〈q, r〉:

• The VQ training loss already aims to minimize E[
x− Cπ(x)

2
] = E[‖r‖2

], so further
reductions in ‖r‖ are difficult. In contrast, cos θ is not directly optimized for, making it
more amenable to reduction.

3

	Introduction
	Preliminaries and Notation
	Maximum inner product search (MIPS)
	Vector quantization (VQ)
	The k-means recall (KMR) curve

	Method
	Search difficulty and quantized score error
	Quantized score error decomposition
	Spilled VQ assignment
	Spilling with orthogonality-amplified residuals
	Implementation considerations
	Spilling to further centroids

	Related Works
	Spill trees
	Graph-based algorithms

	Experiments
	KMR curve comparison
	Correlation analysis
	Effects of dataset size and recall target
	End-to-end recall-speed benchmarks

	Appendix
	Proof of Theorem 3.1
	KMR curve comparison: further details
	ann-benchmarks.com Glove-1M benchmark details
	End-to-end recall-speed benchmarks: further details
	General index setup
	Estimated cost of SOAR benchmark hardware
	Cloud cost details

